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ABSTRACT
Wear state is an important indicator of machinery operation condition that reveals whether faults have
developed and maintenance should be scheduled. Among the available techniques, vision-based on-line
monitoring of wear particles in the lubricant circuit is preferred, where three-dimensional particle
characterizations can be obtained for wear mode analysis. This article presents the application of an
imaging system that captures wear particles in lubricant flow and the development of image processing
procedures for multiview feature extraction. In particular, a framework including background subtraction,
object segmentation, and debris tracking was adopted. Particle features were then used in a
comprehensive morphological description of wear debris. Experiments showed that the system is able to
produce a feasible and reliable indication of wear debris characteristics for machine condition monitoring.

KEYWORDS
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Introduction

Wear is one of the most inherent and noticeable phenom-
ena in machines with components in contact and relative
motion. The health status of a machine can therefore be
investigated by monitoring the degree of wear on the com-
ponents. However, this task often requires shutting down or
disassembling the machine, thus imposing additional opera-
tion costs as well as loss of production. On the other hand,
wear debris particles are produced during the wear process,
and these particles can be an indicator of the morphology
and degree of wear. Based on the fact that most machines
have a lubrication system and wear debris particles are car-
ried through the lubricant circuitry, on-line monitoring of
wear particles is possible by securing a representative fluid
sample for microscopic analysis, in particular, ferrography.
This vision-based technique is very attractive because it is
not necessary to interrupt the operation of the machine
(Kumar, et al. (1); Wu, et al. (2); Wang and Wang (3)).

Ferrography as a vision-based technique that is regarded as
an effective method for the estimation of wear particle concen-
tration as well as their characteristics (Zhang, et al. (4); Wang,
et al. (5); Li, et al. (6)). However, particle overlap is a commonly
reported issue with ferrography, making it difficult to examine
individual wear particles. Furthermore, because conventional
ferrography makes use of only single-view images, 3D particle
features cannot be conveniently provided. Thus, the necessary
spatial information, such as surface roughness and particle
thickness, is not available to fully study wear mechanisms and
reveal wear conditions with better precision (Yuan, et al. (7)).

Research efforts have also been directed toward extracting
particle features in 3D (Stachowiak and Podsiadlo (8); Tian,
et al. (9); Yuan, et al. (10); Podsiadlo and Stachowiak (11)).
Among these attempts, stereo scanning electron microscopy
(Stachowiak, et al. (12)), laser scanning confocal microscopy
(Peng, et al. (13); Peng and Tomovich (14)), and atomic force
microscopy (Wang, et al. (15)) were developed to acquire wear
debris contour and surface information. However, these meth-
ods either rely on a single view of static wear particles or
require manual extraction, which is often time consuming.

Real-time wear debris imaging has been advanced using
magnetic deposition sensors (Du and Zhe (16); Feng, et al. (17);
Cao, et al. (18)) and flow-free sensors (Murali, et al. (19); Fili-
cky, et al. (20)). Individual particles can be identified using
magnetic deposition with on-line visual ferrography, but it is
vulnerable to particle overlap and aggregation (Wu, et al. (21)).
Although the LaserNet Fines system resolves this problem by
employing a free flow cell (Spectro Inc. (22)), the extracted fea-
tures are not comprehensive because a single-view image is
used. In order to obtain a better description of wear characteris-
tics, a method based on 3D multiple views was proposed (Dan
(23)), where the particle volume could be estimated.

In order to realize on-line analysis of wear debris for
machine condition monitoring, a new approach is proposed. In
our previous work (Peng, et al. (24), (25)), a video acquisition
system was designed to capture dynamic images of moving par-
ticles. The purpose of this work was to develop a new solution
to dynamically extract wear debris morphological features. The
developed system adopts the visual ferrography principle and
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incorporates the multiview strategy to extract 3D features of
wear debris flowing in a lubricant circuit. Then with the use of
background subtraction, moving object segmentation, detec-
tion, and tracking (Meijering, et al. (26); Karasulu and Koruko-
glu (27)), multiview particles are identified and their 3D
features are determined.

