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A B S T R A C T   

Due to insufficient monitoring data, the reliability and accuracy of oil condition predictions are not guaranteed. 
Data-driven models provide data augmentation with small samples to solve this problem. However, the absence 
of degradation mechanisms would introduce unpredictable uncertainties in a long-term prediction. To address 
this, a data augmentation method is proposed for improved prediction by integrating degradation mechanisms 
and monitoring data. Primarily, a degradation model is established considering the degradation mechanisms. 
The model parameters are estimated with the time-vary probability distribution of the monitoring data. 
Therefore, the evidential variables are used to describe parameters with small samples. Then, the detailed pa-
rameters are estimated by integrating small-sample and prior parameters. With this well-trained model, the 
augmented data can be obtained with a particle filtering method for prediction. For validation, both the sparse 
and truncated samples from real-world monitoring are used to demonstrate the superiority of the proposed 
method. The high predicted accuracy demonstrates that the reliability of oil condition prediction can be guar-
anteed even with small samples.   

1. Introduction 

Oil condition monitoring (OCM) can provide traceable information 
on lubrication degradation in rotating machines. Modeling oil degra-
dation with consistent monitoring serves as the fundamental way to oil 
state characterization [1] and remaining useful life (RUL) prediction 
[2]. Generally, the reliability and accuracy of prediction highly depend 
on the quantity of the historical data. However, due to the off-line 
operation and the gradual degradation of oil properties, the oil moni-
toring data contains dispersed and sparse small samples. The sparsity of 
the data is problematic for the extraction of the signal [3]. Therefore, the 
prediction in OCM has been limited by uncertainty due to such small 
samples. Data augmentation allows for solving such problems consid-
ering that it can reduce the epistemic uncertainty arising from the lack of 
data or knowledge [4]. 

For the oil degradation process, two types of samples are frequently 
encountered: sparse and truncated samples [5]. Sparse samples possess 
significant gaps between adjacent data points due to low sampling fre-
quency or under-sampling [6]. Truncated samples hamper data reli-
ability due to the lack of full-life data [7]. Additional uncertainties in 

prediction from such samples also include: 1) over-fitting; 2) data 
imbalance; 3) outliers; 4) poor parameter optimization [8]. To overcome 
these limitations, many strategies have been proposed at data, model, 
and parameter levels. At the data level, Monte Carlo (MC) sampling [9] 
and Virtual Sample Generation (VSG) [10] are adopted for data gener-
ation or augmentation. For the model level, generation models or reg-
ularization constraints [11] are used to enhance the extraction from 
small samples. Furthermore, optimization algorithms specified for small 
samples are developed at the parameter level, including the 
expectation-maximization (EM) algorithm [7] and restricted maximum 
likelihood estimation (MLE) algorithm [12]. These data augmentation 
methods can be applied to two types of problems arising from 1) the gaps 
in adjacent samples; 2) the distribution of small samples [13]. 

The gaps originate from the lack of sufficient data or the occurrence 
of missing data. The data-driven method is an efficient solution for 
filling gaps in adjacent samples, which can be classified into two cate-
gories, namely, interpolation [14] and extrapolation [5]. 1) Interpola-
tion targets to fill individual data using the inherent or random data 
attributes. For example, He [15] applied nonlinear interpolation VSG to 
enhance the energy prediction on small samples. To prevent data 
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imbalance in small samples, Li [16] proposed a trend-diffusion and 
tree-structure-based prediction approach for small sample sets, which 
employed random megatrend-diffusion to estimate bounds and used a 
heuristic mechanism to fill gaps between the samples. 2) Extrapolation 
realizes data augmentation based on prior training data over a certain 
period. This strategy is similar to the data-driven method for RUL, which 
predicts the time-series data under the Bayesian framework and the 
Markov property. The Bayesian framework connects the prior proba-
bility and the posterior probability, and Imai [17] demonstrated its 
effectiveness for marginal data augmentation with the prior informa-
tion. The Markov property, which indicates the conditional probability 
distribution of a future state solely depends on the current state, is 
fundamental for Markov Chain Monte Carlo (MCMC) estimation with 
small samples [18]. In machine learning, data augmentation has been 
proven as an efficient method for fault identification with limited data 
[19]. Yoo [20] applied Generative Adversarial Networks (GAN) to 
combine actual test data and CAE data for small-sample prediction. 
These data-driven methods can obtain consistent and accurate 
augmented data to fill gaps. However, the uncertain distribution de-
pends on the availability of the training set which is insufficient in small 
samples. 

