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Ferrograph Analysis With
Improved Particle Segmentation
and Classification Methods
Ferrograph analysis has been adopted over decades for determining the root causes of on-
going wear faults. After decades of manual operation, this traditional technique is being
driven by intelligent algorithms for automatic identification of wear debris. However, the
accuracy and robustness of this algorithm remain marginalized when applied in industries
due to various types and color blurry of particles. To address this issue, this paper intro-
duces an automatic ferrograph analysis model with a segmentation method and a two-
level classification strategy. In order to obtain wear particles from the color ferrograph
image, an adaptive Otsu threshold is adopted in three channel images to solve the color
blurry in particle segmentation. By grouping particle parameters into shape and morphol-
ogy ones, a two-level identification strategy is proposed. The first one is to classify rubbing,
cutting, and spherical particles, referring to the fuzzy approach degree of shape parame-
ters. In the second level, the shape-close particles are classified with imperceptible textures
and back propagation neural network (BPNN). These objective parameters are constructed
by applying the principal component analysis into seven texture features and inputted into a
BPNN-based model to classify fatigue and severe sliding particles. In order to train the
BPNN, more than 100 ferrograph images are sampled together, whereby standard ferro-
graph analysis is performed on the particle identification. The performance of the identifi-
cation exhibits an accuracy exceeding 90% for rubbing, cutting, and spherical particles,
whereas about 80% accuracy has been registered for both severe sliding and fatigue par-
ticles. [DOI: 10.1115/1.4045291]
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1 Introduction
Wear-induced failure of key equipment is the focus of condition

monitoring for many industrial enterprises, the petrochemical
industry is an obvious example of this category. To avoid such
failure in the operating equipment, ferrography technique is
widely adopted to evaluate the mechanism and severity of wear
via the particles carried by the cycling lubricant [1–3]. Over
decades, ferrograph analysis has been manually carried out and
empirically on particle image segmentation and identification,
which is time-consuming and costly [4,5]. To address this issue, a
vast contribution of algorithms has been reported for ferrograph
image identification [4], but their accuracy and robustness remain
marginalized when applied in industries. The interference inherent
in the low contrasts and blurry occurrences of particle images
might be as a result of the marginalized accuracy that could have
been overseen during the initial recognition strategies. Conse-
quently, there is a great demand for improving the performance
of this promising technique through the automation of particle
image segmentation and classification.
Particle segmentation from ferrograph images is the foundation

of automated ferrograph analysis. As a contribution to this notion,
many segmentation methods that involve particle morphological
characteristics are reported with different strategies [6,7]. In partic-
ular, researchers tend to adopt a C-V model to extract wear particle
contours, even though this method divides the particle into many
small areas [8]. Nevertheless, there arises an enormous amount of
particles in a single image. This occurrence may lead to some unac-
ceptable low rates in efficiency of the one-by-one segmentation.

Furthermore, adaptive methods are adopted to extract complete
wear particles from the background with a k-means or a watershed
and ant colony-based clustering algorithm [7,9], but these methods
are very sensitive to the color of particles that leads to the highly
false segmentation when there are particles in dark, light, or even
in mixed colors.
The main challenge for the particle identification lies in the fact

that there are large numbers of typical particles, and they have
various features both in color and in morphology. Correspondingly,
the algorithms for automatic classification should be sufficiently
intelligent in any situation. Wear particle identification systems
have been established with different algorithms [10–12]. Represen-
tatively, with shape features extracted by image processing, a new
radial concave deviation (RCD) method is developed to identify
regular, elongated, spherical, and irregular particles [13]. Similar
to the RCD method, an automated identification model is con-
structed by inputting particle morphological characteristics into a
feed-forward neural network [14]. In actual fact, there exist over
200 morphological features that contribute toward the description
of particles [15]. These characteristics are capable toward the intro-
duction of the relevant features and redundant information data for
the classification of the different particle types. In response to these
demands, further work has been carried out on extracting integrated
features by a GP-based evolutionary method. The GP evolved fea-
tures are adopted to train a support vector machine (SVM) classifier
to identify sliding, cutting, and oxidative particles [16]. Meanwhile,
a multivariate discrimination method is developed through the deci-
sion tree to classify cutting, fatigue, slight sliding, and severe
sliding particles [17]. These methods provide good ideas to classify
wear particles in distinguishable shape characteristics, which facil-
itate the automatic recognition of wear types.
With respect to the effect, the classification of the particles of the

