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Abstract—Lubricating oil carries the primary wear failure 

information of the critical tribological components, therefore, 

severs for the condition-based maintenance of equipment. 

However, the oil condition assessment presents low reliability due 

to the uncertainties originating from the variable working 

conditions and the redundant indicators. To address the 

uncertainties with multiple indicators, a knowledge-guided three-

layer model is established for characterizing the multi-attribute oil 

state. Further, data dispersion is considered by assigning fuzzy 

probability among the attribute layer. The inconsistent decisions 

are solved by improved evidential reasoning embedding inference 

rules in the state layer. The effectiveness of the proposed approach 

is verified using the real-world lubricant oil monitoring data from 

vehicle engines. 

Index Terms—oil condition assessment, expert system, evidential 

reasoning, uncertainty. 
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I. INTRODUCTION 

UBRICATING oil is used to reduce friction and wear in 

mechanical parts. The information contained in the oil is a 

direct indicator of the machine’s operation conditions [1]. 

Hence, oil condition assessment (OCA) provides the first-line 

defense for detecting early deterioration to prevent potential 

equipment failures [2]. However, variable working conditions 

and redundant indicators in off-line inspection often cause 

irregular data dispersions and inconsistent decisions. These 

unavoidable uncertainties in the monitoring often generate the 

root of low reliability for traditional models in OCA. 

To comprehensively characterize the oil degradation, various 

indicators are inspected from different oil attributes, including 

oxidation, pollutant content, metal element content, and 

additive content et al. [2]. With continuous samples, the 

variations of these indicators can be modeled jointly or 

independently by principles of the data sequence. Such models 

have been adopted dominantly so far [3],[4] in preventive 

maintenance. However, some intrinsic limitations are 

accompanied throughout. First, the dispersions of data series 

are frequently encountered because machines often work under 

variable conditions. Hence, significant errors are often 

produced for data-driven models. On the other hand, 

inconsistent decisions cannot be avoided among dozens of 

indicators without the coupling knowledge [5]. Thereby, the 

redundant information is involved as the disturbances for the 

final decision [6]. 

Several methods have been proposed to handle uncertainties 
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and can be classified into two types: data-driven and model-

based methods. To describe the data dispersions, Liu [7] 

introduced the random noise of Brownian motion to simulate 

the stochastic dispersions based on the equilibrium 

concentration of particles in the lubricating oil. Moreover, Ian 

[8] demonstrated that probabilistic reasoning methods could 

effectively characterize the inevitable uncertainties with 

sparsity in off-line oil data. Furthermore, amounts of 

probabilistic methods have been applied, such as Bayesian 

probability [9], belief network [10], and fuzzy logic [3]. 

However, the data-driven methods lack interpretability due to 

the complex nature and unknown mechanism. Some 

researchers attempted to trace the uncertainty using model-

based methods. For example, Wang [9] characterized the 

effects of internal and external variables in the stochastic 

process, modelling the oil uncertain state. Valis [11] proposed 

a joint stochastic diffusion process and fuzzy approach instead 

of deterministic models to detect stochastic errors in OCA. 

Nevertheless, oil degradation is a gradual process with the 

interaction of different attributes. It is hardly practical to 

characterize the oil state accurately with a single or few 

attributes. Further, another uncertainty in multi-attribute OCA, 

inconsistent decisions due to redundancy, needs to be resolved. 

The introduction of additional knowledge, such as additional 

data or experience [12], is a viable solution to mitigate the 

uncertainties in multi-attribute OCA. Evidential reasoning (ER), 

based on Dempster-Shafer (D-S) theory [13], is effective for 

handling uncertainty in multi-attribute making-decision. 

Evidence constructed with multi-attributes can provide a more 

comprehensive representation of oil nature. Moreover, it can 

accommodate a broader range of uncertainty by including the 

fuzzy belief structure based on plausibility [14]. However, 

inconsistent decisions of different attributes still exist. 

Therefore, more profound inspection should be involved, e.g., 

expert systems (ES) [15]. 

Addressing the above uncertainties and viable solutions, a 

knowledge-guided model for OCA is proposed. Interaction 

mechanism is considered for building a three-layer model. To 

quantify the uncertainties, the distributed fuzzy membership is 

assigned between adjacent layers to form the basic probability 

assignment (BPA) of ER. By this, the quantified uncertainty is 

obtained from the multi-attribute decision with ER. Further, 

expert knowledge is used to guide the reasoning for treating 

inconsistent decisions. The major contributions are summarized. 

1) A three-layer structure including indicator-attribute-

state is proposed for OCA based on the oil 

degradation mechanism. 

2) The uncertainty arising from data dispersion is 

quantified with the probability assignment in ER. 

3) A modelling strategy that introduces expert 

knowledge for rule inference is proposed, where 

inference rules are combined by ER to solve 

inconsistent multi-attribute decisions. 

The rest of this paper is organized as follows. In section 2, the 

related methods are illustrated. In section3, the knowledge 

guided model is introduced. Verifications of the proposed 

model are described in Section 4. Section 5 contains the 

conclusion. 

 

II. RELATED METHODS 

In this section, related methods for uncertainty treatment have 

been illustrated, mainly involving the fuzzy membership 

assignment and D-S theory. 

A. Fuzzy membership assignment 

Fuzzy evaluation is used to characterize the data dispersion. 

The data series can be correlated with the oil state via 

membership functions. 

