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Abstract— Compared with 2-D images, 3-D image-based worn
inspection can provide more profound information regarding
the in situ endoscope examination of mechanical parts. With
photometric stereo vision (PSV), 3-D topography can be recon-
structed from 2-D images with minimal cost. However, this
promising technology is limited by the imprecision in calculating
normal vector due to the high reflectiveness of worn surfaces.
An innovative model is here developed to separate Lambertian
reflection from photometric images. The Lambertian reflection
variations are estimated by fusing multiple photometric images,
while the constants are extracted from the general plane base of
worn surfaces. Considering a small sample set of worn surfaces,
hybrid samples, including the real and simulated images, are
adopted for parameter optimization with feature-level alignment
(FA). Moreover, a label-free prediction loss (LFL) function is
constructed to constrain the optimization direction via real
samples. The constructed model is obtained from training 20 000
simulated samples and 1000 real samples. The results indicate
that high reflectiveness can be addressed by separating the
Lambertian reflections. Comparatively, the model can improve
the normal vector calculation with lower average error than other
existing algorithms.

Index Terms— Lambertian reflection separation, photometric
stereo vision (PSV), semi-supervised learning, worn surface
reconstruction.

I. INTRODUCTION

WEAR of mechanical parts inevitably occurs even in
normal working conditions, e.g., gears in a wind tur-

bine. Hence, the worn surface examination with an industrial
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endoscope is a dominant means for regular patrol inspec-
tion [1], [2]. So far, worn surface analysis (WSA) remains
an irreplaceable technique for health monitoring, even with so
many advanced on-line monitoring methods. Traditional 2-D
image examination could not provide depth information, which
may induce erroneous judgments. Therefore, 3-D topography
reconstruction is developed driven by the photometric stereo
vision (PSV) technology [3], [4], in which the 3-D proper-
ties can be determined from multiple 2-D images without
additional devices. Nevertheless, it remains a challenge with
inaccurate normal vector calculation due to non-Lambertian
reflections of metal surfaces that are very common in local
grinding or cutting. It is, therefore, desirable to separate
Lambertian reflection under high reflectiveness when applying
3-D reconstruction technology.

PSV only takes advantage of monocular vision com-
pared with other 3-D imaging methods. Under the Lambert
reflectance assumption, it calculates the normal vectors from
photometric images and recovers the surface heights [5], [6].
However, worn surfaces usually appear with specular reflec-
tions and shadows, which deviate from the assumption
and result in errors in the calculated normal vectors [7].
Considering multiple non-Lambertian reflections, various
numerical algorithms have been proposed in PSV. For
instance, reflectance model-based methods adopt the bidirec-
tional reflectance distribution function (BRDF) to substitute
the ideal Lambert reflectance model for dealing with vari-
ous reflections [8], [9]. Although these methods can fully
use photometric information, complex BRDFs for worn sur-
faces may introduce complex nonlinear optimization prob-
lems. Moreover, outlier removal approaches are developed to
extend the normal vector calculation to general reflections by
removing non-Lambertian pixels [10], [11]. In essence, these
algorithms depend on more than 20 photometric images to
choose Lambertian pixels with specific illumination directions.
However, such dense photometric images are often difficult to
be acquired in real-world WSA.

Driven by deep learning, sparse image-based PSV gradually
develops and makes it possible for precise reconstructions
with in situ conditions [12], [13]. Deep network models,
represented by photometric stereo fully convolutional net-
work (PS-FCN) [14] and normal vector estimation network
(NE-Net) [15], are developed to handle different reflective
properties and enable topography reconstruction with only
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eight photometric images. However, the effectiveness of these
methods is low due to complex transformation from photomet-
ric images to normal vectors with diverse surface topography.
In view of this, reflection separation is introduced as an image
preprocessing stage to simplify the normal vector calculation
by extracting the required Lambertian reflections from photo-
metric images. The new strategy liberates the deep learning
task from multimodal mapping, and Lambertian reflection
separation emerges as a critical step of surface reconstitution.
Nevertheless, the existing reflection separation models may
be subject to local prediction errors for worn surfaces due to
high reflectiveness, which will generate specular reflections
covering the Lambertian reflections [16], [17].

