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ABSTRACT
Because wear is one of the most typical causes of decreasing performance in running machines,
monitoring wear is regarded as a crucial technology in maintaining the health of machines. However,
monitoring wear is not a fully mature process because quantifying the development of wear in real time is
a challenging task because there is no universal indicator. To meet this need, wear-oriented dynamic
modeling with online ferrographic images was used to investigate and then describe a real-time wear
state. This investigation was carried out by combining three wear indices to describe the wear rate, the
wear mechanism, and the severity of wear. A binary classifier method is also proposed to classify these
wear stages in the three extracted indices. A strategy to identify the dynamic transition of wear states with
adaptive parameters is also developed and then a four-ball wear test is carried out to verify the method.
The results indicate that this modeling strategy can accurately identify a developing wear state that is
characterized by stages. This proposed method is better at monitoring the health evolution of a machine
system than just detecting faults.

KEYWORDS
Dynamic modeling;
equipment wear tests; wear
particle analysis; oil condition
monitoring

Introduction

Wear-induced failure is a principle fault of running
machines. It is mostly introduced by deterioration of wear
performance and therefore can be reflected by their service
condition indicators and general monitoring. In essence, the
wear of mechanical triboparts is a dynamic and gradual
process that passes through distinct stages from normal to
failure. Good evidence for this general wear principle can
be seen in a bathtub-shaped curve that shows how a typical
wear process proceeds from a mild stage to a normal stage
and then to a severe stage during the life span of a machine
(Kothamasu, et al. (1)). Because these transitions in wear
states are induced by alternating microwear mechanisms, a
deteriorating wear performance can be inferred by investi-
gating the transitions of mechanism related information.
However, considering that online monitoring is mostly con-
ducted without human activity, it is crucial to have reliable
and quantitative wear states in order to conduct a lifetime
and real-time evaluation of machine health, as well as a fail-
ure diagnosis and prognosis.

Condition monitoring based on wear is a practical way of
obtaining information on wear but, unlike vibration-based moni-
toring, online monitoring based on wear debris is a primary
method for acquiring real-time knowledge of a dynamic wear
process as a direct indication of the wear condition. According
to Dempsey and Afjeh (2), the features of wear debris are more
robust than vibration signals for operational influences and the
ability to describe damage initiation and progression, especially

in the early period. Therefore, approaches that adopt wear fea-
tures are attracting more attention in machine monitoring (Roy-
lance, et al. (3)). Various online methods for extracting
information about wear have been proposed and they can be
classified into three categories according to the different physical
principles they use (Wu, et al. (4); Miller and Kitaljevich (5);
Kwon, et al. (6)). Although these methods have been applied
widely, our knowledge of wear particle characteristics is limited
because they only use electrical signals to represent information
pertaining to wear. However, the recently developed direct
approaches that use imagery can provide more comprehensive
information related to wear in order to characterize this informa-
tion (Wu, et al. (7)).

Wear stages can be inferred from various parameters
such as the wear rate, wear mechanism, and severity of
wear. Of these possibilities, the wear rate using particle
counting is one of the most frequently used indicators in
many applications because the wear rate can be obtained
from sensors such as the MetalScan sensor (Becker, et al.
(8)). However, other indicators such as the size of debris
also play a key role in determining the wear status, but
they cannot be obtained from particle counting. In fact,
wear is such a complicated process that it must be
described collectively using the wear rate, wear mechanism,
and wear severity (Peng and Kessisoglou (9); Ludema (10)).
An attempt to satisfy this need using online images of wear
debris to determine the wear state from particle dimensions
(Wu, et al. (11)) has recently been reported, but to
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characterize particles with only information such as the
coverage area may pose difficulties when the number and
dimensions of the particles vary. For example, two pictures
with the same particle coverage area may have different
numbers of particles and dimensions, which may indicate
different wear conditions. Later research solved this prob-
lem by extracting the individual features of particles using a
statistical description and additional parameters (Wu, et al.
(12)). This finding has enabled a more comprehensive char-
acterization of wear debris and wear states.