severe sliding and fatigue types seems to be a big task because the

1Corresponding author.
Manuscript received June 17, 2019; final manuscript received October 16, 2019;

published online October 25, 2019. Assoc. Editor: Ying Liu.

Journal of Computing and Information Science in Engineering APRIL 2020, Vol. 20 / 021001-1
Copyright © 2019 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/20/2/021001/6463517/jcise_20_2_021001.pdf by Xi'An Jiaotong U
niversity Lib user on 27 D

ecem
ber 2019

mailto:wstyxjtu@163.com
mailto:wt-h@163.com
mailto:moyuansuishang@163.com
mailto:tsarkodi@utep.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4045291&amp;domain=pdf&amp;date_stamp=2019-12-11


discrimination relays on the faint surface textures. Earlier research-
ers use gray-level co-occurrence matrix (GLCM) to acquire texture
characteristics from wear particle surfaces and then make identifica-
tion of these two particles through an integrated algorithm of prin-
cipal component analysis (PCA) and gray correlation [15].
However, the GLCM textures can only represent the relation
between image pixels, but they are unable to comprehensively char-
acterize particle surfaces. The solution is directed to another way
by improving the resolution of particle features; laser scanning con-
focal microscopy [18] and atomic force microscopy [19] are used
for extracting 3D features such as thickness and surface roughness.
In order to identify the severe sliding and fatigue particles, these
aforementioned features serve as inputs into the SVM-based [19]
or the BPNN models [20], respectively. These suggested methodol-
ogies seem to provide extensive morphological information as
opposed to the conventional two-dimensional (2D) approaches.
They also exhibit absolute improvements toward the accuracy of
the identification of the particle type. However, the complexities
involved in the operation of these instruments, and coupled with
their high costs, make their application in the industry greatly
marginalized.
Although current analytic methodologies have gained certain

successes in particle segmentation and classification, yet still,
they are insufficient in meeting the demand of the petrochemical
industry. To address this issue, we developed an automated ferro-
graph to identify typical wear particles from captured ferrograph
images. In order to deal with wear particle images in different sit-
uations, three channel images are selected and dealt with the adap-
tive Otsu method to segment wear particles in dark color, light
color, or mixed color from the background. After the acquisition
of morphological features, the fuzzy inference is applied to distin-
guish the rubbing, spherical, and cutting particles which are easy
to be identified. The PCA methodology is preferred for the extrac-
tion of the comprehensive texture parameters toward the charac-
terization of the severe sliding and fatigue particles, and then, a
BPNN model is constructed to identify them. With this frame-
work, an automated identification system is established for
typical wear particles. Its performance may be estimated by the
application of actual particles. This experimental investigation
offers an insight into the rate of the efficiency in the solution
toward the automation of the particle classification. This proce-
dure may contribute toward enhancing the analysis of machine
wear state.
The rest of this paper includes four sections: Sec. 2 depicts an

adaptive particle image segmentation; The particle identification
strategy and the corresponding verification are given in Sec. 3;
Secs. 4 and 5 describe the discussions and the conclusions.

2 Adaptive Segmentation for Wear Particle Image
Particles segmentation from ferrograph images is the basis of the

characteristics extraction for the following automated type recogni-
tion. However, the particles collected from petrochemical equip-
ment always have dark, light, or mixed colors in captured images,
as shown in Fig. 1. The different particle images result in that
part of the particle area may be lost when they are segmented.
Therefore, it becomes of ultimate significance to construct an adap-
tive segmentation method for ferrograph images.