Empirical or mechanism knowledge can provide an indication of the 
small-sample distribution. Physics-based modeling describes the 
degradation process then constructs the sample distribution, so these 
methods can remedy the drawback in determining which distribution to 
adopt in data-driven models. Among them, empirical and physical 
models have emerged. For example, Liu [21] assumed that the degra-
dation process was subjected to gamma or Gaussian processes in 
small-sample RUL. Furthermore, they explored the Wiener process with 
a Gaussian-distributed diffusion factor to describe the small-sample 
degradation [22]. Zhao [23] utilized the gray model (GM) to predict 
the reliability life data of wire rope under the small sample size condi-
tion. Addressing unknown parameters in distribution, two methods have 
been proposed. The method based on data augmentation can provide 
plausible solutions for parameter estimation, such as the MC sampling 
with MLE [9] and the modified MLE [12]. However, the inconsistent 
distribution of augmented data would deviate from the original distri-
bution. Consequently, another strategy is to directly estimate the 
approximate parameters from small samples using interval estimation 
instead of point estimation. Liu [24] proposed the evidential variable to 
describe small samples with interval parameters, which has a higher 

ability to express parameter uncertainty. Nevertheless, it fails to obtain 
precise and detailed parameter estimation using overly wide intervals 
with small samples. Since physical-based models are susceptible to data 
variation, data-driven models are demanded to compensate and obtain 
more accurate results. On the other hand, the degradation mechanism 
can provide the basis for modeling. Hence, it introduces both the prior 
knowledge of state evolution while the time-varying data updates the 
parameters. 

To improve predictive performance with small samples in OCM, a 
new data augmentation model integrating mechanism knowledge and 
monitoring data is developed in this work. A degradation model is 
constructed based on oil properties, then the initialization and update of 
the model parameters are realized with the monitoring data. Afterwards, 
a particle filtering (PF) method is applied to achieve the generation of 
augmented data for prediction. The major contributions are summarized 
as follows. 

1) A new data augmentation model is proposed to integrate the ad-
vantages of physics-based and data-driven models to reduce the 
epistemic uncertainty in oil condition prediction with small samples. 
The data augmentation method provides complements for 
predictions.  

2) To obtain accurate prediction data, a two-step data augmentation 
method is proposed. First, the initial augmentation is taken with 
small samples using evidence variables; second, the reliable 
augmentation is realized with the training data and the initial 
augmented data.  

3) The random errors of the stochastic process are eliminated with the 
PF algorithm. For accurate prediction, the sequential importance 
sampling (SIS) strategy with the time-varying probability density 
function (PDF) is applied. 

The rest of the paper is organized as follows. Section 2 provides an 
overview of the methods applied in this work. The integrated modeling 
strategy that combines the physics-based model and the data-driven 
model is introduced in Section 3. Section 4 describes the two-stage 
data augmentation process. In Section 5, the verification of the pro-
posed model is presented. The analysis and discussion of the results are 
given in Section 6. Section 7 contains the conclusion. 
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Fig. 1. The oil monitoring data subjected to the Wiener process.  
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2. Related methods 

In this section, related methods about the Wiener process, parameter 
estimation, and particle filtering are reviewed and discussed. 

2.1. Wiener process 

The general formulation of the Wiener process [25] that describes 
the system uncertainty consists of two parameters: the drift coefficient 
and the diffusion coefficient, as shown in Eq. (1), 

x(t) = x(0) + bt + σBB(t), (1)  

where x(t) denotes a measurement at moment t; x(0) denotes the initial 
state; b is the drift coefficient; and σB is the diffusion coefficient. B(t) is a 
standard Brownian motion that satisfies three basic properties: B(0) =

0; for any moment 0 ≤ τ ≤ t, B(t) − B(τ) satisfies the Gaussian distri-
bution N(0, t − τ); B(t) has independent increments. 

The oil degradation over time can be described as a stochastic pro-
cess. As shown in Fig. 1, ten groups of oil monitoring data are proven to 
satisfy the Wiener process in Eq. (1). 

2.2. Parameter estimation 

Due to the inevitable uncertainties in stochastic processes, parameter 
estimation with small samples should be able to: 1) address un-
certainties; 2) adopt prior information. 

2.2.1. Evidential variables 
When the interval of the parameter is divided into multiple groups, 

the estimations fall into the corresponding intervals instead of definite 
points. Let each estimate be the evidential variable [24], and then the 
complete distribution can be obtained based on the Dempster-Shafer 
(D-S) theory. The illustration of the evidential variables is shown in 
Fig. 2. 

Suppose that independent samples x1 and x2 constitute the identifi-
cation framework and all possible propositions construct a power set 2X 

= {∅,{x1},{x2},{x1,x2}}. The basic probability assignment (BPA) de-
scribes the belief degree of sub-propositions in the identification 
framework. The belief mass satisfies the following conditions. 

m(A) ≥ 0; ∀A ∈ 2X ,

m(∅) = 0,∑

A∈2X

m(A) = 1.
(2) 

Two belief mass, or pieces of evidence, m1 and m2 can be combined as 
shown in Eq. (3), 

mr(Θi) =

∑
B∩C=Θi

m1(B)m2(C)
1 −

∑
B∩C=∅m1(B)m2(C)

, (3)  

where B and C are corresponding sub-intervals, Θi is the combined in-
terval and B ∕= ∅,C ∕= ∅. 

Fig. 2. An illustration of the evidential variables.  