When reliable information about the wear process has been
acquired, a mathematical model of wear through the time
domain can be constructed. Modeling the dynamic wear pro-
cess is essential for online wear trend analysis. Analytical mod-
els based on the principle of asperity and Archard equations
are widely used for such purposes (Meng and Ludema (13)).
However, models that use contact mechanics focus on a transit
time span and are referred to as microscales, so they are not
directly applicable to machine wear processes at full life scale.
Alternative approaches such as data-based methods that
include threshold-based trend prediction and fuzzy modeling
have advantages in modeling lifelong wear in off-line wear
monitoring (Garc�ıa, et al. (14); Zhang, et al. (15); Peng and Zirk
(16)). These methods extract the changes and trends from a
large amount of data by clustering the salient features. The
threshold method is the simplest and is mostly used for gener-
ating precaution alerts for ongoing faults. The trend method
relies on gray theory and time series averaging and is also a
popular choice in many applications. However, with all of these
data-based models, the accuracy of the prediction is a primary
problem in monitoring because they only rely on the mathe-
matical features of data, and the wear deterioration mechanism
is rarely included.

Intelligent methods have been developed to improve the
qualities of the wear model. For instance, a model of a nonlin-
ear system can be constructed by using machine learning tech-
niques (Jian, et al. (17)), as well as artificial neural networks,
but these methods require an indispensable training phase to
make the model capable and vast reference samples that may

be expensive or not available for a friction system in industry.
In an effort to break the limitation of sample requirements, a
support vector data description algorithm has proved that it
can perform wear data clustering with less demand on samples,
but it still requires normal data to construct the primary cluster
model (Wu, et al. (11)). As a result, considering the absence of
prior knowledge of wear progress for an unknown friction sys-
tem, which is very general in industry, these methods are con-
fined to online monitoring. To this end, free training samples
and intelligent adaptabilities are deemed necessary to model
and identify online wear states. Generally, the modeling strat-
egy used to identify and describe the wear state should also
include the following characteristics: (1) the wear mechanism
should be included in the modeling strategy because it directly
induces the development of failure and (2) because wear is reg-
ular over a long period but random over a short time, the
model should not only identify data from different stages but
should also adjust itself continuously throughout its full
lifetime.

Aiming at a reliable characterization of the evolution of wear
states, a new procedure that uses online wear particle imaging is
formulated in this research. Firstly, to incorporate wear-related
information with a description of the wear state, a static wear
state is characterized quantitatively via the three features
extracted from wear debris images. Secondly, a static binary-
class model is developed with a machine learning algorithm to
differentiate the wear datum from different stages. Thirdly, an
improved adaptive dynamic method is built to identify and
model the wear state transitions. Finally, the modeling strategy
is verified via a four-ball machine wear test. This proposed
method can identify the stages in a dynamic wear process that
reveal the development of the wear state. This work provides a
new and practical method for modeling the wear process with
greater accuracy and also pushes the wear-based monitoring
approach further in a condition-based monitoring application.

The rest of this article is organized as follows. The imaging
system and the process for extracting information on wear are
described in the following section. The definitions of the wear
process indices are also given from a review of background
works. The principle of the mean shift algorithm specialized for
wear state modeling, including the procedures used to dynami-
cally conduct and identify the wear state development, are pre-
sented in the next section. Finally, a conclusion to this work is
drawn in the last section.

Characterizing online wear information based
on wear debris image

Only after the sensed information has been quantified can an
intelligent technique be used to reduce the human influence in
condition monitoring. Various mathematical indicators of wear
have been proposed and applied, but most online wear moni-
toring techniques use particle counting to indicate the wear
state for diagnostic and predictive purposes (Wu, et al. (4)).
However, previous experience from analytical ferrography has
revealed that describing a wear state using only the wear rate is
not comprehensive, so other parameters such as the associated
wear mechanism are used for a more profound characterization
of wear (Wu, et al. (11)). On the other hand, severe wear that is

Nomenclature
Ai D Particle coverage area in an image
D D Average distance of all newly emerging samples
DL D Concentration of large wear particles
DS D Concentration of small particles

G(∙) D Kernel function
H D Bandwidth matrix
h D Band width value
I D Unit matrix
L D Height of the object area

Ne D Number of newly emerging data
Rd D d-Dimensional space
Sh D Initial spherical space with fixed center and radius h
W D Width of the object area
WS D Function of wear state
w(∙) D Weighting coefficients for each sample

d D Threshold
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used in traditional ferrography to indicate the degree of deterio-
ration can also be used to characterize wear states. An
improved method has been developed by integrating three indi-
cators obtained from online images of wear particles (Wu, et al.
(12); Wu, et al. (18)); these include the wear rate, percentage of
large particles, and number of particles.