Apart from the high reflectivity of worn surfaces, learning-
based methods are challenged by insufficient samples, which
limits the optimization of network parameters [12]. Practically,
sample collection is a time-consuming and laborious task
involving worn surface collection, photometric image acquisi-
tion, 3-D topography measurement, manual image alignment,
etc. Therefore, worn surface samples are available in a few
numbers and the absence of Lambertian reflection labels.
Although the rendering-based generation method has been
developed to support the training of deep learning networks,
the simulated images are deviated from real images due to the
degradation of surface topography and imaging process [15].
This discrepancy may keep the trained models away from
real worn surfaces and lead to low separation accuracy in
Lambertian reflection.

To address these issues, a Lambertian reflection separation
model is proposed to improve the topography reconstruc-
tion of worn surfaces. The constructed model is focused on
worn regions by reflection decomposition, and photometric
images are fused to estimate Lambertian reflections in a
complementary way. Considering the limitation of insufficient
samples, both real and simulated samples are combined for
parameter optimization. In the first instance, feature alignment
is introduced to extract features with uniform distribution from
both types of samples. This is followed by a label-free loss to
evaluate the prediction accuracy of real samples based on the
Lambertian reflection characteristics. The effectiveness of the
proposed model is evaluated by comparing the normal vector
with that obtained from reference algorithms. This work is
expected to improve the topography reconstruction of worn
surfaces.

The rest of this article is organized as follows: Section II
contains the description of the proposed model, including
the model framework, feature-level alignment (FA), and loss
function. The details of the dataset and implementation are
given in Section III, followed by verifications in Section IV.
The discussions are presented in Section V. The conclusions
are presented in Section VI.

II. MODEL

A Lambertian reflection separation network (LRS-Net)
model is constructed, as shown in Fig. 1, to extract the
desired reflection for photometric stereo reconstruction. The
model structure is composed of two branches of variation
estimation and constant extraction for Lambertian reflections.

Fig. 1. Framework and optimization of the LRS-Net model.

The former branch is specified for robust reflection prediction
in high-reflectiveness regions, while the latter one is designed
to generate reflection constants from a specific surface topog-
raphy. For model training, real and simulated samples are
hybridized by FA to address insufficient samples of worn
surfaces. Furthermore, a joint loss function is constructed for
both kinds of samples to constraint parameter optimization
according to sample labels and reflection characteristics. The
details of the LRS-Net model are described below.

A. Framework of the LRS-Net Model

Worn topography can be identified as the morphological
variations from an initial plain surface. Given this, the worn
surface topography can be decomposed into local wear fea-
tures and a plane base. Hence, the surface normal vector
N is the superposition of the vertical vector Nv of the
plane base and the inclined vector N i of local features,
as depicted in Fig. 2. Furthermore, the Lambertian reflection
can be decomposed into two components representing the
inclined and vertical vectors. The reflections from inclined
vectors are varied with local height fluctuation, while the
reflections from vertical vectors are invariant and equal to
the Lambertian reflections from the plane base. Therefore,
the separation task can be split into variation estimation and
constant extraction for Lambertian reflections to simplify the
implementation.

As shown in Fig. 1, the LRS-Net model is constructed
with two main branches specified for variation reflection
estimation and constant reflection extraction. The outputs of
both the branches are summed pixel by pixel to generate the
Lambertian reflection of the target surface.

1) Variation Estimation Branch: Regarding the extreme
brightness from specular reflections, the variation estimation
from a single image could be an ill-posed problem. For
photometric images, specular reflections with the same pixel
position are only observed in individual images with partic-
ular illumination directions. Moreover, Lambertian reflections
from different photometric images are co-related by the sine
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Fig. 2. Decomposition of Lambertian reflection on worn surfaces.