Fig. 3. The iteration process of EM algorithm.  
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2.2.2. Parameter update 
The introduction of prior knowledge can facilitate small-sample 

parameter estimation, and the Bayesian formula can bridge the prior 
and posterior probabilities. The prior probabilities are derived from 
training samples, and the posterior probabilities can be calculated as in 
Eq. (4). 

P(Θk|Y1:k) =
P(Y1:k|Θk)P(Θk)

∑n
i=1P(Θi)P(Y1:i|Θi)

, (4)  

where P(Θk|Y1:k) is the posterior probability, P(Y1:k|Θk) is the likelihood 
probability, and P(Θk) is the prior probability. 

The EM algorithm maximizes the likelihood expectation of the hid-
den variables. This algorithm has been employed for parameter esti-
mation of small samples with truncated or censored data [7]. In the 
parameter update process, the expectation is calculated based on the 
prior probability in the E step; and the maximum likelihood expectation 
is searched for in the M-step. The specific process is shown in Fig. 3. 

2.3. Particle filtering 

The Bayesian theory provides a framework for using prior knowl-
edge, and then the parameter update describes the evolution of oil 
degradation. The evolved model distribution should be represented by 
sampling to realize data augment. PF with SIS [26] allows extracting the 
posterior distribution by Bayesian filtering. The non-linear and 
non-Gaussian sampling satisfies the requirement for parameters update 

with small samples. 
The basic idea of PF is state detection by sampling particles in the 

state equation and weighting them with observation. Considering the 
evolving distribution of the degradation model, PF is suitable to trace 
the oil state because it can incorporate real-time measurements and 
instantly update the state [27]. 

3. Integrated degradation modeling strategy 

For predicting the oil degradation in OCM, the physics-based 
modeling method is studied by involving the chemical reaction and 
material balance principles. For the PDF, the mechanism model is con-
verted into a Wiener process on the state-space model of the oil degra-
dation [28]. 

3.1. Degradation mechanism analysis 

Oil degradation essentially originates from the chemical reaction 
that involves a critical equilibrium point between the generation of 
products and the corresponding loss of reactants. The equations based 
on mechanism analysis can be used to describe such processes including 
the Arrhenius equation [29], kinetic reaction equation [30], material 
balance equation [31], etc. Moreover, oil degradation is often accom-
panied by the production of wear debris. These particles flowing in the 
oil present a dynamic concentration equilibrium due to filtration, set-
tlement, and lubricant consumption [32]. Therefore, a dynamically 

Fig. 4. Flowchart of augmentation-based prediction procedure.  
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time-varying concentration equilibrium can be established in OCM. 
The general mathematical expression of the physical and chemical 

degradation mechanisms is shown in Eq. (5). 

d(c)
dt

= − k(r(c) − p(c)), (5)  

where c denotes the measurement indicator, t denotes the sampling 
time, r(c) corresponds to the indicator increment variable, and p(c) de-
notes the indicator decrement variable. 

The corresponding expression for c(t) can be obtained by substituting 
the mechanism equation. For example, when the mechanism analysis is 
provided by the first-order kinetic reaction or the abrasive particle 
concentration equilibrium in the steady-state [32], the solution of Eq. 
(5) can be expressed as: 

c(t) = k(1 − exp(− λt)) + c(0), (6)  

where c(t) is the monitoring data at time t and c(0) is the initial value; k,
λ are random variables. 

3.2. Degradation model 

Variables k and λ can be estimated by interpolated least squares [1] 
with enough samples. Considering extensive random fluctuations 
exhibited by small samples, the stochastic process is used to describe 
these variables. The computation can be simplified by logarithmic 
transformation, suppose that x(t) = ln(k − c(t)) and b = − λ, then Eq. (6) 
can be converted to the state-space model (SSM) with time-varying drift 
coefficients as shown in Eq. (7), where b denotes the degradation rate of 
the system and subject to the Gaussian distribution N(μ0, σ2

0). Then the 
SSM is established as follows. 
{

xk = xk− 1 + bk− 1(tk − tk− 1) + ωk− 1
yk = xk + νk

, (7)  

where xk denotes the state value at moment tk; yk is the observation at 
moment tk; bk− 1 ∼ N(μ0, σ2

0); ωk− 1 ∼ N(0, σ2
BΔtk− 1), νk ∼ N(0, σ2

ν ) are 
respectively the state transition error and the observation error. 

When the observation error is neglected, the smoothed observation 
series {ỹk − ỹk− 1 − bk− 1Δtk− 1, k= 1,2,⋯,K} obeys the following distri-
bution. 

P
(
Y1:k
⃒
⃒μ0,σ2

0,σ2
B

)
=

1
∏k

j=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πσ2
(
tj − tj− 1

)√ exp

⎡

⎢
⎣−
∑k

j=1

(

Δỹj− 1 − b
(
tj − tj− 1

)
)2

2σ2
(
tj − tj− 1

)

⎤

⎥
⎦,

(8)  

where σ2 = σ2
0(tj − tj− 1) + σ2

B and Δỹ is the difference between adjacent 
smoothed observations. 