Features of debris from online images of wear debris

In online ferrograph images, the agglomeration of wear par-
ticles will hamper the extraction of individual particle features.
Therefore, the particle chains in the images were separated
according to a segmentation strategy published previously
(Wu, et al. (12)), allowing the extraction of individual wear par-
ticle features.

Wear rate
The wear rate is a basic parameter for characterizing wear that
has traditionally been used in many ferrography-based evalua-
tions of the wear process (Lim, et al. (19)). An index of wear
rate was formulated from images of online wear debris (Wu, et
al. (20)) to represent the statistical coverage of wear debris in a
defined area. The index of the particle coverage area (IPCA),
denoted as I, is given by

ID Ai

W£ L
£ 100%; [1]

where Ai is the particle coverage area in an image, andW and L
are the width and height of the object area, respectively (Wu, et
al. (7)).

Percentage of large particles
According to conventional ferrography, the dimensions of
the wear particles are primary indicators of the severity of
wear, where variations in this index often indicate the
severity of the wear process. Generally, wear debris in the
captured image contains both large wear debris and small
debris. However, the quantity of small debris increases con-
tinuously with operating time. A sharp rise in the quantity
of large debris indicates abnormal wear. In addition, the
existence of large wear debris will also lead to imminence
of catastrophic failure due to the phenomenon of three-
body wear. Therefore, another important indicator of the
wear process, the percentage of large particles (PLP),
denoted as P, is also used in this work (Goncalves and
Campos (21)). We have

PD DL ¡DS

DL CDS
£100%; [2]

where DL is the number of large wear particles in the cap-
tured image (i.e., >30 mm) and DS is the number of small
particles in the captured image (i.e., <30 mm). Experiments
revealed that if two images have the same IPCA, their cor-
responding PLP can be very different, so it can be stated
that these two parameters have decoupled in describing the
wear process, and their integration improves the reliability
of this characterization.

Number of particles
The number of wear particles (NUM), denoted as N, is another
important index that is widely used to monitor the wear condi-
tion of running machines (Goncalves and Campos (21));
indeed, it is often used to indicate the wear rate and the accom-
panying particle size. In this proposed wear characterization
system, the indices IPCA and NUM are used in conjunction
and are obtained from the image particle separation method
suggested in Wu, et al. (18).

Wear state characterization
Using the three indices described above, a comprehensive
model to characterize the wear state is developed. This model,
denoted asWS, is given by

WSD f I;N; Pð Þ: [3]

Unlike the current counterparts, it will describe the wear
mechanism more accurately because it contains more informa-
tion about the wear debris.

The wear state can thus be described quantitatively by a
function of the three parameters. Furthermore, by extracting
these indices from the online images of wear debris, the wear
performance at different states can be identified and a lifelong
wear process can be characterized.

Experimental application of wear state characterization

To examine the proposed method, an experimental application
is carried out with a four-ball wear test rig, as shown in Fig. 1.

As Fig. 1 shows, a four-ball tribosystem is used to gener-
ate wear particles under specific loads and rotation speeds.
The test ball utilized in this experiment is bearing steel ball
that is manufactured of carbon chromium bearing steel
(GCr15), with surface roughness of 0.025 mm and hardness
in the range 58–63 HRC. Wear particles are collected by
the oil cup and circulate with the lubricant driven by a digi-
tal pump. An online visual ferrograph (OLVF) sensor is
placed in the oil circulation path to collect wear debris for
imaging. After being captured and imaged, all of the par-
ticles are removed from the flow. These particles are filtered
with a magnetic tube and thus would not circulate with oil,
which ensures that each wear particle analyzed by the
OLVF sensor is freshly produced from the wear process.

