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A B S T R A C T

Mechanism-based wear debris classification (WDC) is important for root cause analysis and prediction of wear
related faults. Compared to manual classifications, automatic WDC is more efficient and often more reliable for a
wide range of industrial applications. However, existing methods unavoidably encounter some difficulties when
dealing with those wear particles with highly geometric similarity, especially for fatigue particles and severe
sliding particles. To meet the requirement for automatic WDC, an integrated, automated method for identifying
typical wear debris is proposed with a two-level classification procedure. By referring to the traditional ferro-
graphy – a widely used wear particle imaging and analysis technique, the first-level classification is performed by
a general back-propagation (BP) neural network with selected particle's morphological features. By doing this,
three types of wear particles including rubbing, cutting, and spherical particles can be determined. In the second-
level classification, a deep learning model of a 6-layer convolution neural network (CNN) is adopted to identify
fatigue particles and severe sliding particles by analyzing their very slight surface details in pixel-level. The
method is tested with over 100 images of real particles generated from an extruder machine in a petrochemical
plant and identified by a ferrograph specialist. A high recognition rate of over 80% is achieved for the three types
including rubbing, cutting, and spherical particles with the first procedure. Further, the identification rates are
85.7% and 80% for fatigue particles and severe sliding particles, respectively, which is distinctly improved from
the reported values (they are 45.5% and 36.4%, respectively) of other intelligent methods.

1. Introduction

As the direct production of friction interactions between mechanical
parts, wear particles carry valuable information for the identification of
wear mechanisms and ongoing failures [1]. Therefore, wear debris
analysis (WDA) has been the most efficient means for both diagnosis
and prognosis of wear failures [2]. Among existing techniques for wear
debris imaging and analysis, ferrography is one of the most recognized
and effective WDA methods [3]. However, the traditional ferrography
has inherent disadvantages, such as experience-dependence and time-
consuming, which retard its applications. With the new requirement of
condition-based maintenance and assistance of advanced information
technologies, increasing interests are stimulated on developing auto-
matic ferrography. Therefore, a comprehensive method for industrial
application remains a promising prospect.

Morphological characteristics of wear particles are directly corre-
lated to their generation mechanism and the operation of the equip-
ment. Moreover, different types of wear particles can be identified

using descriptors of the particle shape and surface morphology. By re-
ferring to analytical ferrography, intelligent algorithms [5–7] were in-
troduced to extract particle morphological and color characteristics.
Shape parameters are available to identify regular, irregular, elongated,
and spherical particles by the classification and regression tree method
[8]. Some texture parameters (energy, entropy, and correlation) are
also extracted from the grayscale symbiotic matrix to establish a new
classification algorithm by combining the principal component analysis
(PCA) with the gray correlation [9]. With color features, the typical
classification includes copper alloys, red oxidation particles and dark
oxidation particles are distinguished by adopting the clustering algo-
rithm [10]. Although current WDA methodologies have gained some
successes in the automation of wear particle identification, their accu-
racy rates of wear particle recognition need to be improved. In addition,
they have difficulty in identifying fatigue particles and severe sliding
particles which exhibit similar shapes and edge features in 2D images.

Fatigue particles and severe sliding particles are produced in their
corresponding wear processes, and are often treated as the precursor of
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ongoing failures. To identify the two typical wear particles, research
efforts have directed towards extracting additional features. Among
these attempts, stereo scanning electron microscopy (SEM) is adopted
to acquire wear debris contour and surface information [11]. Then
these features are inputted into a support vector machine (SVM) system
[11] or a two neural networks system [12] to classify the two kinds of
wear particles, demonstrating that surface-based classification system is
more efficient and accurate than the classification system based on 2D
images. However, these advanced techniques cannot be popularized for
industrial applications due to the expensive equipment and complex
operations.

As mentioned above, traditional particle recognition methods can
achieve high accuracy for the particles which have typical character-
istic parameters but have difficulty in recognizing the others, especially
in fatigue particles and severe sliding particles. With the development
of self-learning methods, target images can be directly analyzed
without artificial parameters. These network models mainly include
LeNet-5 [13], AlexNet [14], GoogleNet [15], VGG [16] and ResNet
[17]. However, AlexNet, GoogleNet, VGG and ResNet require too much
computation time and hardware configuration to train the network
structure. The LeNet-5 model is a smaller Convolutional Neural Net-
work (CNN) structure. The mapping relation between the input and the
output is trained without any precise mathematical expressions be-
tween the input and the output. In addition, weight sharing can reduce
training parameters to simplify the neural network structure and im-
prove its applicability. The LeNet-5 model is the first CNN method that
has been successfully applied to deal with digital recognitions. How-
ever, particle images are more complicated than digital images in tex-
tures. Therefore, further research is required on the CNN-based wear
particle identification.