Fig. 3. Structure of the variation estimation branch (note that convolutional
and deconvolutional layers in the same residual block adopt equal channel
numbers. These are marked on the corresponding convolutional and residual
blocks).

function [18] in the following equation:
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where I k is the imaging brightness at the pixel (i, j) in
the kth image, N =

[
Nx Ny Nz

]
is the normal vector at

the same pixel, ρ denotes the surface reflectance, θ k is the
slant angle of the kth illumination source, and τ k is the tilt
angle of the kth illumination source. Thereby, the Lambertian
reflections masked by specular reflections can be inferred
from additional photometric images. Given this, the variation
estimation branch fuses multiple photometric images via an
encoder–decoder structure, as shown in Fig. 3. The specific
structures are described in the following.

The constructed variation estimation branch fuses multiple
photometric images and then outputs the corresponding Lam-
bertian reflection variations. As input to the branch, photo-
metric images are concatenated along the channel dimension
and then integrated for multistage fusion through the fully
convolutional structure. The branch is composed of two seg-
ments involving an encoder to extract valuable features from
photometric images and a decoder to incorporate extracted
features for reflection variation generation. The encoder and
decoder are composed of convolutional and residual blocks for

Fig. 4. Lambertian reflections of the plane base with multiple illumination
sources. (Note that L1–L8 represent individually single illumination source
along the clockwise direction.)

multiple fusions with various resolutions, and spatial attention
(Sa) layers are introduced in the residual blocks to focus on
worn features.

Considering the complex reflectance properties of worn
surfaces, residual blocks [19] are introduced to address
the accuracy degradation from over-deep network structures.
Specifically, the module constructs an identical mapping by
adding the shortcut path. For the brightness differences result-
ing from local height variations, the Sa layer [20] is embedded
in residual blocks to enhance worn features by emphasizing
interchannel variations in feature maps. The workflow of this
layer consists of two steps. The maximum and average values
of feature maps are first extracted along the channel dimension.
This is followed by the difference between both the values
that are regarded as weights and are further multiplied with
the feature map pixel by pixel. With the weight assignment,
the residual block can provide rapid localization and full
characterization of worn features.

The optimized residual block is treated as basic construction
components to build the variation estimation branch. Given
the different image sampling demands of the encoder and the
decoder, the residual block is derived into the down-residual
and up-residual blocks. Down-residual blocks are used to fuse
the neighborhood luminance information for local features by
a convolutional layer with a stride of 2 and a kernel size of
3 × 3. By comparison, up-residual blocks progressively refine
reflection feature maps by deconvolution layers. Furthermore,
three residual blocks with the same structure and varied
channels are connected in series with a convolution block
to form the encoder and the decoder. Both the components
are integrated to compose the variation estimation branch.
With the above structures, the branch implements a multistep
fusion of photometric images via multiple residual blocks and
then enables the robust estimation of Lambertian reflection
variations.

2) Constant Extraction Branch: A constant extraction
branch is constructed to extract Lambertian reflection con-
stants as a priori knowledge for the reflection separation
task. With known surface topography, the reflection constants
are determined by the illumination properties of the imaging
system. Given that illumination sources are close to worn sur-
faces, the point light source model [3] is selected to describe
the direction of incident lights. With multiple illumination
sources in a circular distribution, Lambertian reflections of
the plane base are shown in Fig. 4. As can be observed, the
Lambertian reflection constants exhibit intensity gradients that
vary with different illumination sources.

The extracted reflection constant is used to optimize the
Lambertian reflection separation of worn surfaces. The reflec-
tion constants are summed together with the estimated reflec-
tion variations toward the generation of whole Lambertian
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Fig. 5. Feature alignment for simulated and real samples (note the numbers
of channels marked on the corresponding convolutional layers).

reflections. With the introduction of such a priori knowledge,
the Lambertian reflection separation is focused on critical worn
features rather than the whole measurement area. Therefore,
the constant extraction branch can simplify the reflection
separation task and then contributes toward improving the
prediction accuracy.

B. Parameter Optimization

The LRS-Net model requires sufficient image samples to
optimize its parameters. However, this may be constrained by
not having enough samples due to difficulties in the inspection
operation of worn surfaces. Rendering-based simulation meth-
ods can generate massive simulated samples, but significant
deviations exist from real photometric images. Therefore,
an FA is introduced to combine real and simulated samples
for parameter optimization.