Figure 1. Schematic diagram of the four-ball test rig with online wear particle
monitoring.
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An experiment was carried out for 20 h at a constant speed
of 500 rpm. To simulate a degrading wear process, a load of
1,500 N was applied for the first 800 min and a load of 2,000 N
was applied for the remaining time. Some typical images of
wear debris at different time instances are shown in Fig. 2; these
images revealed that the amount of wear debris varied with the
test duration. According to this information, a developing trend
of wear state, including severe wear, normal wear, and further
severe wear, can be roughly identified manually, but there are
explicit differences in the size of particles in the two cases of
severe wear. The wear particles in initial running wear are gen-
erally larger than those in the final one, so there are generally,
but not necessarily, three typical stages in a full wear process.
These stages are running-in, normal, and severe (Kothamasu,
et al. (1)), and they can be clearly seen in the test results shown
in Fig. 2.

By adopting the techniques used in previous works (Wu,
et al. (12); Wu, et al. (18)), three indices for characterizing
the wear rate, degree of wear, and severity of wear were
extracted from each image. The time history of each indica-
tor is shown in Fig. 3, where these indicators will be nor-
malized to facilitate comparisons in the following part.
Figures 3a and 3b show that the IPCA and NUM indices
are positively correlated in their general trend. Both indices

also show three stages in the testing duration of 1,250 min,
which is consistent with the state features observed from
Fig. 2. Moreover, both indicators have higher values in the
final stage than in the initial stage, and the debris in
Figs. 2j–2k indicates more severe wear than that in
Figs. 2a–2c. This observation also agrees with a generally
reported phenomenon that wear in the severe stage is
greater than that in the running-in stage, although both
stages exhibit high wear rates (Kothamasu, et al. (1)). Fur-
thermore, the change in load at 800 min is intuitively iden-
tifiable from both indicators, though the variations in the
two indices are not identical. At 800 min, a dramatic
change occurs in IPCA but only a slight fluctuation can be
identified from NUM. However, a corresponding increase is
found from PLP, which means that there is an increase in
the amount of large particles at this time.

The above comparison between the proposed method and
the intuitive observation indicates that wear states with various
mechanisms can be represented by the proposed indicators,
and with such a mathematical representation, a promising
prospect can be expected for an automatic online identification
of a wear process. Based on this motivation, a model has been
developed to automatically identify the wear states, and it is
described in the following section.

Figure 2. Images of wear debris from a four-ball wear test taken at different times: (a) 10 min, (b) 50 min, (c) 150 min, (d) 250 min, (e) 450 min, (f) 600 min, (g) 800 min,
(h) 1,000 min, (i) 1,100 min, (j) 1,150 min, (k) 1,200 min, and (l) 1,250 min.

Figure 3. Variations in different indicators in the wear process of a four-ball test: (a) IPCA, (b) NUM, and (c) PLP.
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Wear state modeling with proposed indices

Wear is a process with continuous and gradual features, as
described by a bathtub-shaped curve in which several “stages”
exist. The data samples show similar features in the same stage
due to similar wear mechanisms. Identifying the wear state is
actually a process of assembling data with similar features. To
overcome the problem encountered by the current modeling,
as mentioned in the Introduction, a basic clustering method is
used to categorize wear states by referring to the three proposed
indices. Firstly, a static model to identify wear data would be
used to prove the effectiveness of the model, followed by online
monitoring to identify the wear data dynamically. A dynamic
self-adapting strategy that focuses on determining the transi-
tion between the two states is investigated so that a dynamic
wear state model for online monitoring can be constructed
from a series of wear states identified from online images.
Finally, the method is verified with the data sampled from the
bench test, as shown in Fig. 1.

Principle of mean shift–based modeling

A mean shift is a nonparametric approach to modeling that
uses the probability of density but not previous samples. The
objective of a mean shift algorithm is to cluster a set of input
samples into different categories with identified centers where
data from the same category share the same convergence cen-
ter. The fundamentals of mean shift–based identification
modeling can be explained as follows.

Suppose a d-dimensional space contains n variables; that is,
[x1,…, xn] 2 Rdn, we can define a vectorMh as

Mh xð ÞD 1
k

X
xi2Sh

xi ¡ xð Þ; iD 1; ���; n; [4]

where xi is a set of the points chosen from an initial spherical
space Rd centered at x with radius h. The vector Mh(x) is the
mean distance of all of the k samples falling within Sh(x) to the
center x.