Furthermore, the observation series {(ỹk − ỹk− 1) /Δtk− 1, k= 1 ,2,⋯,

K} obeys the following distribution: 

P
(
Y1:k
⃒
⃒μ0, σ2

0

)
=

1
̅̅̅̅̅̅̅̅̅̅
2πσ2

0

√ exp
[

−
(b − μ0)

2

2σ2
0

]

. (9)  

4. Two-stage small-sample prediction 

The flowchart of the augmentation-based prediction procedure is 
shown in Fig. 4, which mainly consists of a two-stage procedure. 1) In 
The initial data augment stage, the degradation model is constructed 
and the estimation of the initial parameters with evidential variables. 2) 
In the updated data augment stage, combining with the initial prior 
parameters, the parameters are updated and then data generation is 
taken by PF. 

4.1. The initial data augmentation 

The degradation model involves two types of parameters, shift co-
efficient bk− 1 ∼ N(μ0, σ2

0) and diffusion coefficient ωk− 1 ∼ N(0,σ2
BΔtk− 1). 

The evidential variables, using intervals instead of points and apply the 
likelihood function to construct BPA, are combined to determine the 
probability. To obtain the continuous output, the evidential variables 
are transformed into random variables. Finally, data augmentation is 
accomplished based on the initialization parameters. 

4.1.1. Priors parameter initialization 
The distribution of the degradation model is illustrated in Eq. (8), in 

which the likelihood function is constructed as L(Θyk) = P(Y1:kμ0, σ2
0,

σ2
B). An evidence chain is constructed for the data at different moments 

and the parameter is assigned to the corresponding interval. For 
example, the j-th parameter is divided into s intervals, {[Θj

1,Θ
j
2],(Θ

j
2,Θ

j
3],

⋯, (Θj
s, Θj

s+1]}, where Θ = {μ0, σ2
0, σ2

B}. At the k-th moment, the likeli-
hoods that respectively fall into the i th interval and the overall intervals 
can be approximately expressed as: 

L(Θi|yk) =

∫ θi+1

θi

L(Θ|yk)dΘ ≈
L(Θi+1|yk) + L(Θi|yk)

2
(Θi+1 − Θi),

L(Θ|yk) =

∫ Θmax

Θmin

L(Θ|yk)dΘ ≈
∑s

i=1
L(Θi|yk).

(10) 

The number of intervals and the interval boundary values 
{Θi, i= 1,⋯, s} are set according to the estimation with training data or 
expertise. The parameter set Θ in Eq. (10) involves three parameters {μ0,

σ2
0, σ2

B} with mutually independent intervals. To collect the complete 
parameter information, all possible interval combinations are traversed. 

The BPA for the k-th moment at the i th interval is 

mk(Θi) =
L(Θi|yk)

L(Θ|yk)
, (11)  

where mk(Θi) denotes the probability that the parameters fall into the i 
th interval at the k-th moment. 

After the BPA, the probability mr(Θi) that the collected small samples 
at moment k belong to the i th interval can be performed by Eq. (3). The 
above process combines the previous joint probability mr(Θi) with the 
new BPA, then the belief degree of the overall intervals can be obtained 
recursively. 

The belief degree mr(Θ) means the probabilities that the parameter 
value belongs to the possible parameter intervals {[Θ1,Θ2], (Θ2,Θ3],⋯,

(Θs,Θs+1]}. To obtain the continuous parameter value, it is necessary to 
transform the evidential variables into random variables, as shown in 
Eq. (12). 

Θ̂k =

∫ +∞

0
Θf (Θ)dΘ ≈

∑s

i=1

(Θi+1 + Θi)mr(Θi)

2
, (12)  

where Θ̂k denotes the parameter estimation for the k-th samples at the 
corresponding moment and f(Θ) denotes the probability density of the 
corresponding interval. 

4.1.2. Sample generation 
Suppose that the neighboring samples in a small-sample set have 

consistent parameters, the initial data augmentation is based on the 
initialized parameters Θ̂k. Define sparse data Ys = {yn, n= 1, 2,⋯,Nt}

and augmented data Ye = {yk,k = n + i}, where i is the number of data 
augmentation, Nt denotes the number of small samples, yn are the small 
samples. The model parameters corresponding to a certain moment can 
be estimated with the evidential variables, namely Φs = {Θn,n = 1,2,⋯,

Nt}. The gaps of adjacent samples are filled by Eq. (6) with Θk = Θn, 
where n = 1,2,⋯,Nt ,k = n+ i. 

Y. Pan et al.                                                                                                                                                                                                                                     
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For truncated data Yc = {yn, n= 1,2,⋯,Nt} and augmented data Ye 
= {yk, k = Nt + i}, where i is the number of data augmentation. The 
model parameters are estimated by evidential variables with small 
samples yn, then Φs = {Θn, n= 1, 2,⋯,Nt} is obtained. The truncated 
data are predicted with the assumption that Θk = ΘNt , which is 
substituted into Eq. (6), thus truncated data augmentation is achieved. 