An encoder is used in the LRS-Net model to extract
valuable features from photometric images. The validity of the
feature extraction directly affects the applicability of reflection
separation to various samples. Hence, the extracted features
from simulated and real samples are aligned to jointly optimize
the parameters. As shown in Fig. 5, the FA consists of three
steps. In the first instance, the valuable features of simulated
and real samples are extracted from photometric images with
the encoder. This is followed by a domain discriminator
to determine the sample categories from extracted features.
Finally, the encoder and the domain discriminator are trained
with the opposite gradient of the domain discrimination loss.
Particularly, the domain discriminator is optimized to obtain a
clear domain classification. In contrast, the encoder is inclined
to extract features with the same distribution from simulated
and real samples.

In the FA, the domain discriminator is used to identify
sample categories from extracted features. Considering the
spatial differences in extracted features, the discrimination
result is represented by a score map rather than a single
probability value. Hence, the domain discriminator is com-
posed of only four convolutional layers with a stride of 1.
Moreover, the gradient reversal layer [21] is embedded ahead
of convolutional layers in the adversarial training for feature
extraction and domain identification.

C. Loss Function

An appropriate loss function can provide the correct direc-
tion for parameter optimization. For the LRS-Net model, the

optimization aims at deriving consistent features and accurate
Lambertian reflections for simulated and real samples. Given
this, reflection prediction loss and domain discrimination loss
are constructed and integrated into training the LRS-Net
model.

1) Reflection Prediction Loss for Real Samples: The loss
functions are generally constructed by comparing the pre-
diction results and the corresponding labels. However, the
labels are absent for real samples since the Lambertian reflec-
tion labeling involves complicated topography measurements.
To address the issue, a loss function is proposed to evaluate
the prediction errors according to the Lambertian reflection
characteristics.

The Lambertian reflections of photometric images are ana-
lyzed for label-free quantitative evaluation. As given in (1), the
Lambertian reflections from different photometric images are
satisfied with the sine function. Combined with the circum-
ferential distribution of illumination sources, the function is
further simplified to (2). It means that the sine function fit from
Lambertian reflections has an equivalent angular frequency,
ω = 2π/n

I k
= α sin

(
2π

n
× k + β

)
+ γ (2)

where n is the number of illumination sources in the imaging
system, k is the serial number of the illumination source, and
β and γ are the bias terms.

The idea of fixed angular frequency is used to evaluate the
Lambertian reflection separation for real samples. Specifically,
the reflection prediction results at the same pixels are ordered
to form a sequence and further solved for the amplitude
spectrum by Fourier transform. Based on the amplitude dis-
tribution, a label-free loss function is constructed to quantify
the reflection separation errors, as illustrated in (3). The loss
function is equal to zero for accurate Lambertian reflections,
while larger loss function values mean larger prediction errors.
The evaluation is independent of the label references and thus
able to be extended to real samples without labels for model
optimization

lossr =
1

H · W

H∑
i=1

W∑
j=1

(
1 −

Ai j (ω = 2π/n)∑
Ai j (ω ̸= 0)

)
(3)

where H · W denotes the resolution of photometric images,
Ai j (ω = ω0) is the amplitude with the angular frequency
ω = ω0 of the sequence L i j = [ I 1

i j I 2
i j , . . . , I n

i j ], and I k
i j is

the predicted value of the Lambertian reflection intensity at
the point (i, j) in the kth image.