A kernel function G(x) is introduced by allowing a weighted
coefficient for each sample on the basis of its distance from the
center, so a mean shift function can be written as

Mh xð ÞD
Xn

iD 1
GH xi ¡ xð Þw xið Þ xi ¡ xð ÞXn

iD 1
GH xi ¡ xð Þw xið Þ

; [5]

where

GH xi ¡ xð ÞD jH j ¡ 16 2G H ¡ 16 2 xi ¡ xð Þ� �
: [6]

Here, H is the matrix of the bandwidth, which represents the
initial radius of the spherical space, and w(xi) are weighting
coefficients for each sample xi.

For simplicity, the bandwidth matrix H is often defined as a
diagonal matrix that takes the form H D h2I where I is a unit

matrix. Therefore, Eq. [5] can be transformed into

Mh xð ÞD
Xn

iD 1
GH

xi ¡ x
h

� �
w xið ÞxiXn

iD 1
GH

xi ¡ x
h

� �
w xi

i
� � ¡ x; [7]

which can be simplified as

Mh xð ÞDmh xð Þ¡ x; [8]

where mh(x) is

mh xð ÞD
Xn

iD 1
GH

xi ¡ x
h

� �
w xið ÞxiXn

iD 1
GH

xi ¡ x
h

� �
w xið Þ

: [9]

Given an arbitrary starting point x, a kernel function G(x),
and a threshold d, a three-step iteration can be implemented as
follows:

1. Calculate the value of mh(x) with Eq. [9].
2. Terminate if jmh(x) ¡ xj < d; else repeat step 1.
3. Update x D mh(x).

After completing this process, all of the simple data will con-
verge into a final center where data sharing the same center
would be identified as samples from the same stage.

Determined as the clustering principle of the mean shift–based
method, effective identification theory varies when the data sample
changes, so for static samples, only one iteration is needed to finish
the clustering but for the dynamical samples where typically a set of
samples with continuous data is involved, a new round of clustering
should be conducted if the new samples are joined. These two clus-
tering approaches will be explained.

Mean shift–based modeling for identifying
the static wear state

The key of themean shift model for categorizing static wear states has
two aspects: kernel function construction and bandwidth selection.

Choice of kernel function
The kernel function provides the weights for different data
samples. There are several candidates for kernel functions such
as uniform function and Gaussian function (Comaniciu and
Meer (22)). Gaussian functions perform well on both the con-
vergence rate and weight assignment of distributed sample
points (Guo, et al. (23)), so the Gaussian kernel function is used
in the wear modeling system because it adapts very well to sam-
ple numbers and dimensions. It takes the form of

K xi; xð ÞD exp
¡ j xi ¡ x j 2

2h2

� �
: [10]

Determination of bandwidth
A smaller bandwidth will introduce more clusters and vice
versa (Comaniciu (24)). The effects of bandwidth on the cate-
gory results are shown in Fig. 4.
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A total of 100 wear data points from an engine bench test (Wu,
et al. (11)) are clustered by the mean shift algorithm with different
bandwidths. This bench test was conducted on a four-cylinder gas-
oline engine. Magnetic synthetic engine oil was utilized for lubrica-
tion. The temperature of lubrication was controlled around 95�C
with a thermostat. The images of wear debris were captured via an
OLVF that was installed in the bypass of the lubrication circulation.
Two statistical indicators, the equivalent diameter of large wear
debris (Wu, et al. (11)) and IPCA, are used to describe the wear
data. Figures 4b–4c show that the number of clusters is enhanced
when the bandwidth is reduced.

Static wear state identification
A static identification of distinct types of wear data is the key
requirement for a dynamic identification of the wear state, so

to help with presentation, nine representative images were cho-
sen from the wear process, as shown in Fig. 5.

By referring to a typical bathtub-shaped curve of the wear
process, the images in Figs. 5a–5c are from the running-in
stage, those shown in Figs. 5d–5f are from the stable stage, and
images in Figs. 5g–5i are from the severe stage.

The three indicators IPCA, NUM, and PLP extracted from
the imaging subsystem were normalized and plotted in a three-
dimensional coordinate system, as shown in Fig. 6a. The mean
shift model was constructed to obtain clusters of the example
samples. Here, the bandwidth was set at 0.5, and a uniform ker-
nel function was used to calculate the mean shift vector. After
the iterations, three converging centers were located and
marked in Fig. 6b with red circles. Each center represents a
cluster of data with statistically identical features for the three

Figure 4. Effects of the choice of bandwidth on state identification: (a) initial 100 wear data from monitoring an engine, (b) clustering result with bandwidth D 0.3, and
(c) clustering result with a bandwidthD 0.2.