This paper introduces an integrated method with BP neural network
and CNN algorithm to identify five typical groups wear particles, in-
cluding: rubbing, cutting, spherical, fatigue, and severe sliding wear
debris. With selected morphological features, BP neural network can
easily identify four typical groups of particles, including rubbing, cut-
ting, spherical particles and the unknowns (that is, fatigue particles and
severe sliding particles). Fatigue particles and severe sliding particles
are then identified by a Convolutional Neural Network (CNN) model,
which can avoid the requirement for a large number of samples and
long training time. The performance of this innovative methodology
will be verified by comparing with results observed from traditional
machine learning methods using wear particles that are produced from
an extruder machine in a petrochemical plant.

This paper is further organized as follows: Section 2 contains the
wear particle identification with BP neural network and CNN

algorithm; the verification of the proposed method is given in Section 3;
Discussions are presented in Section 4; and conclusions are given in
Section 5.

2. Materials and methods

Based on distinctive shape and surface features of five types of wear
particles, a hierarchical concept was introduced for wear particle
identification. A 2-step approach was used for this development. Firstly,
wear particle features were quantitatively characterized using numer-
ical parameters and a BP neural network was developed to identify
rubbing, cutting, and spherical particles based on their characterized
shape features while non-identified particles were grouped separately.
And then, fatigue particles and severe sliding wear particles were
identified with a 6-layer convolution neural network. These 2 steps are
described as follows.

2.1. Four typical wear particle identification based on BP neural network

2.1.1. Wear particle feature extraction
Five typical wear particles were generated from an extruder ma-

chine in a petrochemical plant, and their images were collected using
the ferrography as shown in Fig. 1. The correlation between morpho-
logical characteristics of these five typical particles and the condition of
friction pairs are described in Table 1[4,7,8,11,12]. As can be observed,
each typical wear particle has unique features corresponding to its
generating mechanism. For example, rubbing wear debris, which is
generated from a normal sliding wear process, is a thin slice with a
polishing surface and in small size. Therefore, the shape and/or surface
features of wear particles can facilitate to identify the types of wear
particles.

Numerical parameters were used to characterize the sizes, shapes
and surface textures of the five types of wear particles. Rubbing, cut-
ting, and spherical wear particles show obvious shape differences, thus,
Area, Roundness and Aspect ratio can characterize these particles [18].
Fatigue particles and severe sliding particles exhibit high similar in
their shape and size features, resulting in low recognition accuracy.
Thus, the two typical wear particles are grouped into a “unknowns”
group in step 1 and will be separated in step 2. Due to unique surface
textures, the unknowns can be identified from the other three typical
groups by texture features, including Energy, Entropy, Relevance and
Inertia, which are calculated by gray level co-occurrence matrix [19].
The definitions of selected morphological parameters are given in
Table 2.

A total of 215 wear particles, that is, 43 wear particles per type,

Fig. 1. Five typical wear particles: (a) a rubbing wear particle; (b) a spherical wear particle; (c) a cutting wear particle; (d) a fatigue wear particle; (e) a severe sliding
wear particle.
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were selected to develop the particle classification system. The average
values of these wear particles are listed in Table 3. As can be observed,
the selected parameters can characterize the differences in these wear
particles. For example, the area of rubbing particles is smaller than the
others and the aspect ratio of cutting particles is the largest.

2.1.2. BP neural network model
In BP neural network, the complex nonlinear relationship and the

simple learning process can ensure that four typical groups of particles
can be effectively identified with distinctive parameters. BP neural
network mainly includes an input layer, a hidden layer and an output
layer, which are connected by weight values, as shown in Fig. 2. And its
basic principle is that the network is trained with labeled samples until
the difference between the output value and the expected value reached
the set threshold value.

According to the Kolmogorov theory [21], when the number of
neurons in the hidden layer meets the condition: D≥ 2M +1, where D
is the number of neurons in the hidden layer and M is the number of
input nerves, the three-layer neural network can accurately realize any
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Table 2
Definitions of seven morphological parameters [18–20].