4.2. The updated data augmentation 

The initial augmented data are obtained by applying SSM and 
initialized parameters, defined as Ye = {yk,k = 1,2,⋯,Ne}, where Ne is 
the length of samples. The initialized parameters are the approximate 
estimated values, but the distribution of the model evolves with the 
introduction of the augmented data. Thus, the model parameters need to 
be updated. The updated process involves two steps:  

1) The parameters are updated by the EM algorithm.  
2) Based on the updated parameters, PF is used to generate the data. 

4.2.1. Parameter update strategy 
The sequence {(ỹk − ỹk− 1) /Δtk− 1}, k = 1, 2, ⋯, Ne, is constructed 

from the smoothed training data to compute the drift coefficient pa-
rameters {μ0,σ2

0}. Furthermore, the diffusion coefficient parameters are 
calculated by σ2

B = σ2 − σ2
0Δtk− 1, where σ2 denotes the variance of the 

smoothed series Δỹ1:k− 1 = y2:k − y1:k− 1. The prior parameter set {μ0, σ2
0,

σ2
B} is obtained by applying MLE with the training data. 

The EM algorithm is applied to update the parameters based on the 
prior parameters. The EM algorithm includes the E-step and M-step. 

In the E-step, the expectation is generated from the Bayesian for-
mula. 

P
(
μ0, σ2

0, σ2
B

⃒
⃒Y1:k

)
=

P
(
Y1:k
⃒
⃒μ0, σ2

0, σ2
B

)
P
(
μ0, σ2

0

)

P(Y1:k)
∝P
(
Y1:k
⃒
⃒μ0, σ2

0, σ2
B

)
P
(
μ0, σ2

0

)
.

(13) 

In the M-step, the parameters iteration is performed by MLE. 

Θ̂
i+1
k = argmaxln

(

Θ|Θ̂
i
k

)

. (14)  

where Θk = [μ0,k, σ2
0,k, σ2

B,k], denotes the prior parameters computed by 

the k-th monitoring data; Θ̂k = [μ̂0,k, σ̂2
0,k, σ̂2

B,k], indicates the updated 
parameters of the k-th monitoring data; i denotes the current number of 
iteration steps. 

Eq. (13) represents the joint probability as Gaussian distributions, 
whose expectation and variance can be derived from the analytical so-
lution as shown in Eq. (15). 

μ̂i+1
0,k =

μ0σ2
B + ykσ2

0

tkσ2
0 + σ2

B
,

σ̂2 i+1
0,k =

σ2
0σ2

B

tkσ2
0 + σ2

B
.

(15) 

The log-likelihood function of the posterior probability in the M-step 
is 

lnP
(
Y1:k, μ0, σ2

0, σ2
B

⃒
⃒Θk
)
= lnP

(
Y1:k
⃒
⃒μ0, σ2

0, σ2
B,Θk

)
+ lnP

(
μ0, σ2

0

⃒
⃒Θk
)

= −
k + 1

2
ln2π − klnσ −

1
2

ln
∑k

j=1

(
tj − tj− 1

)

−
∑k

j=1

(
yj − yj− 1 − b

(
tj − tj− 1

))2

2σ2( tj − tj− 1
) − klnσ0,k −

(
b − μ0,k

)2

2σ2
0,k

.

(16) 

By solving the partial differential equation for σ2
B in Eq. (16) and set it 

to zero, then σ2
B can be expressed as the function with μ0,k and σ2

0,k. 

σ̂2 i+1
B,k =

1
k

∑k

j=1

(
yj − yj− 1

)2
− 2μ0,k

(
yj − yj− 1

)(
tj − tj− 1

)
+
(
tj − tj− 1

)2
(

μ2
0,k+σ2

0,k

)

(
tj − tj− 1

) .

(17) 

The initial augmented data Ye ={yk,k=1,2,⋯,Ne} are substituted 
into Eqs. (15) and (17), and the parameters μ̂0, σ̂

2
0, σ̂

2 are updated 
iteratively. 

4.2.2. Sample generation 
With the updated parameters μ̂0, σ̂2

0, σ̂2, the expectation of particles 
in the PF is used as the predicted data. After parameter update, the 
distribution of the model becomes: 

P
(
Y1:k|μ0,σ2

0,σ2
B

)
=

1
∏k

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2πσ̂2
0,iΔt2

i + σ̂2
B,iΔti

√ exp

⎡

⎢
⎣−
∑k

i=1

(

Δỹi − μ̂0,iΔti

)2

2
(

σ̂2
0,iΔt2

i + σ̂2
B,iΔti

)

⎤

⎥
⎦.

(18) 

SIS is performed on the updated distribution, and the particle set 
{xi

k,i=1,2,⋯,Ns} is generated randomly, where Ns is the number of 
particles. The state particles are recursively expressed as follows: 

xi
k = xi

k− 1 + bi
k− 1(tk − tk− 1) + wi

k− 1. (19) 

The weights of the particles is then updated by substituting the ob-
servations into Eq. (20): 

ω̃i
k = P

(
yk

⃒
⃒
⃒xi

k, σ̂2
ν

)
=

1
̅̅̅̅̅̅̅̅̅̅

2πσ̂2
ν

√ exp

⎡

⎣ −

(
yk − xi

k

)2

2σ̂2
ν

⎤

⎦, (20)  

where the observed variance ̂σ2
ν is obtained from the smoothed data with 

MLE. 
The result of the prediction is 

ŷk = x̂k =
∑Ns

i=1

(
ωi

kxi
k

)
, (21)  

where ωi
k = ω̃i

k/
∑Ns

i=1ω̃i
k. 