Figure 5. Images of representative wear debris in different stages: (a)–(c) running-in stage, (d)–(f) normal wear stage, and (g)–(i) severe wear stage.
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indicators. Data sharing the same converging center are
grouped as one cluster. The final clustering result is shown in
Fig. 6c.

Three clusters were identified from the wear data provided,
which agreed with the result from a qualitative inspection. The
categories of each initial image data are shown in Table 1.

As a probability-based nonparametric method of estimation,
the mean shift algorithm shows its superiority in robustness
while dealing with highly random wear process data, but its
reliability still depends on the choice of bandwidth. For a given
static process data, a predefined bandwidth can be accom-
plished by tentative measurements. In summary, this method
can identify wear samples from different states, but for dynamic
modeling such as online monitoring, a constant predefined
bandwidth is not suitable.

Dynamically modeling wear state evolution
by adaptive mean shift method

During real-time monitoring, the data set changes constantly
due to continuous incoming samples, so a dynamic modeling
approach to identify the wear state is needed. A dynamic wear
process consists of several stages with relatively steady features
in narrow time slots where being able to identify these wear
stage transitions is necessary in order to model the wear pro-
cess. Consequently, a dynamic adaptive mean shift identifica-
tion model has been developed.

Adaptive mean shift method
Practically speaking, dynamically modeling a wear process is
used to identify the current stage and determine a new stage, so
a binary-class method is needed here. Though online samples
appear randomly, wear state samples under a dominant wear
mechanism are essentially similar, which means that wear state
samples can be categorized into different stages according to
their similar mechanisms. With regards to the diversity of wear
stages in the whole process, an adaptive model is needed to
identify each stage by automatically adapting the model param-
eters to cope with the incoming samples.

In a typical wear process, the wear rate and particle size are
very diverse in the running-in and severe wear stages but have
a relatively serried distribution in the normal state. Accord-
ingly, when modeling the dynamic wear state process, the
sparseness of data at different stages varies and a fixed band-
width will create large errors in the results. Therefore, an adap-
tive bandwidth is needed to identify the developing wear
processes; this means that the model should adjust its parame-
ters and bandwidth dynamically to cope with fluctuations in
the wear data. A data distribution–based adaptive bandwidth
method was proposed by using a small bandwidth in dense dis-
tribution and a large bandwidth in sparse distribution (Coma-
niciu and Meer (22)), but this method means that a calculation
must be carried out whenever a new data center is formed, and
that would waste a large amount of computational resources. A
simplified method is therefore proposed to identify the wear
stages online.

The criterion for determining the bandwidth of a newly
identified stage is such that when a data category transits to a
new state, the average distance of these samples is calculated
with the following equation by using the newly emerged data,
such that

DD 1
C2
Ne

PNe
iD 1

PNe
jD 1 j xi ¡ xj j

� �
; [11]

where D denotes the average distance of all newly emerging
samples. The variable Ne denotes the number of emerged data.
Accordingly, a new and incoming sparse distribution would
introduce a large bandwidth and vice versa. The adaptive band-
width would change automatically according to the distribution
density of the samples obtained initially and would then remain
constant until another state is identified.

A sketch of an adaptive loop of the dynamic model is shown
in Fig. 7. This loop is designed to determine when a new state
has come and where all data in online sampling generally fall
into either normal or abnormal states. The loop is stopped until
an increasing trend of abnormal samples is suddenly identified,
and this indicates that a new state can be determined by all of
the candidates. In each loop, a static mean shift algorithm is
used to categorize all of the candidate samples into two types;
this categorization is repeated when the candidates are renewed
by a new incoming sample. A transition in the wear state is
regarded as occurring once a loop has stopped.

Specifically, the number of candidate samples is recorded
as Num_data and normal and abnormal samples are

Figure 6. Wear state clustering by mean shift–based modeling method: (a) normalized wear data, (b) mean shift clustering, and (c) state identification.

Table 1. State categories of the object images in Fig. 5 identified by the mean
shift.