Descriptor Definition

Area The coverage area of wear particles
Roundness The proximity degree between the shape of wear particle and its

minimum enclosing rectangle
Aspect ratio The ratio of the major axis and the minor axis
Energy The uniformity degree of the pixel distribution and texture in the

grayscale image
Entropy The complexity of textures on wear particle surfaces
Relevance The similarity degree of elements in gray level co-occurrence

matrix from row or column direction.
Inertia The clarity degree of textures on wear particle surfaces

Table 3
The average value of seven parameters of four typical wear particles.

Parameter Wear particle type

Rubbing Cutting Spherical Unknowns

Area (μm2) 52.1759 241.7771 127.2898 495.9439
Roundness 0.6874 0.0912 0.9165 0.6470
Aspect ratio 1.4341 10.2587 1.0601 1.6142
Energy 0.3798 0.5896 0.1762 0.2221
Entropy 1.6278 1.2297 2.2171 2.3378
Inertia 0.5245 0.9733 2.1836 0.5212
Relevance 0.8970 0.1044 0.0401 0.2347

Fig. 2. Wear particle classification model based on BP neural network.
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continuous mapping. Therefore, a nonlinear mapping relationship from
the input (wear particle parameters) to the output (wear particle types)
can be established through appropriately setting the number of hidden
layer neurons [22]. The specific procedures are described as following:

(1) Initialize connection weight values and thresholds with random
values.

(2) Calculate the output of each unit in the hidden layer and the output
layer based on selected parameters in the input and the output
mode.

(3) Calculate new connection weights and thresholds with equation
(1)–(4).
The modification of the neuron threshold:

+ = + = … = …θ t θ t η σ t p k l( 1) ( ) , ( 1, 2, , ; 1, 2, , )k k t k (1)

+ = + = … = …β t β t η σ t p j m( 1) ( ) , ( 1, 2, , ; 1, 2, , )j j t j (2)

where, ηt is the learning rate of the t-th training iteration; σk is the
error of the k-th node in the output layer; θk is the threshold value of
the k-th neuron in the output layer, σj is the error of the j-th node in
the hidden layer; βj is the threshold value of the j-th neuron in the
hidden layer.
The weight value updating formula:

+ = + = …w t w t w t t p( 1) ( ) Δ ( ), ( 1, 2, , )jk jk jk (3)

+ = + = …v t v t v t t p( 1) ( ) Δ ( ), ( 1, 2, , )ij ij ij (4)

where, t is the number of training iteration, wij is the weight value
updating from the hidden layer to the output layer, vij is the weight
value updating from the input layer to the hidden layer.

(4) Update the learning input mode and re-execute the second step to
train the neural network until the final output error reached the set
value.

Using the above procedures, the mean values of trained particles in
Table 3 were input into the BP Neural network. And the number of
nodes in the hidden layer was adjusted according to the selected input
parameters. The output was divided into four types, including: rubbing,
cutting, spherical wear particle and unknowns. The output vector was
calculated with the BP neural network, and particle types were iden-
tified by referring to Table 4.

2.2. Fatigue particle and severe sliding particle recognition based on CNN

Severe sliding particles always have obvious scratches or grooves on
the surface while fatigue particles have smooth surfaces with pitting.
However, there is a low identification accuracy of fatigue particles and
severe sliding particles due to the fact that traditional methods have
difficulty in manually extracting the distinctive surface textures. To
address this problem, a recognition model based on self-learning fea-
tures was developed to identify the two types of wear particles. To
achieve the objective, two steps were involved including (1) wear
particle image preprocessing, and (2) development of a CNN-based
wear particle recognition model.

2.2.1. Wear particle image preprocessing
Various types of wear particles may co-exist in an image, which will

cause a poor classification if the image is directly taken as the input. In
addition, a large number of particle images in the same type are re-
quired as training samples for CNN. Therefore, it is necessary to pre-
process original wear particle images to obtain enough typical particle
images, and the procedure is described as follows.

Fatigue particles and severe sliding wear particles were firstly ex-
tracted from original images based on the maximum between-class
variance method (OTSU) [23]. Examples of segmented image samples
are shown in Fig. 3. It is noted that the excessive size of the original
particle image (1600× 1200 pixels) results in too much network
structural parameters, but too small size is not conducive to extract
sufficient features from wear particle images. Therefore, the size of the
wear particle images was then collectively normalized to 240×240
pixels to ensure the consistent size of the input vector into CNN. Finally,
due to a small amount of typical wear particles in actual enterprises,
existing wear particle images were expanded from one to five by ran-
domly flipping, shifting, cutting, and amplifying [24] to meet the re-
quirements of CNN for a large amount of images. The expanded images
of a single wear particle are shown in Fig. 4.