To prevent particle impoverishment during SIS, the number of valid 
particles is evaluated after each update step, 

Neff =
1

∑Ns
i=1(wi

k)
2. (22) 

Fig. 5. The sampling and the test equipment.  
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Resampling is required when the number of efficient particles Neff is 
less than the assigned value, and the resampling weights are reset to wi

k 
= 1/N. 

5. Case study 

The data for model verification was derived from 2500 h full life- 
cycle engine oil monitoring, in which the oil change interval was set 
to 250hr. We obtained a database of 250 sets of engine oil with a total of 
ten operating cycles. The experimental data were obtained from the 
2500 h reliability bench test, on the EQD210–10 diesel engine, con-
ducted by the Dongfeng Motor Company. The specification and grade of 
engine oil were 10 w/40 and CD respectively. Oil samples were collected 
through a valve installed at the oil drain port as shown in Fig. 5. 

5.1. Sample database 

To match the dynamics of the diesel engine, the bench test was set up 
according to the loads specified in the standard [33]. The mixed loading 
condition of the bench experiment is shown in Fig. 6. There are four 
conditions: 1) 3 min at low idling speed, 2) 12.5 min at the maximum 
torque, 3) 7 min at high idling speed, and 4) 7.5 min at the rated con-
dition. The speed and load are changed evenly within 1 min. Each cycle 
lasted 30 min, and the total number of cycles is 5000. 

Different from instantaneous engine dynamics characteristics, the 
debris in oil carried the accumulated wear from the initial state under 
circulating oil circuit. To obtain enough observation data, the oil was 
collected every 10 hr from the same part and tested instantaneously. 

Spectral analysis was performed to detect the concentration of metal 
debris. Considering the composition of typical engine wear parts, the 
contents of Fe, Cu and Al in oil were selected for monitoring. The three 
wear elements have a consistent trend in concentration as shown in 
Fig. 7. The robustness of data from the Fe element is more suitable for 
validation. 

All 250 sets of oil data are used as the training set to calculate the 
prior parameters. To verify the accuracy and precision from data 
augmentation, two types of test sets were used, 1) sparse test set, which 
selects identical intervals or 1/3 of the data randomly from one opera-
tion cycle; 2) truncated test set, which selects the first 40%, 60% and 
80% data from one operation cycle. 

5.2. Augmentation-based prediction with small samples 

The wear concentration maintains a dynamic equilibrium during the 
lubrication cycle. The model only involves the wear mechanism in the 
steady-state period as it neglects the break-in period and the regular oil 
change intervals. As shown in Eq. (1), the Wiener process is obtained 
after the exponential transformation of the mechanism equation. The 
procedures for prediction with the combined mechanism-data-driven 
model are shown in Algorithm 1.  

1) Sparse sample case: Apply the evidential variables method for 
parameter estimation with ten groups of sparse test sets, then obtain 
small-sample parameter sets {μ̃0, σ̃

2
0, σ̃

2
B}. The initial augmented data 

is generated with SSM. The parameters of the training samples are 
taken by MLE, forming the prior parameter set {μ0, σ2

0, σ2
B}. Then 

Fig. 6. Condition of engine reliability bench.  

Fig. 7. The original data of wear element content in engine oil monitoring.  

Y. Pan et al.                                                                                                                                                                                                                                     



Reliability Engineering and System Safety 217 (2022) 108114

8

apply the EM algorithm to update the parameters [μ̂0, σ̂2
0, σ̂2

B]. PF is 
adopted based on the updated parameter set, and the expectations of 
sampled particles are used as the augmented data. As shown in Fig. 8, 
the predicted data in black shows consistency with the real data in 
red based on the small sample data in blue. It can be seen that the real 
data presents obviously fluctuant and the predicted data can be 
accurately augmented to fill the gaps between the adjacent samples. 
The results show a degradation trend consistent with the real values, 
which accurately describes the wear evolution.  

2) Truncated sample case: The augmented steps for truncated data are 
the same as those for sparse data. When the truncated data is pre-
dicted based on sparse samples, it involves two steps: 1) the sparse 
data in the truncated samples is augmented; 2) the augmented data 
in the truncated samples is predicted. It is shown that the method can 
achieve data augmentation based on small samples. Then 40%, 60%, 
and 80% of the full life-cycle monitoring data are selected for the 
test. To evaluate the prediction performance, convergence is intro-
duced to describe the results. The results are shown in Fig. 9. The 
prediction accuracy improves with the increase of monitoring data, 
and the confidence interval (CI) tends to converge, which indicates 
the more reliable prediction results. It can be shown that the better 
converge with the more training data, which verifies the high pre-
diction accuracy with sufficient data. 