Images in Fig. 5 (a) (b) (c) (d) (e) (f) (g) (h) (i)

Categories 1 1 1 2 2 2 3 3 3
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denoted as Num_1 and Num_2, respectively. At the begin-
ning of the loop the variables Num_data, Num_1, and
Num_2 are initiated to zero, and the value of Num_data
increases by one in the case of a new sample. The initial
point is the first sample in a sequence and it is set as a nor-
mal sample. Then the mean shift model with a fixed band-
width h starts to categorize all of the candidate samples and
the numbers of abnormal and normal categories are
counted. If the condition where Num_2 > 10 is satisfied, a
new wear state is identified with all normal samples and
those abnormal samples are carried into the next loop as
initial candidates. A new bandwidth is then calculated and
these initial candidates are adapted to the new wear state.

Monitoring the wear state with the adaptive
mean shift model
Having completed the dynamic modeling strategy for identify-
ing the wear state, the wear data obtained in the four-ball wear
test are processed to perform an online simulation. All of the
wear data contained in the three indictors are input into the
model one by one to imitate the online sampling process. The
mean shift model starts its calculation loop when each new
sample appears and determines a new wear state once the con-
dition is satisfied. Each wear state identified is marked as a clus-
ter, and with the increasing number of wear states in time, the
development of wear can be inferred. Figure 8 illustrates the
overall dynamic process of wear state identification with a
three-dimensional space composed of PLP, NUM, and IPCA.
As the number of input data increases continuously, adjacent
wear states are identified.

Figure 8 shows that the state center and sparseness of sam-
ples vary as the states develop. At the beginning of the monitor-
ing period, after five samples are categorized as the normal
state, a new state emerges, as shown in Figs. 8a–8b. These cate-
gorized samples are then removed and the identification pro-
cess continues, as shown in Figs. 8b–8c. A new state transition
is identified and a new data cluster emerges. Similarly, state
transitions also appear in the following groups as Figs. 8c–8d
and Figs. 8d–8e. To summarize, transitions in the wear state
are identified dynamically as the samples are continuously
incoming but note that the bandwidth adapts to cope with dif-
ferent states because it first experiences a decrement and then
increases, as shown in Fig. 9; this coincides with a typical
sequence of severe wear, normal wear, and severe wear.

To illustrate the overall development of wear stages over its
life span, the stage transitions are plotted together with varia-
tions in the bandwidth against the time axis as the value of b
shown in Fig. 9. Intuitively, the whole process consists of four
wear states with the transition times and corresponding band-
widths. More detailed information can be extracted as follows.

In this figure where the first state is marked with a red circle,
it is very transitory, so it is combined with the adjacent state as

Figure 7. Flowchart of a dynamic mean shift clustering process.

Figure 8. Identifying the wear stage with dynamic mean shift modeling: (a) initial stage, (b) second stage, (c) third stage, (d) fourth stage, (e) last stage, and (f) overall
stages.
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state 1, which is the initial wear state. During the 1,250 min of
running time, the running-in state accounts for about 200 min,
with 20 min in the initial stage and 180 min in the transition to
a new state. At around 800 min, the load changes from 1,500 to
2,000 N and, correspondingly, a new wear state transition is
identified as a response to further wear; after 1,200 min, a
severe wear state is reached. This observation reveals that more
wear states have been identified as well as the typical three-
phase wear process. The reason is that a wear state transition is
not only an indicator of natural wear but is also the result of
operating conditions.

Wear debris is generated directly from friction between
the two tribopair surfaces, features that can indicate that
wear has accumulated in the machine. On this basis, sur-
face information of the tribopair can be utilized as a paral-
lel indicator and as debris information to describe the
wear state. The mean shift–based modeling strategy has
proved capable of identifying the wear state transition over
a full lifetime, including information on wear debris.
However, the transition state is the result of mathematical
modeling, so to make this method more convincing, a
repetitive experiment is necessary.

As mentioned before, four wear states were identified and
the wear debris showed distinct features in different wear states;
accordingly, the wear surfaces will show different characteris-
tics. For the purpose of verification, four friction tests on the
same four-ball machine and same load condition were con-
ducted to obtain specific information about the surfaces of the
four corresponding wear states with specific test times. More-
over, experiments conducted over 2, 10, 15, and 21 h were
repeated. Information regarding the surfaces of the upper and
lower balls was collected by laser scanning confocal microscopy
(LSCM), as shown in Fig. 10. For simplification, only pictures
of one lower ball among each three were utilized.
Figures 10a–10d are LSCM images of the wear scar from the
upper ball, and Figs. 10e–10h are images of the lower ball.