2.2.2. The CNN-based wear particle recognition model
Compared with the BP neural network, CNN can directly analyze

target image without inputting artificial parameters [25]. Furthermore,
the neurons between layers are partially connected instead of full
connection, and the number of training parameters can be continuously
optimized by sharing the weights and the sparse connection in the
network [26,27]. The LeNet-5 model is the most widely adopted CNN
model in the field of computer vision. The model has 7 layers and its
framework is shown in Fig. 5.

Based on the initial framework in Fig. 5, improvements were made
so the developed model can accommodate the size, color and com-
plexity of wear particles as well as higher efficiency with less required
sample quantity for training. Then, a CNN-based wear particle re-
cognition network was constructed. These 2 steps are detailed below.

2.2.2.1. Improvement on the LeNet-5 model. The original LeNet-5
network is designed for identifying digit images (eg, the image of
digit 0) which are relatively simple 32×32-pixel images. In this study,
the size of a particle images is 240×240 pixels and the textures are
more complicated than digit images. Meanwhile, the output type that
needs to be identified is also different. Therefore, some improvements
need to be made on the parameters of each layer in the original LeNet-5
network for identifying wear particles. The main improvements are
listed as follows.

(1) Rectified Linear Unit (ReLU) activation function [28] was adopted
to replace traditional Tanh and sigmoid activation functions.
Compared with other activation functions, ReLU activation function
has high efficiency gradient descent and reverse propagation, which
can reduce the training time and avoid the escalator explosion.

(2) In order to improve training efficiency and reduce overfitting,
dropout layer was added in the first fully connected layer for ran-
domly abandoning some neurons.

(3) Fatigue particles and severe sliding wear particles need to be
identified by CNN. Thus, the number of output was changed from
10 to 2. And, a full link layer F6 was removed to simplify the net-
work.

(4) In view of the complexity of wear particle images, the numbers of
convolution kernel in first convolution layer and second convolu-
tion layer were increased from 6 and 16 to 32 and 64, respectively,
to extract more features from wear particle images.

(5) With the increase of the input image size and convolution kernel
number, the number of neurons in CNN was increased corre-
spondingly. The neuron node number of C5 layer was increased

Table 4
The output table of on BP Neural network.

Output Output 01 Output 02 Output 03 Output 04

Rubbing 1 0 0 0
Spherical 0 1 0 0
Cutting 0 0 1 0
Unknowns 0 0 0 1
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from 120 to 1024 to ensure the recognition performance of CNN.
(6) Too many simultaneously trained images may be result in memory

overflow, slow convergence and local optimum. Thus, the para-
meter Batch_size, representing the number of simultaneously
trained images, was added to limit the number of simultaneously
trained images.

2.2.2.2. Construction of CNN-based network.

(1) CNN-based network structure
Based on the improvements made on the existing LeNet-5 network,
a CNN-based wear particle recognition network was constructed
and is shown in Fig. 6. The input is single wear particle image with
the size of 240×240 pixels. In the first convolution layer, 32
convolution kernels with a size of 5× 5 pixels and 1-pixel step
length were adopted to output 32 feature images with a size of
236× 236 pixels by point multiplication processing. Then the

dimension of 32 feature images was reduced to the size of
118×118 pixels by the maximum pool layer through a filter with
the size of 2×2 pixels and 2-pixel step length. In the second
convolution layer, 64 convolution kernels with a size of 5×5
pixels and 1-pixel step length were adopted to output 64 feature
images with a size of 114×114 pixels from by point multiplication
processing. And then the dimension of 64 feature images was re-
duced to a size of 57× 57 pixels by the maximum pool layer
through a filter with the size of 2×2 pixels and 2-pixel step length.
Finally, in the first full connection layer, 1024 neurons were
adopted to connect all pixels of 64 feature images in the second
layer. The output of the second full connection layer is the types of
wear particles - fatigue particles and severe sliding wear particles.
In the CNN-based wear particle recognition model, the ReLU acti-
vation function was applied in the convolution layer and all con-
nection layers.

Fig. 3. Segmented image samples: (a) fatigue wear particles; (b) severe sliding wear particles.