5.3. Performance evaluation 

In order to assess predictive performance, two characters of temporal 

and spatial scales needed to be quantified, including 1) quantify how 
accurately an algorithm performs at a given time relative to prediction, 
2) if the performance converges (i.e., satisfies accuracy) quantify how 
fast does it converge [26]. Therefore, two evaluation indexes were 
adopted, 1) cumulative relative accuracy (CRA), 2) convergence speed 
(CS). CRA is used to evaluate the accuracy of the overall data augmen-
tation process, whose values closer to 1 indicate better performance. CS 
is the distance between origin and centroid of area under the curve, 
reflecting the prediction convergence rate. The smaller index denotes a 
faster convergence rate. 

The cumulative relative accuracy is calculated by Eq. (23). 

CRA =
1
K
∑K

k=1

⎛

⎝1 −

⃒
⃒
⃒
⃒ l̂k − lk

⃒
⃒
⃒
⃒

lk

⎞

⎠, (23)  

where K is the length of the sequence; ̂lk and lk represent the augmented 
data and the real data at moment tk, respectively. 

The convergence speed is computed from Eq. (24). 

CS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

x2
cen + y2

cen

√

,

xcen =

∑K− 1

k=1

(
t2
k+1 − t2

k

)
RAk

2
∑K− 1

k=1
(tk+1 − tk)RAk

, ycen =

∑K− 1

k=1
(tk+1 − tk)RA2

k

2
∑K− 1

k=1
(tk+1 − tk)RAk

,

(24)  

where RAk = 1 −
|̂lk − lk |

lk 
is the relative accuracy of the augmented data at 

Fig. 8. Comparison of data augmentation with sparse sample.  

Fig. 9. Comparison of data augmentation with truncated sample, (a) 40% data augment, (b) 60% data augment, (c) 80% data augment.  
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tk, and (xcen, ycen) is the center of mass of the area under the relative 
accuracy between tk+1 and tk. 

The CRA of data augment with sparse samples are all greater than 
0.85 for the 10 groups of samples as shown in Table 1. 

Considering the exponential degradation of the oil condition, 
exponential-based prediction models were selected for comparison in 
the verification process. Physics-based and data-driven models, 
including rolling gray model (RGM) [34], logistic regression (LR) [35], 
SSM with evidence variables (SSM-ev) [22], and SSM with random 
variables (SSM-rv) [36], were used for data augmentation with small 
samples. The SSM-rv adopted the augmented data in the first stage, 
whose major difference with the proposed method is the methods of 
obtaining likelihood probabilities. The data augmentation was per-
formed with the same sample set and predicted values of 40%, 60%, and 
80% of samples were compared, as shown in Fig. 10. It can be seen that 
the predicted values of the four methods gradually converge to the real 
values with the increasing samples. The RGM, whose prediction is 
dependent on the average of the adjacent samples, has the poorest 
performance caused by epistemic uncertainty due to the absence of 
samples. The LR has a high prediction accuracy with enough samples 
(80%), in other words, the small samples (40%) are not suitable for the 
LR without parameters update. The SSM-ev presents a poorer perfor-
mance than the SSM-rv that applies the augmentation data, indicating 
that data augmentation can effectively improve the prediction accuracy. 
In addition, interval parameter estimates of the evidence variables 
present worse precision than point estimates of random variables. 
Comparing SSM-rv and the proposed method reveals that the prior 
knowledge induces a better prediction with the data augmentation. The 
proposed method presents the best prediction accuracy throughout the 

evaluation. 
For quantitatively characterizing the performance, the CRA and CS 

are respectively calculated by Eqs. (23) and (24), and the results are 
shown in Table 2. The proposed method obtains the highest CRA and the 
best CS for all the verification samples. This further demonstrates that 
the proposed method presents accurate predictions and simultaneously 
decreases the random fluctuations. 

6. Discussion 

The high prediction accuracy of the method is attributed to the 
reduction of epistemic uncertainty through data augmentation [4]. The 
novelty of the method involves three aspects: 1) interpretable modeling 
of the evolving process of the embedding mechanism, 2) parameter 
updates using evidence variables with small samples, 3) epistemic un-
certainty elimination with PF algorithm and parameter iteration, 
respectively. 

First, data-driven models, whether distribution-based [8], 
sampling-based [37] or Bayesian model-based [38], generate data 
essentially by exploring the external data laws without interpretation. In 
the paper, the degradation mechanism is characterized by differential 
equations with SSM modeling. The model parameters are updated with 
actual monitoring data, realizing data augmentation integrated mech-
anisms and data. The dynamic update of the model describes the 
degradation process during the monitoring cycle. The identical degra-
dation process is instead of various time-varying intervals for the 
consistent description of the real state degradation. 

Second, considering small-sample conditions, likelihood probabili-
ties are obtained using evidential variables in parameter updates, unlike 

Table 1 
CRA with sparse prediction.  