As Fig. 10 shows, the scars on the upper and lower balls due
to wear have distinct features at different stages; in the first
stage, which refers to Figs. 10a and 10e, the diameter of the
wear area is only 1 mm, and there is an unworn area in the
wear area and the width of the scratch is remarkable; these are
typical features of the running-in stage. In the second stage,
which refers to Figs. 10b and 10f, the diameter of the wear area
has increased to 1.2 mm, there is no unworn area, and the

Figure 9. Overall development of wear stages in a full wear process.

Figure 10. LSCM images of the surfaces of balls from different states: (a) surface of upper ball after 2 h, (b) surface of upper ball after 10 h, (c) surface of upper ball after
15 h, (d) surface of upper ball after 21 h, (e) surface of lower ball after 2 h, (f) surface of lower ball after 10 h, (g) surface of lower ball after 15 h, and (h) surface of lower
ball after 21 h.
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scratches are thinner than in the first stage, which means that
the running-in stage is over and a new normal stage is begin-
ning. In the third stage after the load has increased
(Figs. 10c and 10g), the diameter of wear area has increased to
1.6 mm, and the scratch is more serried than the former one.
In the fourth stage, which refers to Figs. 10d and 10h, the diam-
eter of wear has increased to 2.4 mm and the scratches are
sparse but deeper and wider than in the former stage.

According to the LSCM images from four-ball tests carried
out with different time lengths and workloads, the surfaces of
the four balls were identified by mean shift modeling at differ-
ent stages and indicated distinct features and distinguishing
wear mechanisms. Therefore, the mean shift–based modeling
method can identify different wear states over the full lifetime
of a machine.

In summary, dynamic identification modeling can monitor
the natural transition of wear states and the transition states
due to changes in the working conditions. When this online
debris data are acquired, the wear mechanism transition can be
automatically described as being in a mathematical format,
which makes the use of artificial intelligence applicable. As a
result, there will be less dependence on human experience and
techniques and therefore this can be regarded as a practical and
reliable approach for monitoring wear-based conditions.

Conclusions

Wear states consisting of a full wear process and the develop-
ment of these wear states were reflected by the gradual degrada-
tion of machine performance. A mathematical characterization
of these dynamic variations was investigated for monitoring
the health of machines online. This article has focused on char-
acterizing the health of machines based on their wear mecha-
nism and then constructing a strategy to dynamically identify
and monitor wear states in real time. Three wear indicators,
including the percentage of area covered, number of particles,
and larger particle ratio of wear debris, were utilized to digita-
lize the wear state. Additionally, a mean shift–based identifica-
tion model was constructed to quantitatively classify and
determine particular wear state transitions over the full lifetime
of a machine. Finally, the model was verified with a set of wear
debris images acquired from a four-ball wear experiment. By
imitating an online sampling process with the wear data, a
detailed wear state transition and development was dynami-
cally identified. The corresponding distinct wear mechanism
was also verified via LSCM images. This modeling method can
provide a new method to monitor wear online based on evalu-
ating the development of wear over the life span of a machine.

However, this method cannot be regarded as a versatile
strategy for wear monitoring of machinery systems due to its
limitation in mechanism interpretation. Further work will be
conducted to make this work more industrially applicable.

Online monitoring requires all of the calculations to be
manually independent. However, adaptive as the bandwidth is
in this article, a manual initialization of bandwidth toward spe-
cific monitored machines is necessary to start iteration. Intelli-
gent theory can be involved to make this method more robust
in different situations.

Because debris images are a source of the origin of wear
information, accurate extraction of wear debris features is criti-
cal for reliable monitoring of the wear condition. However, due
to the limited resolution of the Complementary Metal Oxide
Semiconductor (CMOS), the performance of the debris sensor
is still unsatisfactory when the size of the wear debris is too
small. For a precision tribopair or mild wear, it is hard to
extract precise condition information. Therefore, hardware
amelioration should be conducted in future work.
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