The remainder of the article is organized as follows. In the
following section, the video system to acquire wear debris car-
ried in lubrication fluid is presented. Procedures developed for
moving particle segmentation, identification, and tracking are
detailed next. The proposed particle characterization approach
from multiview images is presented in the same section. The
next section describes the experiment, different types of test
sets of wear debris, and the resultant particle feature descrip-
tors. The advantages of this proposed approach in comparison
to existing methods are also discussed. The final section
presents our conclusion.

Wear debris image acquisition system

It is recognized that key spatial features of particles, such as
thickness, cannot be reliably provided by a single-view image
(Peng and Tomovich (14)). Thus, multiview images are neces-
sary to obtain a comprehensive description of a particle. To
this end, a video acquisition system was designed to capture
multiview images of wear particles when they are moving in a
lubricant flow. The wear debris image acquisition system is
depicted in Fig. 1.

For example, the imaging system is applied in capturing
debris generated from gearbox wear. In order to obtain particle
images from different viewing directions, a rectangular

lubricant flow path with sectional dimension of 6 £ 0.2 mm2 is
used to achieve laminar flow. While wear particles are moving
and rotating under the laminar condition, multiple views of
particles can be captured from different directions using a video
sensor. The sensor outputs a video stream at 50 fps. The video
frames are transferred to a computer as input for further proc-
essing to extract particle features. Details of the developed wear
debris identification and feature extraction techniques will be
presented later.

Particle identification and tracking

An illustration of a series of particle images taken is shown in
Fig. 2. As seen in the figure, the wear debris images were
acquired in different views when particles were moving within
the fluid flow. Thus, 2D morphological features of wear debris
can be obtained by processing these images individually. By
doing so, the on-line wear debris image analysis procedure is
simplified to processing a set of multiple static images to
acquire spatial information.

It can also be seen that there are often many particles
appearing in one frame image, making it difficult to detect
them. Furthermore, the same wear debris would appear in dif-
ferent shapes at changing locations and with various features in
different images. A reliable and efficient particle tracking
method therefore needs to be established before the wear fea-
tures of the particle can be effectively extracted. A flowchart of
the proposed approach is illustrated in Fig. 3.

As mentioned earlier, the image acquisition system captures
video frames and inputs them to a computer software program.
The developed image processing procedure serves two main

Figure 1. Principle of the proposed on-line wear debris image acquisition and monitoring system.

TRIBOLOGY TRANSACTIONS 409



purposes: to separate wear debris and to extract particle fea-
tures. To achieve these objectives, a five-step procedure is
adopted:

1. Conduct video sampling to obtain image frames using
the video acquisition system (Wear debris image acquisi-
tion system section).

2. Update dynamic background with consistent frames in
response to varied illumination (Dynamic background
update section).

3. Segment target particle from dynamic background to
obtain the wear debris of interest (Wear debris segmen-
tation section).

4. Track wear debris with different appearances in different
frames (Dynamic tracking of moving wear debris
section).

5. Extract wear debris features with different views (Feature
construction based on multiview images section).

Dynamic background update

A captured image would contain a background with wear debris
in the foreground. Separation of wear debris in a static image is
relatively easily accomplished by utilizing differences in gray val-
ues between wear debris and the background. In order to obtain
information on wear debris, object segmentation algorithms
were considered. To this end, automatic thresholding (Zhang,
et al. (28)) and background subtraction (Yang, et al. (29)) are
two common methods employed for object segmentation. The
automatic threshold segmentation method iteratively selects a
best threshold and then separates targeted particles based on the
derived threshold value (McHugh, et al. (30)). The advantage of
this method is its implementation simplicity when only one
image is used. However, two main problems are encountered
when applying threshold-based segmentation:

1. Low efficiency: The background in on-line images
changes continuously because of variations in illumina-
tion or fluid transparency. Thus, an automatic threshold
algorithm is required for each image for debris tracking.
This process greatly increases the processing time and
makes it unsuitable for use in on-line monitoring.