2) Reflection Prediction Loss for Simulated Samples: In
contrast to real samples, simulated samples are effortlessly
assigned reflection labels by the determined surface topogra-
phy and Lambert reflectance model. Hence, the reflection pre-
diction loss of simulated samples is defined by the comparison
of the prediction results with the corresponding labels. Given
this, the L1 loss function is selected to quantify the prediction
error of Lambertian reflections pixel by pixel, as shown in the
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following equation:

losss =
1

n · H · W

n∑
k=1

H∑
i=1

W∑
j=1

|I k
i j − Ĩ k

i j | (4)

where Ĩ k
i j is true value of Lambertian reflection intensity at

the point (i, j) in the kth image.
3) Domain Discrimination Loss for Sample Categories: In

FA, the domain discriminator is constructed to discriminate
whether the extracted features are from real or simulated sam-
ples. For the discrimination, binary cross-entropy is selected
as the domain discrimination loss and quantifies the differ-
ence between the discrimination results and domain labels,
as shown in the following equation:

lossd = −
1

Hs · Ws

H,W∑
i, j

y log
(
Si, j

r

)
+ (1 − y) log

(
Si, j

s

)
(5)

where Hs · Ws is the resolution of the score map, y denotes
the domain label, and labels of simulated and real samples are
set to 0 and 1, respectively, Si, j

r is the discrimination result at
the point (i, j) in the score map for real samples, and Si, j

s is
the discrimination result at the point (i, j) in the score map
for simulated samples.

4) Complete Loss Function: The complete loss function is
acquired by the weighted sum of the two reflection prediction
losses and the domain discrimination loss, as defined in the
following equation:

loss = λr · lossr + λs · losss + λd · lossd (6)

where λr is the coefficient of lossr , λs is the coefficient of
losss , and λd is the coefficient of lossd .

III. MODEL TRAINING

A. Training Dataset Acquisition

For the LRS-Net model, both real and simulated samples of
worn surfaces are integrated for parameter optimization. Two
types of samples are collected by experiment and simulation,
respectively.

1) Real Sample Collection: Since the Lambertian reflection
labeling entails laborious topography measurement, real sam-
ples only contain photometric images of worn surfaces. The
samples are collected from actual friction pairs via an in situ
imaging system, shown in Fig. 6(a). As the crucial component
of the system, the illumination sources are composed of
eight LEDs distributed circumferentially and equidistantly.
By sequentially switching on/off LEDs, photometric images
are captured with different illumination directions, as shown
in Fig. 6(b). The acquisition process is repeated to acquire
1000 sets of real samples from pin-on-disks and bearings,
which have experienced a long-term wear process with the
pin-on-disk tribometer and the roller-ring test rig. These real
samples are used for parameter optimization to ensure that
the LRS-Net model can adapt to the imaging properties and
morphological characteristics of worn surfaces.

Fig. 6. Real sample collection from worn surfaces. (a) In situ imaging system.
(b) Photometric images.

Fig. 7. Photometric images rendered with (a) grease-covered steel,
(b) aluminum, and (c) chrome-steel.

2) Simulated Sample Generation: Given the small number
and absence of labels in real samples, simulated samples
are generated for parameter optimization of the LRS-Net
model. As required for supervised training (ST), the simu-
lated samples are composed of photometric images and the
corresponding Lambertian reflections.

For vision-based reconstruction, the high-quality simulated
samples are defined from two aspects. The first is surface
topography with worn features, such as scratches and pits. This
is followed by the high reflectiveness of metallic materials.
Based on this, the simulation method is developed by expand-
ing existing reflectance data to worn surface topographies.
First, with the help of laser scanning confocal microscopy
(LSCM, OLS4000, Japan), 100 sets of worn topography
with multiple worn features are selected and collected from
the bearing surfaces. Second, acquired topographies are aug-
mented with affine transformation and node-based shape
transformation to relieve the time-consuming surface measure-
ment [22]. Via the augmentation method, generated topogra-
phies are characterized by various typical features similar to
the worn surface but with varied sizes. Third, photometric
images are generated by rendering augmented surface topogra-
phies with the Mitsubishi Electric Research Laboratories
(MERL) database containing 100 materials [15]. By adopting
various surface topographies and rendering materials, 20 000
sets of photometric images have been generated. As depicted
in Fig. 7, generated surfaces are presented with morphological
features consistent with real worn surfaces. Moreover, the
photometric images exhibit typical reflection components of
metallic materials, such as local highlights and shadows.
Furthermore, the reflective properties of photometric images
are varied with the rendered material to simulate worn surfaces
of diverse materials.