2.1 Particle Image Segmentation Method. With respect to
Fig. 1, there exist discrepancies between the particles and their
respective backgrounds on the ferrograph images, notwithstanding
the fact that the color of the particles may be different. In this case, a
suitable threshold may be estimated toward the segmentation of the
particles from the background. Applying the least square method,
the Otsu method is capable of adaptively choosing an optimal seg-
mentation threshold from the distribution of the image gray level
[21]. This method can greatly reduce the search time for computing
the segmentation threshold due to its optimization processing.

Therefore, the Otsu method is adopted to deal with ferrograph
images with the following procedures [2].
Otsu adopts threshold k to segment gray images. The gray scale

image from 0 to k is segmented into particle parts M0, whereas the
rest of the zone (gray scale from k+ 1 to l− 1) is estimated as the
background M1. The variance between M0 and M1 can be consid-
ered as a measure of uniformity of the gray distribution. The
greater the variance between the particle and background, the
greater the difference between the two parts of the image, that is,
the better the particle image segmentation. The class variance
σ2(k) can be estimated through Eqs. (1) and (2).

ω0 =
∑k

i=0
ni
N

μ0 =
∑k

i=0
i*ni
ω0*N

ω1 =
∑l−1

i=k+1
ni
N

μ1 =
∑l−1

i=k+1
i*ni
ω1*N

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

σ2(k) = ω0ω1(μ0 − μ1)
2 (2)

where N is the pixel number of the gray image, ni is the pixel
number of the ith gray level in the image, ω0 is the proportion of
the particles, μ0 is the average gray level of particles, ω1 is the pro-
portion of the background, and μ1 is the average gray level of
background.
The optimal threshold k* may be obtained through the traversion

of the gray scales from 0 to l− 1, whereby the pixel points in the
image may be classified into the particle and the background
regions, respectively. Hereby, the black zones represent wear parti-
cles, and the background is the white zones.

2.2 Different Channel Image Analysis. Aiming at segment-
ing the three situations of particle images, four channel images
are obtained by transforming the original RGB color space to
HSV color space [22], including gray image, H, S, and V
channel image. The four channel images are segmented with the
Otsu threshold method, as illustrated in Fig. 2. As may be
observed, HSV color space describes the particle image from
three perspectives (brightness, saturation, and hue), and the
three images are quite different from the original image. It can
be found from the segmentation results that the V channel
image is suitable for the dark particle image segmentation,
while the small dark particles and the large light particles are seg-
mented from the S channel image. However, neither the small
dark particles nor the large light particles are effectively seg-
mented from the H channel image. In addition, Fig. 2(e) shows
that light-colored wear particles can be effectively segmented,
while dark-colored wear particles cannot be segmented from the
gray image.
The number of pixels in the wear particle area is counted for each

channel segmentation image, as shown in Fig. 3. Combined with
Figs. 2 and 3, some rules may be concluded: the S-channel-based
segmentation can obtain the complete wear particle because of

Fig. 1 Original wear particle image
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the largest area (reaching 2571); the smallest particle area is 793
segmented based on V-component image, which can reflect the
small dark wear particles; The wear particle area segmented based
on RGB gray image reaches 1188, which is the area of light-color
wear particle image.
In summary, the gray-image-based segmentation method can dis-

tinguish light-color particles, the V-channel-based segmentation
method can segment dark-color particles, and the S-channel-based
segmentation method can simultaneously extract both dark and
light wear particles from the background. Therefore, different dark-
color and light-color wear particles can be segmented with choosing
gray image, V-channel image, or S-channel image. Furthermore, the
open operation, closed operation, and connected region marking
algorithm are introduced to achieve an accurate and effective seg-
mentation for various particle images. Part of segmentation results
are shown in Fig. 4.