No. 1 2 3 4 5 6 7 8 9 10 

CRA 0.9574 0.9353 0.9491 0.9339 0.8636 0.9387 0.9272 0.9412 0.9435 0.9351  

Fig. 10. Comparison of four methods for data augmentation, (a) 40% data augment, (b) 60% data augment, (c) 80% data augment.  

Table 2 
Comparison of CRA and CS for prediction with small samples.  

Indicator CRA CS 
40% 60% 80% 40% 60% 80% 

RGM – – 0.3223 – – 125.0 
LR – 0.8312 0.9141 – 122.4 139.5 
SSM-ev 0.4696 0.6889 0.7218 128.2 122.6 124.5 
SSM-rv 0.7552 0.8419 0.9712 127.2 124.5 122.0 
The proposed 

method 
0.8272 0.8742 0.9781 109.7 107.2 105.4 

“-” represents the negative value due to the predicted value being greater than 
twice the real value. 

Algorithm 1 
Procedures of augmentation-based prediction.  

Step 1:Parameter estimation with training samples using MLE, then form the prior 
parameter set {μ0,σ2

0,σ2
B}.  

Step 2:Parameter estimation with test samples using Eqs. (10)–(12) to obtain the 
initial parameter set {μ̃0, σ̃

2
0, σ̃

2
B}.  

Step 3:Import the initial parameters into the model and apply Eq. (7) for initial 
augmentation, then generated Ye = {yk,k = 1,2,⋯,Ne}.  

Step 4:Iteratively update parameter using Eqs. (15) and (17). 
Step 5:The iteration ends until |Lt − Lt− 1| ≤ ε, where ε = 10− 6, then obtain the 

updated parameter set [μ̂0, σ̂2
0, σ̂2

B].  
Step 6:Sampling is performed using Eq. (21) to obtain the predicted data.  
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the unreliable estimation with random variables in traditional methods 
[36,39]. Using random variables to describe the model parameter, a 
complete probability density is needed. Thus the reliable results are only 
effective for enough samples. With the D-S evidence variable approach, 
only the basic probability assignments (BPAs) for parameter intervals 
need to be estimated. Furthermore, a two-step data augmentation 
strategy is proposed to improve the prediction performance. 

Third, two methods of eliminating epistemic uncertainty are 
described. One is the application of PF [27]. To describe the prediction 
performance of the sampling with PF, the prediction PDF is visually 
illustrated in Fig. 11, where the expectation of distribution represents 
the monitoring data. The results demonstrate the effectiveness of the 
improved model in reducing random errors of the stochastic process. 

The other method is the update of variances with prior knowledge. It 
can be observed that the variances of the diffusion and drift factors in the 
Wiener process gradually decrease, accompanying the EM parameter 
iterations with the prior parameters [36]. We can transform Eq. (15) into 

σ̂2
0 =

σ2
0σ2

A

σ2
0 + σ2

A
=

σ2
0

σ2
0/σ2

A + 1
=

σ2
A

σ2
A/σ2

0 + 1
, (25)  

where either the variance σ2
0 of the prior parameter or the variance σ2

A of 
the measured parameter is greater than the variance σ̂2

0 of the updated 
parameter. The variance decreases with increasing iterations, which is 
the primary contributor to uncertainty reduction. The 95% CI for 
parameter estimation with real and augmented data is shown in Fig. 12. 

Fig. 11. Illustration of the probability distribution evolution.  

Fig. 12. Comparison of 95% confidence intervals, (a) CAR=0.8636, (b) CAR=0.9574.  
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It can be seen that the 95% CI of the predicted data gradually converges, 
and the predictions present increasing reliability. 

Overall, there are still some limitations to the proposed method:  

1) The updating PDF is obtained through the iteration of the analytic 
solution, which cannot be effectively solved due to complex inte-
gration. To match the real non-linear degradation, sampling and 
filtering methods, which obtain the solution by approximation, are 
more generalizable for the application of the proposed method.  

2) It is difficult to guarantee the effectiveness of a signal indicator in 
OCM. As a symbolic indicator, the Fe element was chosen to char-
acterize the wear state in this paper. However, it was not guaranteed 
to be a comprehensive representation of the oil state. Therefore we 
aim to eliminate cognitive uncertainty by fusing multiple indicators 
for reliability prediction. 

7. Conclusion 

To improve the reliability and accuracy of the prediction in OCM, we 
have proposed a data augmentation model in which both the physical 
degradation and data probability are considered with the monitoring 
data. Primarily, the model is constructed by incorporating the Winner 
process into the mechanism equations. A two-stage strategy is estab-
lished to update the model parameters for the model training and the 
data augmentation, respectively. The performance of the model is 
validated with the real small samples from engine bench tests. The main 
conclusions are as follows.  

1) A knowledge-based data augmentation of small samples for oil 
condition prediction is proposed, in which both the certain oil 
degradation and the uncertain data distribution are jointly 
concerned.  

2) A two-stage strategy is established for the model parameter update 
by integrating interval estimation with small samples and point 
estimation with augmented data. The updated parameters provide an 
accurate prediction with the PF method.  

3) The proposed two-stage data augmentation shows reliable and high 
accuracy in prediction with both sparse and truncated data. 
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