2. Low accuracy: Some inherent image characteristics, such
as blurring, reduce the contrast between the wear debris
and the background. Therefore, some backgrounds are
incorrectly recognized as wear particles. Such a misiden-
tification by the threshold method is illustrated in Fig. 4.
Some background areas enclosed by red lines are incor-
rectly identified as wear particles.

The purpose of background subtraction is to identify targets
using a preselected image, the so-called background image (Su,
et al. (31)). Wear particles can thus be separated by subtracting
the background. It is advantageous to use a series of sampled
images to reconstruct a background image closest to the current
background. In this work, the Surendra background updating
algorithm (Zeng, et al. (32)) was modified and employed for

Figure 2. Series of wear debris image frames: (a) Frame 20, (b) Frame 40, (c) Frame 60, (d) Frame 80, (e) Frame 100, and (f) Frame 120.

Figure 3. Flowchart of moving wear debris detection and tracking with multiple
images in different views.
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background reconstruction of on-line images. A four-step pro-
cedure is given below.

1. Store the first frame image, I0 (x, y), from the sampled
video.

2. Preprocess the frame I0 (x, y) to acquire an approximate
background image B0 (x, y), and then assign I0 (x, y) D
B0 (x, y).

3. Calculate the difference image Di (x, y) between the cur-
rent ith frame Ii (x, y) and the previous frame Ii¡1 (x, y)
and transform the difference image to a binary image
with a predefined threshold t1 according to the gray level
distribution. That is,

Di x; yð ÞD 1;

0;

j Ii x; yð Þ¡ Ii¡ 1 x; yð Þ j �t1

otherwise
;

(
½1�

where, i D 1, 2, …, Nmax; Nmax is the total number of video
frames.

1. 4.Update the background image Bi (x, y) based on the
binary difference image Di (x, y) according to

Bi x; yð ÞD Bi¡ 1 x; yð Þ;
aIi x; yð ÞC 1¡að ÞBi¡ 1 x; yð Þ;

Di x; yð ÞD 1

Di x; yð ÞD 0
;

(

½2�

where Bi (x, y) becomes the current background image and a is
a weighting factor in the range [0, 1]. Considering the fact that
the background would not change abruptly, the value of a is
conservatively set to 0.9. Bi (x, y) can thus be regarded as the
real-time background image of the ith frame.

In step 2, a preprocessing operation is employed to remove
the wear debris in the first frame image shown in Fig. 5a.
Hence, the time taken for background reconstruction process is
significantly reduced. The gray value of any pixel is denoted as
N 2 [0, 255] and the average gray value of pixels in a row is
denoted as M. If jN ¡ Mj> m (where m is the deviation and set
to 10), then set N D M. After processing all pixels with the
above procedure, an approximate background image is
obtained with decreased gray contrast.

The processed result is shown in Fig. 5b. It can be seen that
all wear particles were removed. Based on this, a real-time
background was constructed dynamically with steps 3 and 4,
and an example result using a series of 400 frames from the
sampled video is shown in Fig. 5c. The image displays a high
similarity with the average background shown in these on-line
images.

Wear debris segmentation

With a well-reconstructed background (see the final reference
image in Fig. 5c), wear debris in subsequent frames can be seg-
mented using the following procedures. First, the background
intensity is subtracted from a new frame containing wear
debris. Second, the resultant image is processed with binary
transformation and denoising; that is,

SiC 1 x; yð ÞD 0;

255;

j IiC 1 x; yð Þ¡Bi x; yð Þ j > t2

otherwise
;

(
½3�

where SiC1 denotes the segmented image after binarization of
the new image IiC1; t2 is a threshold that can be computed by

Figure 4. Wear debris segmentation result of Fig. 2a with an automatic threshold
method.