Fig. 2 Image segmentation result based on RGB and HSV color space: (a) gray image, (b) V-channel gray image, (c) S-channel
image, (d) H-channel image, (e) gray-image segmentation, (f) V-channel gray image segmentation, (g) S-channel image segmenta-
tion, and (h) H-channel image segmentation

Fig. 3 Area comparison of wear particle segmented under dif-
ferent color channels

Fig. 4 Segmented results of various wear debris images: (a) original mixed-color particle image, (b) segmentation of dark-color
particle from (a), (c) co-segmentation of dark-color and light-color particles from (a), (d) segmentation of light-color particle from
(a), (e) original image of particle in the chain, (f) segmentation of particle from (e), (g) original image of particle in the chain, and
(h) segmentation of particle from (f)
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3 Wear Particle Recognition Based on Fuzzy Inference
and BPNN
Wear particle recognition is the core of wear debris analysis

(WDA) technology, but traditional particle classification mainly
relies on experts or experienced analysts. In order to address this
issue, classification methodology based on a two-level approach
is constructed with the shape and texture features of five typical par-
ticles in this section.

3.1 Wear Particle Recognition Strategy. The morphological
features inherent in the wear particles that include shape and texture,
exhibit some amount of closeness toward the connection with the
generation mechanism of the particles and the running state of the
equipment. Some research work has been carried out to systemati-
cally analyze wear particle types, mainly involving rubbing, cutting,
spherical, severe sliding, and fatigue particles. Different types of
particles have typical shapes, edges, and surface textures which cor-
respond to its generation mechanisms. The shapes of typical parti-
cles are shown in Fig. 5. The connectivity of the morphological
features of the particles and the running state of the machines is
illustrated in Table 1 [1,12,13,15].
As may be observed from Fig. 5, rubbing, spherical, and cutting

particles have distinct shape characteristics—rubbing particles

have a smaller size, spherical particles are ball-like, and cutting
particles are spiral and arc. In this manner, these particles may
be accurately classified with 2D shape features. However, the
fatigue and severe sliding wear particles have high similarities
on the shape and color characteristics, which lead to low-
identification accuracy of these two kinds of particles. To
address this issue, a two-level identification strategy is developed
as follows:

(1) The rubbing, spherical, and cutting wear particles are first
distinguished by combining the three characteristic para-
meters (area, roundness, and aspect ratio) with fuzzy
inference.

(2) The application of the PCA enables the extraction of compre-
hensive texture parameters from the GLCM parameters and
Tamura texture parameters. Furthermore, a BPNN-based
model is constructed for the fatigue and severe sliding parti-
cle classification.

The specific process framework is shown in Fig. 6.

3.2 First-Level Classification for Four Typical Particles.
Various wear particles exist in lubricating oil, and their shapes
and textures are different, even for the same type of wear particles.
This will lead to a fuzzy for wear particle identification. The fuzzy
degree between two wear particles can be described with fuzzy
inference [23,24]. Therefore, the fuzzy inference method is
applied for the recognition of the type of particles through compar-
ing the identified particles with the standard particle model.
Based on the strategy involving the particle recognition, rubbing,

cutting, and spherical wear particles are first recognized with the
area, roundness, and aspect ratio, and the remaining two kinds of
particles are then being identified in the following sections. The
ambiguity domain (U) of fuzzy inference can be defined as: U=
{rubbing particle (Ã1), cutting particle (Ã2), spherical particle
(Ã3), other particles (Ã4)}, and X= {area (X1), roundness (X2),
aspect ratio (X3)} are selected as the description index, whereby
the other particles represent fatigue and severe sliding particles. Par-
ticle fuzzy sets are calculated by normalizing the characteristic
parameters in Table 2 in Ref. [17], which are extracted from
various wear particles in the sample library.
Fuzzy inference method can comprehensively identify the target

through the evaluation of multiple factors. Due to the same trend in
the predicted results of different closeness [25], the maximum–
minimum degree approach is applied to calculate the attribution

Fig. 5 Images of different types of particles

Table 1 Generation mechanisms of wear particles [1,12,13,15]