Fig. 4. Expanded images of a single wear particle.
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(2) Loss function selection
In the neural network, the multi-class problem is addressed by
outputting an n-dimensional array (n is the class number), in which
each output node corresponds to one type. Ideally, when a sample is
identified to a certain type, the corresponding node should be as-
signed to be 1 and the other nodes are 0. However, the actual si-
tuation can not satisfy this assumption due to various noises on
collected particle images. Thus a loss function was applied to
evaluate the proximity between the output vector and the expected
vector. The cross entropy evaluates the proximity by characterizing
the distance between two probability distributions, which is one of
the most commonly used methods in classifications [29]. The cross
entropy was calculated using Eq. (5).

∑= −H p q p x q x( , ) ( )log ( )
x (5)

Where, p x( ) is the expected value; q x( ) represents the predicted
value.

(3) The training process
In the CNN-based wear particle recognition network, the relation-
ship between the input (wear particle images) and the output (wear
particle types) was trained using a large amount of sample images.
The training processes included forward propagation and backward
propagation. In the forward propagation, wear particle samples
were inputted into the neural network and the features of the fa-
tigue particles and severe sliding wear particles were automatically
calculated to obtain the output value. In the backward propagation,
the cross entropy was applied to calculate the error between the
output value and the expected value.

In addition, weight parameters in the network need to be adjusted
by the error return algorithm. A number of error return algorithms,
including the batch gradient descent (BGD) [30], the stochastic gra-
dient descent (SGD) [31] and the adaptive gradient descent (AGD) [32],
were considered. BGD requires too much learning time and hardware
configuration to update model parameters in real time. SGD may not
update parameters in the correct direction which will result in the
optimization fluctuation. In contrast, AGD can establish an adaptive
learning rate for each parameter to improve the robustness of CNN.

Sparse features will get a large learning rate, and non-sparse features
will get a small learning rate. Therefore, AGD was adopted as the error
return algorithm in the CNN-based wear particle identification net-
work. Based on the error return algorithm, the training process was
repeated again and again until the number of iterations reached the set
value.

3. Method verification and performance evaluation

As mentioned in Section 2, based on the hierarchical concept, five
typical groups of wear particles can be identified by integrating BP
neural network and CNN algorithm. In particular, the developed par-
ticle classification system is able to identify fatigue particles and severe
sliding particles, which have similar shape features. In this section, a set
of experiments were performed to demonstrate the performance of the
proposed method.

3.1. Four types of particle classification based on BP neural network

As stated in Section 2, 215 wear particles were selected from the
sample base as training samples. To verify the performance of BP neural
network, the remaining 52 samples were used as tested samples, in-
cluding 11 fatigue particles, 11 severe sliding particles, 10 rubbing
particles, 10 cutting particles and 10 spherical particles. Part of tested
particle images is shown in Fig. 7. Fatigue particles and severe sliding
wear particles were grouped into the same class, named as “unknowns”.
Extracted features were inputted into the BP-based classifier and the
results of final classification are shown in Table 5. It can be seen that
the identification of four typical particles has a high accuracy of over
80%, demonstrating that selected seven features can character four
typical groups of wear particles.

In comparison, Table 6 shows the recognition results of wear par-
ticle through the seven selected features and same BP neural network
except that the output was changed from four types to five types. Al-
though the recognition accuracy of rubbing, spherical, and cutting
particles is the same, the recognition of fatigue particles and severe
sliding particles has a low accuracy (lower than 46%). The main reason
is that fatigue particles and severe sliding wear particles have highly

Fig. 5. The framework of the LeNet-5 model.

Fig. 6. The diagram of the developed CNN-based wear particle recognition model.
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similar shape and surface texture features, and features extracted by
artificial methods for have limitation.

3.2. Fatigue particle and severe sliding particle recognition based on CNN

In the experiment, 108 wear particles were selected from an ex-
truder machine in the petrochemical plant, including 54 fatigue parti-
cles and 54 severe sliding particles. The size of segmented particle
images was collectively normalized to 240×240 pixels. In addition,
wear particle images were expanded from one image to five images by
the data amplification method. Therefore, the original particle image
database was expanded from 108 images to 540 images, including 270
fatigue particles and 270 severe sliding wear particles. 35 fatigue par-
ticles and 35 severe sliding particles were selected as the testing par-
ticles while the others were served as the training samples. Part of
tested particle images is shown in Fig. 8.

The CNN-based wear particle identification model was trained using
the AGD method. The training parameter (Batch_size) is 30, the
learning rate is 0.0004, and the iteration number is 300. In order to
verify the performance, the improved LeNet-5 network model was
compared with the original networks in the training process of wear
particle classification, and the results are shown in Fig. 9.