Furthermore, the Lambertian reflections of simulated sur-
faces are obtained by image rendering. Specifically, surface
topographies obtained in the simulation are fed into the
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Fig. 8. Matched Lambertian reflections with photometric images in Fig. 7.

TABLE I
MEAN PREDICTION ERRORS OF THE VALIDATION SET WITH DIFFERENT

COEFFICIENT COMBINATIONS

ideal Lambert reflectance model to generate the corresponding
Lambertian reflections. Fig. 8 depicts the matched Lambertian
reflections of the photometric images in Fig. 7. As may be
observed, local highlights and shadows in the photometric
images are replaced by moderate brightness. Furthermore,
the Lambertian reflections can provide detailed topography
information by interpixel and interimage brightness variations.

B. Training Details

For the LRS-Net model, network training is an imperative
parameter optimization process for the Lambertian reflection
separation of worn surfaces. The Adam algorithm [23] is
selected as the training optimizer. The learning rate is first
set to 0.001 during initial learning and then divided by two
for every two epochs to enable stable convergence of network
parameters in the last half of training. For the multiobjective
loss function, the coefficient λr is set to 1 due to the priority
of real samples, and then the values of the remaining two
coefficients are adjusted for optimal performance. With 20 sets
of real samples as the validation set, different coefficient
combinations are compared, and the mean prediction errors
are shown in Table I. According to the comparison results,
the coefficient combination [λs = 0.2, λd = 0.5] with the
smallest error is selected for model training. With the above
hyperparameters, the training is implemented with 100 epochs
in the PyTorch platform [24]. The whole training process is
illustrated in Fig. 9. As may be observed, the model loss is
gradually becoming stabilized and converged, indicating that
the LRS-Net model has been fully trained with the real and
simulated samples.

IV. VERIFICATION AND ANALYSIS

A. Verification of the LRS-Net Model

The LRS-Net model is constructed to separate Lambertian
reflections for accurate normal vector calculation of worn
surfaces. Therefore, the model is evaluated from Lambertian
reflections and normal vectors. To ensure a comprehensive
evaluation, test samples with different worn features are

Fig. 9. Adam-based training process of the constructed LRS-Net model.

Fig. 10. Prediction results of Lambertian reflections for worn surfaces with
different materials.

selected, as shown in Fig. 10. These samples are characterized
by scratches and pits in different feature scales, locations, and
orientations to represent the morphological characteristics of
worn surfaces. With the trained LRS-Net model, Lambertian
reflections are separated from photometric images of test
surfaces, as illustrated in Fig. 10. The prediction results
of Lambertian reflections are characterized by continuous
brightness variations in the highlight and shadow regions of
photometric images. It indicates that the LRS-Net model can
effectively separate Lambertian reflections for worn surfaces
with high reflectiveness.

The LRS-Net model is validated by calculating the normal
vectors from the separation results of Lambertian reflections.
The calculation is based on least squares [5]. The ground truth
of normal vectors is obtained by the topography measurement
with LSCM and the height–gradient normal transformation.
The results and error distribution of normal vectors are shown
in Fig. 11. As may be observed, the calculated normal vectors
are highly consistent with the ground truth except for feature
edges and some minor areas. The differences may be attributed
to the restricted characterization of the digital microscope at
tiny features.

Furthermore, the normal vectors of the LRS-Net model
are compared with LS [5], L1 [25], robust principal compo-
nent analysis (R-PCA) [26], constrained bivariate regression
(CBR) [27], and NE-Net [15]. For the quantitative compar-
ison, the mean angular error (MAE) is used to evaluate the
calculation errors of normal vectors given in (7). As shown
in Table II, the normal vector calculation with the LRS-Net
model exhibits a significantly higher solution accuracy than
the existing algorithms. It further indicates that the constructed
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Fig. 11. Calculated normal vector map of worn surfaces. (Note: the color
bar at right indicates angular error corresponding to specific colors.)