Type Features
Generation
mechanism Possible wear state

Rubbing Thin and its
size in 0.5–
15 μm

The frictional
component of the
failure of the shear
mixing layers

The occurrence of
failure with dramatic
increase in the
particle number

Cutting Long
particles

Hard particles
penetrating the soft
surfaces

Impending trouble of
severe cutting wear

Spherical Ball-like
particles

The grinding of the
cracks or melting of
metals at high
temperatures

The precursor of
early pitting or severe
wear

Serious
sliding

Parallel
scratches on
surface

Excessive stress on
the surface

The damage of oil
film

Fatigue Smooth
surfaces with
pitting

Pitting after surface
fatigue

Heavy load or
over-speed
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degree of particles to be tested and sample particles.

σ0(Ãj, B̃) =
2*

∑3
i=1 (Ãj(xi) ∧ B̃(xi))∑3

i=1 (Ãj(xi) + B̃(xi))
, (j = 1, 2, 3, 4, 5) (3)

where Ãj(xi) and B̃(xi) are the ith eigenvalue of particle A in type j in
Sample base and tested particle B, respectively.
According to the proximity principle, if σ0(Ãi0 , B̃) =

∨m
k=1σ0

(Ãk, B̃), B̃ is classified into type Ãi0 . In this way, the type of particles
can be determined with the attributive degree.

3.3 Second-Level Classification for Fatigue and Severe
Sliding Particle. Even though there are distinct texture differences
between the surfaces of severe sliding and fatigue particles, the rec-
ognition rate of these two particles is still very low due to the fact
that the extracted texture parameters cannot effectively characterize
wear particles. To address this issue, two steps are involved includ-
ing (1) comprehensive texture extraction based on PCA and
(2) BPNN-based particle identification model.

3.3.1 Comprehensive Texture Extraction Based on Principal
Component Analysis. The significant dissimilarities of the severe
sliding and fatigue particles exist on the surface textures. GLCM
textures and Tamura textures provide a reliable means for texture
extraction. GLCM can describe the change rule of image pixels
with a set of parameters [26], such as energy, inertia, correlation,
and entropy. Tamura method can extract texture features from the
perspective of human subjective psychology [27] and its texture
features (roughness, contrast, and orientation) match human
visual perception. The definition of these parameters is described
in Table 3.
Coming from two models, the seven texture parameters may

include relevant information. If these parameters are directly
adopted to characterize a surface texture, the redundant texture fea-
tures may result in a low recognition rate. Hence, statistical texture
features need to be extracted to reduce variables without losing key
information. As an effective dimension reduction method, PCA can
convert a group of original data vectors into fewer integrated data
vectors which are not correlated with each other [28,29]. The
PCA method has been adopted toward the estimation of the

statistical texture parameters from the seven parameters, and the
results are shown in Table 4. It may be recorded that the cumulative
contribution rate of the first three principal components has reached
87.7896% (exceeding 85%). Therefore, the feature vectors corre-
sponding to the eigenvalues of 4.2468, 1.223, and 0.6755 are
selected as the comprehensive textures.

3.3.2 BPNN-Based Particle Identification Model. An appro-
priate selection of intelligent algorithm can facilitate the fatigue
and severe sliding particle identification. The common-used iden-
tification methodologies include SVM [19], BPNN [30], and
recurrent neural networks (RNN) [31]. SVM is a binary classifier
developed on the statistical learning theory, and its learning
ability and generalization ability depend on the kernel function.
However, it is difficult to construct an effective kernel function
for particle identification because of the complex textures of
severe sliding and fatigue particle images. BPNN, a multi-layer
feed-forward neural network, can fully reveal complex nonlinear
relations with its strong learning ability [30]. RNN can achieve
a classification based on dynamic signals in the serialized
data, but the introduction of historical information makes its

Table 3 Texture parameters from GLCM and Tamura model

Parameters Definition

Energy The square of the sum of element values of GLCM.
Inertia The quadratic statistics of GLCM, representing surface details.
Relevance The reflection of certain gray value extending along a certain

direction.
Entropy The uniformity of pixel distribution in gray-scale images.
Roughness The representation of the small spacing or unevenness of

peak-valley on particle surfaces.
Contrast The brightness level between the brightest pixel and the

darkest pixel in the image area.
Roughness The arrangement consistency of texture along a certain

direction in an image.