As can be observed from Fig. 9(a), the improved LeNet-5 network
has achieved good results in the training process. The network starts to
converge nearly at 75-th time, and the training accuracy tends to be
nearly 100% when it is iterated to 200-th time.

Fig. 7. Images of test samples to train the BP neural network: (a) rubbing wear particles; (b) spherical wear particles; (c) cutting wear particles; (d) fatigue wear
particles; (e) severe sliding wear particles.

Table 5
The classification results of wear particles based on BP neural network.

Wear particle type Correct
recognition

Incorrect
recognition

Recognition rate

Rubbing 8 2 80%
Spherical 9 1 90%
Cutting 10 0 100%
Unknowns 22 0 100%

Table 6
The classification result of wear particles based on BP neural network.

Wear particle type Correct
recognition

Incorrect
recognition

Recognition rate

Rubbing 8 2 80%
Spherical 9 1 90%
Cutting 10 0 100%
Fatigue 5 6 45.5%
Severe sliding 4 7 36.4%
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Fig. 8. Test samples for the CNN particle identification model: (a) fatigue wear particles; (b) severe sliding wear particles.

Fig. 9. The correction rates of different networks: (a) the improved LeNet-5 network; (b) the original LeNet-5 network with sigmoid activation function; (c) the
original LeNet-5 network with all neurons and layers; (d) the original LeNet-5 network with all connected layer.
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Compared Fig. 9(b) with Fig. 9(a), the original LeNet-5 network
with the sigmoid activation function failed to converge in the training
process. The reason for the gradient divergence is that a large amount of
images were simultaneously trained and various parameters co-existed
in the network. However, the improved network adopts ReLU to ef-
fectively avoid this problem.

Compared Fig. 9(c) with Fig. 9(a), the original LeNet-5 network,
which preserves all neurons and layers, failed to converge. The reason is
that the images of fatigue particles and severe sliding particles have
more complex textures than digit images. Therefore, more convolution
kernels and neurons on the fully connection layer are required to ex-
tract more complex features.

Compared Fig. 9(d) with Fig. 9(a), the convergence rate of the
original LeNet-5 network structure, which retains F6 layer, is slow in
the training process. The algorithm converges at 120-th iteration, and
the training accuracy is stabilized when the training is iterated to about
250-th time. Therefore, the improved network structure is more sui-
table for practical applications, which can effectively improve the rate
of training convergence.

Tested wear particle images were classified using the improved CNN
model which has been fully trained to converge by trained samples. The
results are shown in Table 7. The identification rates of fatigue particles
and sliding particles are 85.7% and 80%, respectively, which are dis-
tinctly improved from the values (they are 45.5% and 36.4%, respec-
tively) with BP neural network.

4. Discussions

A two-level strategy, based on a BP neural network and a 6-layer
CNN model, is adopted to identify five types of wear particles; including
rubbing, cutting, spherical, fatigue and severe sliding particles. The
above experiments clearly confirm that the improved integrated model
is able to identify typical wear particles with a high accuracy. In
comparison to traditional intelligent algorithms [8,9], the recognition
rate of severe sliding and fatigue wear particles is obviously improved.
When compared with 3D imaging techniques reported in [11,12], these
two methods can identify severe sliding and fatigue particles. However,
the equipment such as SEM used in 3D imaging is more expensive and
operationally complex than the optical microscope used in the im-
proved integrated model. Thus, the developed system is regarded as an
effective approach for wear particle identification in enterprises.

However, it should be mentioned that the proposed method relies
on manual collection of particle samples by professional ferrography
operators. Non-ideal image acquisition will miss surface textures due to
oil stain or defocus blurring on wear particle surfaces. Furthermore,
more particle samples need to be captured and the CNN trained to
improve the recognition accuracy of the recognition model. With the
application of the developed method, more and more particles will be
collected and identified to expand the sample base, thus the recognition
accuracy will be further improved.

5. Conclusions

In order to improve the accuracy of wear particle automatic re-
cognition, a classification method was developed by integrating BP
neural network and CNN algorithm. Main conclusions are drawn as

follows:

1) A BP neural network based classification algorithm has been de-
veloped by combining with seven features selected from wear par-
ticle shape, size and texture. Rubbing, cutting, and spherical parti-
cles are identified with an average success rate of about 90%.
Fatigue particles and severe sliding particles are separated for fur-
ther identification.