TABLE II
MAES OF DIFFERENT ALGORITHMS FOR WORN SURFACES

LRS-Net model can achieve an accurate Lambertian reflection
separation for worn surfaces

MAE =
1

H · W

H∑
i=1

W∑
j=1

arccos
(
N i j · Ñ i j

)
(7)

where Ni j and Ñ i j are the calculated and true values of the
normal vector at the point at the point (i, j), respectively.

B. Ablation Studies for the Model Architecture

The reflection decomposition guides the LRS-Net model to
focus on worn features by a priori knowledge of Lamber-
tian reflection constants. To verify its validity, an ablation
study is conducted by analyzing the training process. For
comparison, a contrast model is constructed by removing the
reflection decomposition of the LRS-Net model. Specifically,
the constant extraction branch is removed, and the variation
estimation branch directly outputs the Lambertian reflection
from photometric images. The prediction results of Lambertian
reflections and the reflection prediction losses losss in different
epochs are shown in Fig. 12. Compared with the contrast
model, the LRS-Net model consistently focuses on worn
features and obtains smaller prediction errors for training
samples. Furthermore, the prediction errors are quantified with
the L1 function, and the mean and maximum values of various
test samples are combined to evaluate the discussed models
comprehensively. The comparison results for test samples are
shown in Table III. It may be observed that the LRS-Net

Fig. 12. Prediction results of Lambertian reflections and reflection prediction
losses of (a) contrast model and (b) LRS-Net model.

TABLE III
REFLECTION PREDICTION ERRORS OF THE LRS-NET MODEL

AND THE CONTRAST MODEL

Fig. 13. Mean prediction errors of simulated test samples with different
reflection separation models.

TABLE IV
MEAN PREDICTION ERRORS OF SIMULATED TEST SAMPLES WITH

DIFFERENT REFLECTION SEPARATION MODELS

model presents higher prediction accuracy for worn surfaces.
Therefore, the reflection decomposition facilitates the conver-
gence of the LRS-Net model and then improves the reflection
prediction accuracy under insufficient samples.

Furthermore, the LRS-Net model is compared with the
existing reflection separation models. To eliminate the effects
of the domain gap, 500 sets of simulated images with
100 types of materials are selected as the test set. The
prediction results of different models are illustrated in Fig. 13,
and the L1 mean prediction errors are shown in Table IV.
It may be observed that the LRS-Net model exhibits smaller
prediction errors than SR Net [16] and ML Net [17], especially
in the local highlight regions.

C. Ablation Study for the Optimization Approaches

The FA is used to enable the Lambertian reflection sep-
aration for worn surfaces by the constraint on the feature
extraction. To verify its role, a corresponding ablation study
is carried out by comparing extracted features from simulated
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Fig. 14. Activation values of the LRS-Net model with (a) ST and
(b) combined ST and FA. (Note that up-residual blocks are named Up(1),
Up(2), and Up(3) along the forward propagation direction.)

TABLE V
REFLECTION PREDICTION ERRORS OF THE LRS-NET MODEL WITH

VARIOUS OPTIMIZATION APPROACHES

TABLE VI
MEAN PREDICTION ERRORS OF REAL TEST SAMPLES WITH

DIFFERENT SEMI-SUPERVISED METHODS

and real samples. Since extracted features are used in the
subsequent reflection variation regression, the comparison is
conducted by the activation values of the convolutional layers
in the decoder [28]. In the ablation study, the contrast model
adopts ST with 20 000 simulated samples. Moreover, 100 sim-
ulated test samples are generated with MERL reflectance
data and identical topography as the #1 real sample, and
the involved samples are pooled together as the test set. The
activation values of the test samples are shown in Fig. 14.
As may be observed, the contrast model is characterized
by distinct activation values for simulated and real samples.
In contrast, two domain samples are confused according
to activation values of the LRS-Net model. The consistent
response indicates that the domain gap between simulated and
real samples has been closed.

Besides the FA, the label-free prediction loss (LFL) is con-
structed for real samples to constrain parameter optimization.
The two optimization approaches are validated by reflection
prediction errors of real test samples, and the comparison
results are shown in Table V. It may be observed that the two
optimization approaches contribute to the accuracy improve-
ment in Lambertian reflection separation and combine for opti-
mal prediction results. Furthermore, the proposed optimization
method is compared with the existing semi-supervised meth-
ods via real test samples. The comparison results are shown
in Table VI. It may be observed that the combination of FA
and LFL presents higher prediction accuracy on worn surfaces
than the existing methods.