Table 4 Statistical texture parameters of typical particles in
sample base

Principal
component

Eigen
value

Contribution
rate

Accumulated
contribution rate

First 4.2468 60.6685% 60.6685%
Second 1.2230 17.4710% 78.1395%
Third 0.6755 9.6501% 87.7896%

Fig. 6 Flowchart of wear particle recognition based on fuzzy proximity and BPNN

Table 2 Characteristics of wear particles in the sample base

Parameter Ã1 Ã2 Ã3 Ã4

A1 0.0266 0.1671 0.0819 0.3347
A2 0.6874 0.0912 0.9165 0.6470
A3 0.0187 0.3986 0.0026 0.0264
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computational complexity far beyond BPNN. On account of
this procedure, the BPNN is applied toward the construction
of the particle classifier: the comprehensive texture parameters
extracted by PCA are selected as the input; a modification of
the structure of the BPNN-based model is performed using the
input parameters; the output of model includes two types
whereas the final particle type is determined using Table 5.
The constructed BPNN-based particle identification model is
shown in Fig. 7.
The training procedures of the wear particle classifier are

described as follows [17]:

(1) Input training sample and randomly initialize the network
parameters.

(2) Application of the forward propagation for the calculation of
the output result layer-by-layer according to the weight
matrix and input vectors.

(3) Calculate total output error E with Eq. (4).

E =
1
2

∑l

k=1

e2k =
1
2

∑l

k=1

(dk − ok)
2, (k = 1, 2, . . . , l) (4)

where dk is the expected output value of kth node in the
output layer, ok is the real output value of kth node in the
output layer, and l is the number of the node.

(4) Error back propagation to each layer and modify connection
weights and thresholds to lower the gradient.

Wjk(t + 1) =Wjk(t) − ξ
∂E

∂Wjk(t)
,

(j = 1, 2, . . . , m; k = 1, 2, . . . , l)
(5)

vjk(t + 1) = vjk(t) − ξ
∂E

∂vjk(t)
,

(j = 1, 2, . . . , m; k = 1, 2, . . . , l)
(6)

where ξ is the learning rate, vjk is the weight value updating
from jth node of the input layer to the kth node the hidden
layer, and Wjk is the weight value from the jth node of the
hidden layer to the kth node of the output layer.

(5) The determination as to whether or not the training process
meets the termination condition: the error or the number of
iterations reaches the set threshold. If not, start the next train-
ing with the second step.

3.4 Method Verification. In order to evaluate the performance
of the constructed two-level classification model, the sample base in
Ref. [24] is selected as the training and tested samples, including 54
particles of each type. There occurs the selection of 44 particle
images from each type to train the constructed classification
model and the rest is adopted as tested particles. Part of samples
is illustrated in Fig. 8.

3.4.1 Wear Particle Recognition Based on Fuzzy Inference.
The attributive degrees between tested particles and typical particles
in the sample base are calculated by maximum–minimum prox-
imity method, as shown in Fig. 9. The identification result is
the type which corresponds to the highest point, and the final

Table 5 The output of BPNN classifier

Output Output 01 Output 02

Fatigue 1 0
Severe sliding 1 0

Fig. 7 BPNN-based wear particle classifier

Fig. 8 Five types of wear particle samples
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recognition accuracy of all wear particles is calculated from Figs.
9(a)–9(e), as illustrated in Fig. 9( f ). All particles are correctly
identified except for a rubbing particle. The high recognition
rate of rubbing, cutting, and spherical particles establishes a
solid basis for the following two kinds of similar particle
classification.