Figure 5. Dynamic background reconstruction of a series of on-line ferrograph frame images: (a) initial image, (b) reference image after preprocessing, and (c) final back-
ground image.
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using Otsu’s method (Otsu (33)). Finally, the output image is
obtained and illustrated in Fig. 6, from which it can be seen
that the wear particles are well segmented.

The background subtraction method has distinct advantages
in wear debris segmentation. It is able to maintain the wear
debris contour integrity and suppress noise residuals in the
image. Furthermore, the algorithm is self-adaptive to lumi-
nance variation in on-line wear debris images.

Dynamic tracking of moving wear debris

Due to the rotation and translation motion, wear particles
always show different appearances in different frames. There-
fore, it is necessary to track wear debris in individual frames. In
addition, having multiple wear particles in one image imposes
a challenge in distinguishing individual wear debris. There are
various methods for dynamic tracking of moving objects, such
as mean shift (Mazinan and Amir-Latifi (34)), Kalman filter
(Fu and Han (35)), and kernel-based object tracking (Yao, et al.
(36)). In this work, a centroid tracking method is adopted to
track wear debris by considering the following points:

1. A centroid is a point in the image having a statistical
average property and thus remains unchanged even
when the shape of wear debris changes.

2. A centroid is calculated based on a binary image; its
validity is independent of the original gray image.

3. Within the target area, defects such as holes or fractures
have little influence on the centroid value.

The centroid (xc, yc) of each identified wear debris is calcu-
lated separately using

xc D
X

xi
Np

; yc D
X

yi
Np

; iD 0; 1; :::; Np; ½4�

where xi and yi are coordinates of pixels segmented as a debris
patch, and Np is the number of pixels in the patch.

It is observed that the same particle is often imaged in two
sequential frames. The maximum distance moved can be calcu-
lated based on the controlled fluid flow rate and the exposure
time, which is used to define the radius of a detected circle. By
doing this, the same particle can be identified by searching for
the nearest centroid in two adjacent frames. The radius is very
small due to the short exposure time. If new particles appear
within the detected circle, they would be considered a larger
particles. Then the particle area changes significantly. In this
case, the adhesion particle is easily examined and its tracking
procedure will be stopped. Figure 7 shows an example of single
particle tracking, in which a large particle is identified and then
tracked. Furthermore, multiparticle tracking is accomplished
by extending the single-objective tracking algorithm described
above.

Feature construction based on multiview images

A multiview image contains more morphological information
than a single-view 2D image. This allows for spatial morpho-
logical features to be constructed based on the ASTM Interna-
tional Standard (F1877-05 (37)) guidance for wear particle
classification using the extracted 2D features. Basically, four 2D
morphological features, including major dimension (L), minor
dimension (W), area (A), and perimeter (P), can be extracted
from each single-view image. By using these fundamental
parameters, three indicators specific to wear debris identifica-
tion are calculated as follows:

1. Aspect ratio (AR): AR is the length-to-width ratio of
wear debris. It is applied to describe cutting wear debris.

ARD L
W

½5�

2. Equivalent circle diameter (ECD): ECD is defined as the
diameter of a circle with an area equivalent to the area of

Figure 6. Segmentation result of Fig. 2a using the background difference method.

Figure 7. (a)–(c) Three images selected from the result of single-particle tracking.
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the wear debris and has the unit of length. It is used to
denote the size of irregular wear debris.

ECDD
ffiffiffiffiffiffi
4A
p

r
½6�

3. Roundness (R): R refers to the shape of a particle with
regard to a circle. Roundness varies from zero to one in
magnitude, with a perfect circle having a value of 1.