2) In view of the limitation of the traditional machine learning method
in identifying the fatigue and the severe sliding wear particles, a
CNN-based wear particle recognition network is established by op-
timizing the original LeNet-5 network structure to automatically
identify the two types of wear particles. The average recognition
accuracy of fatigue particles and severe sliding particles is about
83%, which is far higher than 41% identified by the BP neural
network.

Based on the hierarchical pattern recognition, the classifier can ef-
fectively identify five types of wear particles generated from the friction
pair during the wear process.

Acknowledgements

This work is funded by the National Natural Science Foundation of
China (No. 51675403) and the International Collaborative Plan of
Shaanxi Province, China (No. 2017kw-034). Special thanks to the fi-
nancial support from the NSFC-Zhejiang Joint Fund for the Integration
of Industrialization and Informatization, China (Grant No. U1709215).
The author gratefully acknowledges the support of K. C. Wang
Education Foundation is a financial organization in China.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.wear.2018.12.087.

References

[1] M. Niemczewska-Wójcik, Wear mechanisms and surface topography of artificial hip
joint components at the subsequent stages of tribological tests, Measurement 107
(2017) 89–98.

[2] S. Wang, T.H. Wu, H.K. Wu, et al., Modeling wear state evolution using real time
wear debris features, Tribol. Trans. 60 (6) (2017) 1022–1032.

[3] M. Kumar, P.S. Mukherjee, N.M. Misra, Advancement and current status of wear
debris analysis for machine condition monitoring: a review, Ind. Lubr. Tribol. 65 (1)
(2013) 3–11.

[4] S. Raadnui, Wear particle analysis — utilization of quantitative computer image
analysis: a review, Tribol. Int. 38 (10) (2005) 871–878.

[5] Q.A. Memon, M.S. Laghari, Self organizing analysis platform for wear particle, Int.
J. Comput. Electr. Autom. Control Inf. Eng. 1 (6) (2007) 1773–1776.

[6] P. Podsiadlo, G.W. Stachowiak, Scale-invariant analysis of wear particle surface
morphology I: theoretical background, computer implementation and technique
testing, Wear 242 (1–2) (2000) 160–179.

[7] J.Q. Wang, X.L. Wang, A wear particle identification method by combining prin-
cipal component analysis and grey relational analysis, Wear 304 (1–2) (2013)
96–102.

[8] W. Yuan, K.S. Chin, M. Hua, et al., Shape classification of wear particles by image
boundary analysis using machine learning algorithms, Mech. Syst. Signal Process. s
72–73 (2016) 346–358.

[9] J.Q. Wang, J. Bi, L. Wang, et al., A non-reference evaluation method for edge de-
tection of wear particles in ferrograph images, Mech. Syst. Signal Process. 100
(2018) 863–876.

[10] N.K. Myshkin, H. Kong, A.Y. Grigoriev, et al., The use of color in wear debris
analysis, Wear 251 (1–12) (2001) 1218–1226.

[11] G.P. Stachowiak, G.W. Stachowiak, P. Podsiadlo, Automated classification of wear
particles based on their surface texture and shape features, Tribol. Int. 41 (1) (2008)
34–43.

[12] Z. Peng, T.B. Kirk, Computer image analysis of wear particles in three-dimensions
for machine condition monitoring, Wear 223 (1–2) (1998) 157–166.

[13] Y. Lécun, L. Bottou, Y. Bengio, et al., Gradient-based learning applied to document
recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[14] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep con-
volutional neural networks, in: Proceedings of the International Conference on
Neural Information Processing Systems, Curran Associates Inc., 2012, pp.

Table 7
Wear particle classification based on the CNN.

Wear particle type Correct
recognition

Incorrect
recognition

Recognition rate

Fatigue particles 28 7 80%
Severe sliding

particles
30 5 85.7%

S. Wang et al. Wear 426–427 (2019) 1761–1770

1769

https://doi.org/10.1016/j.wear.2018.12.087
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref1
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref1
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref1
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref2
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref2
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref3
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref3
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref3
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref4
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref4
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref5
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref5
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref6
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref6
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref6
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref7
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref7
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref7
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref8
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref8
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref8
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref9
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref9
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref9
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref10
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref10
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref11
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref11
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref11
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref12
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref12
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref13
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref13


1097–1105.
[15] C. Szegedy, W. Liu, Y. Jia, et al., Going deeper with convolutions, in: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA,
USA, 2015, pp. 1–9.