3.4.2 BPNN-Based Fatigue and Severe Sliding Particle
Identification. With the comprehensive textures and constructed
BPNN recognition method, 10 fatigue and severe sliding particles
are tested, and the results are given in Tables 6 and 7. It may be
observed that the identification rate of these two kinds of particles
has reached 80%. Only No. 7 and No. 10 in tested fatigue
samples and No. 4 and No. 8 in tested severe sliding samples
have recognition errors. Compared with GLCM parameters or
Tamura parameters, comprehensive texture parameters can effec-
tively improve the recognition rate of these two kinds of particles.
The accuracy comparison of different parameters is shown in
Fig. 10.

4 Discussions
An automated WDA method is developed to analyze the wear

particles generated from petrochemical equipment, involving the
adaptive segmentation and identification of wear particles. The
outcome of the experimental investigations have exposed the fact
that the proposed automatic WDA strategy may be able to recognize
rubbing, cutting, spherical, fatigue, and severe sliding particles with
satisfactory accuracy. Compared with conventional techniques for
particle identification, this newly proposed approach offers distinct
advantages which are detailed below.
Compared with conventional 2D image-based identification

algorithms [13,15], this proposed methodology clearly depicts the
facilitation of the identification of wear particle types. When com-
pared with the newly integrated strategy of BPNN and CNN
method [24], the recognition rate of rubbing, cutting, and spherical
particles has been over 90%. Although they have a similar accuracy
in identifying the type of severe sliding and fatigue particles, our
proposed method is constructed with BPNN, which have low

Table 6 Recognition results of fatigue particles

Particle 1 2 3 4 5 6 7 8 9 10

Fatigue 0.87 0.73 0.59 1.03 0.57 0.92 0.13 1.06 0.74 −0.10
Severe sliding 0.14 0.26 0.39 0.04 0.45 0.08 0.87 −0.07 0.26 1.11

Fig. 9 Recognition results of tested particles based on fuzzy inference: (a) rubbing samples, (b) spherical samples, (c) cutting
samples, (d) fatigue samples, (e) severe sliding samples, (f) recognition accuracy of particles (note: fatigue samples in (d) and
severe sliding samples in (e) are grouped into the same category named “other particles”)

Table 7 Recognition results of severe sliding particles

Particle 1 2 3 4 5 6 7 8 9 10

Fatigue −0.05 −0.57 −0.06 0.96 0.22 0.40 0.47 0.74 0.18 0.16
Severe sliding 1.06 1.58 1.05 0.04 0.78 0.60 0.53 0.26 0.82 0.85
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hardware requirements for training the model. Although 3D
imaging techniques have facilitated the identification of severe
sliding and fatigue particles [18–20], the complexities involved in
the operation and their high costs have greatly marginalized their
application in industries. Hence, this constructed model can be con-
sidered as a practical approach for the identification of wear particle.
Having successfully identified the particles, future work may now
focus on the analysis of wear mechanisms for the full-life monitor-
ing of petrochemical equipment.

5 Conclusions
In order to develop an automated ferrograph technology for pet-

rochemical industries, a new method is established, including the
adaptive segmentation and the two-level identification of wear par-
ticles. This proposed model is capable of classifying five typical
particles produced from the petrochemical equipment. The main
conclusions are that as follows:

(1) Extracted from RGB and HSV color space, three channel
images can describe particles from different perspectives.
With Otsu threshold method and image processing, particles
in the dark, light, and mixed colors can be accurately seg-
mented from the background.

(2) A fuzzy inference based classification algorithm is developed
with three characteristic parameters (area, roundness, and
aspect ratio). The estimated accuracy of the recognition on
rubbing, cutting, and spherical particles is over 90%.

(3) In view of the limitation of the single-texture model in
describing particle surfaces, three statistical texture parame-
ters are calculated by applying PCA on seven textures from
GLCM and Tamura textures. These parameters enable a
BPNN classifier to be established for the classification of
the fatigue and severe sliding particles. The average recogni-
tion accuracy of the two particles is 80%.
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