RD 4A
pL2

½7�

Extracting spatial morphological parameters from 2D
images has been reported in other works (Mora and Kwan
(38)), in which thickness was found to be correlated linearly
with the projection area with a 2D view. Such a rough approxi-
mation is acceptable when only single-view images are avail-
able. In contrast, multiview images provide the shape and
surface information of wear debris in different views. Thus, it is
possible to extract and reconstruct spatial morphological fea-
tures. For example, particle thickness (T) can be set equal to
the minimum value of all minor dimensions of multiple images
captured from different directions. Hence, three spatial indica-
tors can be constructed as follows:

1. Spatial diameter (SD): SD is the maximum value of all
ECD values in multiview images. It reflects a spherical
equivalent diameter regardless of particle shape and
roughness. That is,

SDDmax ECDf g ½8�

2. Height aspect ratio (HAR): HAR is the ratio of the maxi-
mum dimension and thickness, which is employed to
distinguish laminar particles because they have a large
surface area but with a small thickness.

HARD Lmax

T
½9�

Hence, laminar particles have a greater HAR value than
other types including fatigue chunks and severe sliding particles
(Peng, et al. (13)).

1. 3.Sphericity (S): S is the indicator of a spatial profile
enclosing the particle and should be in the range [0, 1].
The larger the S value is, the more sphere-like the particle
is. According to Mora and Kwan (38), sphericity is calcu-
lated as

SD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WmaxT
Lmax

2
3

r
; ½10�

where Wmax and Lmax denote the two maximum values of all
minor and major dimensions of multiview images.

Experiments and results

To evaluate the effectiveness of the proposed method, two
experiments were carried out. The first one aimed at examining
the advantages of the proposed multiview imaging method by
inspecting individual moving particles. The second experiment
was designed to examine debris characterization using multiple
particles. Some particle samples were prepared with commer-
cial iron powder in a sieve size of less than 150 mm and the
others with a similar size were manually selected from the fric-
tion and wear tests. All lubricant samples were diluted with
gear lube to simulate lubrication samples from a gearbox. Using
iron powder with a known size range and morphological infor-
mation, the extracted particle features of this system could be
compared and verified. The video of wear debris was sampled
using the dynamic wear debris image acquisition system, with a
sampling rate of 50 fps in true color format and a resolution of
640 £ 480 (width £ height) pixels. Different views of moving
wear debris were captured and indexed before their features
were extracted by applying dynamic object detection and
tracking.

Experiment with single wear particle

To demonstrate that the developed system is able to image dif-
ferent types of wear particles with various features, three typical
wear particles, including sphere-, flake-, and fiber-like shapes,
were captured and their 2D and spatial morphological features
were extracted using a series of multiview images. The different
views of these three types of particles are shown in Figs. 8–10,
respectively. It can be found in these figures that the wear par-
ticles show different contours in different images due to their
physical motion.

Four basic and six constructed parameters were extracted
with each image and categorized as shown in Tables 1–3. In
addition, three newly constructed spatial parameters were
adopted to determine the types of particles.

The spatial features, described by the proposed parameters,
are able to provide additional information for wear particle
identification. It can be concluded from Tables 1–3 that the
spatial parameters can well characterize particle types as desig-
nated. For example, the sphericity of a sphere-like particle
(Fig. 8) has a high value of 0.84, which indicates a high spheri-
cal approximation. Similarly, a fiber-like particle, shown in
Fig. 10, has a high value of the height aspect ratio. Therefore,
the proposed spatial parameters can be adopted to distinguish
these typical wear particle types.

In addition to wear types, particle dimension is important
for wear condition characterization (Wu, et al. (39)). Therefore,
a dimensional parameter, spatial diameter, can be used to indi-
cate any changes in the wear condition. With the spatial param-
eters on size (T, SD) and shape (S, HAR) features, a
comprehensive characterization of wear condition can be
accomplished (Williams (40)).
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Experiment with multiple wear particles

In practice, a large amount of wear particles are produced con-
tinuously during a wear process. A series of image frames were
extracted from the sampled video, as shown in Fig. 11, to illus-
trate this phenomenon. Multiple particles can be analyzed at
the same time by utilizing the video acquisition and image
processing system.