[16] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv preprint arXiv:1409.1556, 2014.

[17] K. He, X. Zhang, S. Ren, et al., Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Las Vegas, NV, USA, 2016, pp. 770–778.

[18] Z. Peng, T.B. Kirk, Automatic wear‐particle classification using neural networks,
Tribol. Lett. 5 (4) (1998) 249–257.

[19] J. Wang, X. Wang, A wear particle identification method by combining principal
component analysis and grey relational analysis, Wear 304 (1–2) (2013) 96–102.

[20] T. Wu, Y. Peng, S. Wang, et al., Morphological feature extraction based on multi-
view images for wear debris analysis in on-line fluid monitoring, Tribol. Trans. 60
(3) (2016) 408–418.

[21] R. Hecht-Nielsen, Theory of the backpropagation neural network, Neural Netw. 1
(1) (1988) (445-445).

[22] Y.R. Ding, Y.J. Cai, P.D. Sun, et al., The use of combined neural networks and
genetic algorithms for prediction of river water quality, J. Appl. Res. Technol. 12
(3) (2014) 493–499.

[23] N. Otsu, Threshold selection method from gray-level histograms, IEEE Trans. Syst.
Man Cybern. 9 (1) (1979) 62–66.

[24] B. Leng, K. Yu, Y. Liu, et al., Data augmentation for unbalanced face recognition

training sets, Neurocomputing 235 (2017) 10–14.
[25] E.A. Smirnov, D.M. Timoshenko, S.N. Andrianov, Comparison of regularization

methods for imagenet classification with deep convolutional neural networks, Aasri
Procedia 6 (1) (2014) 89–94.

[26] B.I. Cirstea, L. Likformansulem, Improving a deep convolutional neural network
architecture for character recognition, Electron. Imaging 17 (2016) 1–7.

[27] L.I. Song, Z. Wei, B. Zhang, et al., Target recognition using the transfer learning-
based deep convolutional neural networks for SAR images, J. Univ. Chin. Acad. Sci.
35 (1) (2018) 75–83.

[28] K. He, X. Zhang, S. Ren, et al., Delving deep into rectifiers: surpassing human-level
performance on ImageNet classification, in: Proceedings of the IEEE International
Conference on Computer Vision, Santiago, Chile, 2015, pp. 1026–1034.

[29] P.T.D. Boer, D.P. Kroese, S. Mannor, et al., A tutorial on the cross-entropy method,
Ann. Oper. Res. 134 (1) (2005) 19–67.

[30] D.R. Wilson, T.R. Martinez, The general inefficiency of batch training for gradient
descent learning, Neural Netw. Off. J. Int. Neural Netw. Soc. 16 (10) (2003)
1429–1451.

[31] B. Dong, D.Q. Ren, X. Zhang, Stochastic parallel gradient descent based adaptive
optics used for a high contrast imaging coronagraph, Res. Astron. Astrophys. 11 (8)
(2011) 997–1002.

[32] John Duchi, Elad Hazan, Yoram Singer, Adaptive subgradient methods adaptive
subgradient methods for online learning and stochastic optimization, J. Mach.
Learn. Res. 12 (7) (2011) 257–269.

S. Wang et al. Wear 426–427 (2019) 1761–1770

1770

http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref14
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref14
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref15
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref15
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref16
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref16
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref16
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref17
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref17
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref18
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref18
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref18
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref19
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref19
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref20
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref20
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref21
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref21
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref21
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref22
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref22
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref23
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref23
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref23
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref24
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref24
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref25
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref25
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref25
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref26
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref26
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref26
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref27
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref27
http://refhub.elsevier.com/S0043-1648(18)31708-3/sbref27

	Integrated model of BP neural network and CNN algorithm for automatic wear debris classification
	Introduction
	Materials and methods
	Four typical wear particle identification based on BP neural network
	Wear particle feature extraction
	BP neural network model

	Fatigue particle and severe sliding particle recognition based on CNN
	Wear particle image preprocessing
	The CNN-based wear particle recognition model
	Improvement on the LeNet-5 model
	Construction of CNN-based network


	Method verification and performance evaluation
	Four types of particle classification based on BP neural network
	Fatigue particle and severe sliding particle recognition based on CNN

	Discussions
	Conclusions
	Acknowledgements
	Supplementary material
	References