Fig. 15. Test sculpture samples including (a) photometric image, (b) predic-
tion results of Lambertian reflections, (c) calculation results of normal vectors,
and (d) ground truth of normal vectors.

TABLE VII
MAES OF DIFFERENT ALGORITHMS FOR SCULPTURE SAMPLES

D. Evaluation of Generalization Performance

The LRS-Net model is further evaluated on other datasets
besides worn surfaces. Considering the specific distribution of
illumination sources, the evaluation is conducted with rendered
images from shape datasets rather than the existing photomet-
ric image datasets. Specifically, with the MERL database, the
blobby shape dataset [32] and the sculpture shape dataset [33]
are rendered to generate photometric images, namely, blobby
and sculpture samples. Furthermore, the blobby samples are
labeled and combined with sculpture samples to optimize the
model parameters.

With 100 sets of sculpture samples as the test dataset,
the optimized LRS-Net model is evaluated, and the predicted
Lambertian reflections and calculated normal vectors are
shown in Fig. 15. As may be observed, the calculated normal
vectors are highly identical with the ground truth. Furthermore,
the LRS-Net model is compared with LS [5], L1 [25], and
R-PCA [26], and the MAEs of various algorithms are shown
in Table VII. It may be observed that the LRS-Net model
exhibits more minor calculation errors for sculpture samples
than the existing algorithms.

V. DISCUSSION

Lambertian reflection separation is achieved by an LRS-Net
for the calculation of worn surface normal vector. With
multiple photometric images as input, reflection separation
is implemented by integrating the variation estimation and
constant extraction. Moreover, FA and the label-free loss
function are introduced to combine simulated and real samples
for model optimization. The LRS-Net model is evaluated on
the prediction results of Lambertian reflections and normal
vectors, and its framework and optimization approaches are
further verified with ablation studies. A comparison between
the constructed model and existing reflection separation algo-
rithms is described below.

The existing outlier removal approaches select Lamber-
tian pixels to reconstruct surface topography. However, they
may fail due to inadequate valid pixels, especially for
high-reflectiveness surfaces with sparse photometric images.
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In contrast, the LRS-Net model can estimate Lambertian
reflections of highlight and shadow regions to ensure reli-
able topography reconstruction. Compared with the existing
image translation networks for reflection separation [16], [17],
the LRS-Net model enables robust prediction for highlight
regions by fusing multiple photometric images. Moreover,
Lambertian reflection decomposition contributes to the focus
of the LRS-Net model on worn regions and thus improves
the reflection prediction accuracy. Although sample simulation
methods have been developed for parameter optimization,
the differences between simulated and real samples limit the
application of the learning-based model on worn surfaces [15].
Compared with the existing semi-supervised methods [30],
[31], the LRS-Net model adopts the FA and the label-free loss
function to constrain the encoding and decoding jointly and
thus achieves higher prediction accuracy on worn surfaces.
Hence, the proposed model can effectively separate Lam-
bertian reflections and then contributes to improving normal
vector calculations.

VI. CONCLUSION

An LRS-Net model for Lambertian reflection separation is
developed and used for the photometric stereo reconstruction
of worn surfaces. Its properties include: 1) for the high reflec-
tiveness of worn surfaces, reflection variations are estimated
by fusing multiple photometric images and then integrated
with reflection constants extracted from the plane base to
enable robust reflection prediction; 2) FA is used to combine
simulated and real samples for parameter optimization, and
hence, the reflection separation can be extended to worn
surfaces with insufficient samples; and 3) according to the
Lambertian reflection characteristics, a label-free loss function
is constructed to constrain parameter optimization via real
samples and then further improve the reflection prediction
accuracy on real surfaces. With the Lambertian reflection sep-
aration, the accuracy in normal vector calculation is improved,
and the MAEs of the results are less than 10◦.
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