The constructed spatial parameters together with the maxi-
mum values of the basic parameters were calculated to evaluate
the diversity of the particles, as shown in Table 4. It is observed
that most 2D parameters, such as Lmax, Wmax, and Amax, had a
large value range, which means that the imaged particles are

different in size. The variations in shape features, such as S and
HAR, are smaller than that of dimension features including T
and SD, as shown in Table 4. As mentioned above, S and HAR
can be used to identify the sphere-like and fiber-like particles.
Most particles captured in this experiment are close to a sphere;
thus, the variation in sphericity is very small. However, the
height aspect ratio parameter, HAR, shows a slightly larger vari-
ation than that of S. This is because the shape of debris No. 7 is
irregular in comparison to others, as shown in Figs. 11b–11d,
resulting in its HAR (2.97) being much larger than others.
These results demonstrate that 3D morphological information
extracted using the proposed approach makes wear debris char-
acterization and identification more reliable than that based on

Figure 8. (a)–(f) Image frames acquired from the video of a moving sphere-like particle.

Figure 9. (a)–(f) Image frames acquired from the video of a moving flake-like particle.
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Figure 10. (a)–(f) Image frames acquired from the video of a moving fiber-like particle.

Table 1. Parameters of the sphere-like wear debris extracted from multiview images in Fig. 8.

Basic parameters Constructed parameters

Two-dimensional Three-dimensional

Image L (mm) W (mm) A (mm2) P (mm) AR ECD (mm) R T (mm) SD (mm) S HAR

(a) 123.42 114.50 3,961.37 261.71 1.08 71.02 0.33 80.30 71.02 0.84 1.56
(b) 121.93 80.30 2,911.55 227.51 1.52 60.89 0.25
€ 123.42 83.27 3,015.64 231.97 1.48 61.96 0.25
(d) 120.45 99.63 3,487.02 251.30 1.21 66.63 0.31
(e) 123.42 90.71 3,284.78 233.46 1.36 64.67 0.27
(f) 124.91 111.53 3,909.32 255.76 1.12 70.55 0.32

Table 2. Parameters of the flake-like wear debris extracted from multiview images in Fig. 9.

Basic parameters Constructed parameters

Two-dimensional Three-dimensional

Image L (mm) W (mm) A (mm2) P (mm) AR ECD (mm) R T (mm) SD (mm) S HAR

(a) 114.50 101.12 3,616.38 255.76 1.13 67.86 0.35 52.05 76.33 0.65 2.77
(b) 121.93 71.38 2,554.67 248.33 1.71 57.03 0.22
(c) 129.37 52.05 2,075.85 227.51 2.49 51.41 0.16
(d) 135.32 86.25 3,287.76 261.71 1.57 64.70 0.23
(e) 144.24 108.55 4,575.50 309.30 1.33 76.33 0.28
(f) 133.83 69.89 2,447.60 248.33 1.91 55.82 0.17

Table 3. Parameters of the fiber-like wear debris extracted from multiview images in Fig. 10.

Basic parameters Constructed parameters

Two-dimensional Three-dimensional

Image L (mm) W (mm) A (mm2) P (mm) AR ECD (mm) R T (mm) SD (mm) S HAR

(a) 502.61 53.53 9,134.64 767.29 9.39 107.85 0.05 35.69 107.85 0.20 14.08
(b) 486.25 47.58 6,618.64 747.96 10.22 91.80 0.04
(c) 475.84 35.69 5,485.54 706.33 13.33 83.57 0.03
(d) 495.17 37.18 6,014.92 734.58 13.32 87.51 0.03
(e) 495.17 38.66 6,465.48 749.45 12.81 90.73 0.03
(f) 489.22 35.69 6,463.99 762.83 13.71 90.72 0.03
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2D features only. More significant, a large amount of particles
can be sampled in on-line monitoring of a running machine,
and the statistical distribution of wear debris can be provided
for reliable condition monitoring.

Discussion

It is difficult to obtain 3D characteristics for on-line wear
debris analysis because spatial information cannot be

extracted from 2D images. At present, there are two on-line
systems similar to the one described in this work. They are
on-line visual ferrography (Wu, et al. (41)) and LaserNet
Fines (Spectro Inc. (22)). However, these systems possess
some limitations compared to the system developed in this
work. The on-line visual ferrograph sensor uses magnetic
force to attract wear debris in fluid flow to a plane surface
to capture particle images. This results in chain patterns of
wear debris and it is difficult to extract features of individ-

Table 4. Parameters of all captured wear debris in Fig. 11.

Basic parameters Constructed parameters

Two-dimensional Three-dimensional

Wear debris number Lmax (mm) Wmax (mm) Amax (mm
2) Pmax (mm) ARmax Rmax T (mm) SD (mm) S HAR

1 89.22 63.94 1,692.21 166.54 1.39 0.27 53.28 46.41 0.73 1.82
2 62.45 53.53 1,147.96 136.80 1.17 0.37 48.43 38.23 0.80 1.70
3 87.73 59.48 2,081.80 184.39 1.47 0.34 52.48 51.49 0.77 1.47
4 66.92 52.05 1,460.23 150.19 1.29 0.41 48.58 43.12 0.73 2.03
5 44.61 31.23 575.47 93.68 1.42 0.38 24.02 27.06 0.72 1.91
6 101.12 65.43 2,023.81 215.62 1.53 0.25 60.75 50.76 0.70 1.87
7 86.25 38.66 1,009.67 160.60 2.21 0.17 30.18 35.86 0.53 2.97
8 220.08 163.57 12,150.28 452.05 1.35 0.32 142.50 124.38 0.78 1.58
9 104.09 65.43 2,334.59 200.75 1.60 0.27 54.96 54.53 0.68 1.96
10 115.99 102.60 3,347.24 249.82 1.13 0.32 96.09 65.28 0.80 1.73
11 83.27 56.51 1,424.55 166.54 1.48 0.26 52.90 42.60 0.72 1.84

Figure 11. (a)–(i) Series of selected frames with multiple wear particles sampled from a manual fluid sample in a time span of 16 s.
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ual particles. Moreover, the LaserNet Fines system only pro-
vides particle information from a single view and imposes
challenges in extracting 3D features. On the other hand,
multiview images are able to provide spatial morphological
information on both 2D and 3D characterization features.
More significant, 3D morphological information extracted
using the proposed approach makes it more reliable for
wear debris identification. The particle size and shape,
together with the particle concentration as a wear rate indi-
cator, can reflect wear condition stages as well as the evolu-
tion of machine wear states. In order to improve the
multiview method, accuracy of analysis can be increased by
employing a larger set of imaged wear particles in terms of
acquiring the video in a higher frame rate.

It should be mentioned that wear debris images are
directly captured from lubricating fluid; thus, the transpar-
ency of a lubricant is one of the key points to obtaining
clear images. Therefore, the proposed method is mainly
suitable for gearbox condition monitoring because the
transparency of gearbox fluid is higher than that of some
other machines; for example, diesel engines. This is why all
experimental particles are simulated to be gearbox lubricat-
ing samples. Though the lubricant fluid samples are manu-
ally prepared, the presented 3D feature extraction approach
still has potential value in engineering applications when
the system is connected to a gearbox lubricant circuit.

Conclusion

This article has presented a method to detect dynamic particles
in different views to obtain 3D features for on-line wear moni-
toring. A video acquisition system was used to capture dynamic
images of rotating particles in the form of multiview images.
The particles in different image frames were successfully identi-
fied by making use of an integration of background subtraction
and centroid tracking. Experimental results demonstrated that
there is a high variation in particle features, which leads to the
conclusion that multiview images are able to provide more reli-
able and comprehensive information of wear debris than a sin-
gle-view image in terms of their spatial morphology.
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