Considering the long-duration and gradual degradation 

process, the state grade is defined as the quantified index 𝐻𝑐  to 

categorize the full span. Here, c is the number of the current 

state grade with its maximum of N. Referring to the 

maintenance strategy of OCA of the target machine, N is set as 

5, corresponding to the grades as {excellent,

good, average, poor, serious} . Let {𝑎𝑖1, ⋯ , 𝑎𝑖𝑗}  be the oil 

indicator set, and an oil state level 𝐻𝑐  is treated as a fuzzy set 

𝜇𝐻𝑐
(𝑎𝑖𝑗) , which denotes the possibility that 𝑎𝑖𝑗  belongs to 

𝐻𝑐 .Then the state is characterized by a membership function 

𝜇𝐻𝑐
(𝑎𝑖𝑗) ∈ [0,1]. 

Normalization is adopted considering the different effects of 

the indicators on oil degradation. The indicators with positive 

effects, such as additive content, total base number (TBN), are 

called the value indicators. Other indicators are named cost 

indicators. �̅�𝑖𝑗 denotes the normalized value for 𝑎𝑖𝑗 , that is, 
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where 𝑎𝑖𝑗0 and 𝑎𝑖𝑗𝑔 are the initial and failure value of the full 

range dataset, 𝐼1  represents the value-type indicator set, 𝐼2 

represents the cost-type indicator set. 

Let 𝜇𝐻𝑐
(�̅�𝑖𝑗)  be the membership of the normalized data �̅�𝑖𝑗  

that belongs to the state 𝐻𝑐 , 𝑐 = 1, ⋯ , 𝑁. It can be computed 

from the fuzzy membership function as in Eq. (2), 
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where 𝜇  and 𝜎  are respectively the mean and variance of 

Gaussian function, which are setting in parameters optimization. 

�̅�𝑖𝑗  is the normalized indicator data of Eq. (1), and  𝜇𝐻𝑐
(�̅�𝑖𝑗) 

represents the state membership possibility of monitoring data 

𝑎𝑖𝑗 .  
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B. D-S theory reasoning 

To quantify the uncertainty, D-S theory is applied for multi-

attributes decision-making in OCA [16]. Two parameters for 

measuring information, a belief measure (Bel) and a plausibility 

measure (Pl), are defined as: 
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where 𝑚(𝐴𝑖) is BPA of the evidence 𝐴𝑖 , which indicates the 

degree of the belief in attribute 𝐴𝑘 ; 𝑃𝑙(𝐻 ) represents the 

plausibility that the oil state level members to 𝐻 and can be 

described as, 

 

   1 ,Pl H Bel    (4) 

 

where 𝛩 denotes the complement of 𝐻; 𝐵𝑒𝑙(Θ) represents the 

portion that uncertainty with evidence 𝐴𝑖 , and the degree of 

uncertainty can be measured by it; The interval [𝐵𝑒𝑙(𝐻), 𝑃𝑙(𝐻)] 

is used to describe the decision confidence. 

III. KNOWLEDGE GUIDED MODEL CONSIDERING 

UNCERTAINTIES 

A. Three-layer structure modelling with multi-attribute 

Essentially, lubricating oil degradation is the combined effects 

of the chemical and physical attributes. For OCA, indicators are 

often not traced to the attributes in monitoring. Accordingly, a 

three-layer structure of indicator-attribute-state is constructed 

for a comprehensive understanding of the degradation 

mechanism. Considering the uncertainty of data dispersion, a 

membership function is adopted. Similarly, attribute 

membership is determined with the associated indicators. The 

oil state can be reasoned by ER algorithm, and the membership 

of each attribute provides a BPA as the evidence. 

The terminologies are defined as follows: 

1) The state level is defined as grade set: 𝐻 =
{𝐻1, ⋯ , 𝐻𝑐}, 𝑐 = 2, ⋯ , 𝑁, where N is the number of 

oil grades. 

2) The attribute set 𝐴 = {𝐴1, ⋯ , 𝐴𝑖}, 𝑖 = 2, ⋯ 𝑟, where r 

is the number of attributes. 

3) The indicator set is denoted as {𝑎𝑖1, ⋯ , 𝑎𝑖𝑗} , 𝑗 =

2, ⋯ 𝑔, where g is the number of indicators of the i-th 

attribute.  

4) The weight of the indicator set {𝑤𝑖1, ⋯ 𝑤𝑖𝑗}. 

5) The weight of the attribute set {𝑊1, ⋯ , 𝑊𝑖}. 

6) The weight of rule set {�̃�1, ⋯ , �̃�𝑘} , 𝑘 = 2, ⋯ 𝑛 , 

where n is the number of rules. 

In the indicator layer, each indicator is used to match the pre-

set state level with fuzzy evaluation. In the attribute layer, the 

membership of an attribute is a combination of the 

corresponding indicators. In the state layer, the above attribute 

evidence determines the oil state by ER. This process is 

illustrated in Fig. 1. 

 

 
Fig. 1  Three-layer modelling structure in OCA. 

 

The essence of the modelling is ER. Based on the D-S theory, 

the oil state is deduced by ER from the indicator-to-attribute. 

Two connections are involved: the fuzzy evaluation of the 

associated indicators provides the assessment for the 

corresponding attribute. Besides, the decision of the oil state is 

reasoned from attributes as distinctive pieces of evidence. 

ER is used to handle uncertainty with multi-attribute decision-

making, for instance, two attributes 𝐴1 and 𝐴2 belonging to a 

level 𝐻 can be calculated as follows, 
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where 𝐻(𝐴1) and 𝐻(𝐴2) represent the focal elements in state, 

∑ 𝐴1𝐴2𝐻(𝐴1)∩𝐻(𝐴2)=∅  denotes the uncertainty degree in 

combination, ⊕ means the combination operator. 

The quantity of belief assignment for the uncertainty 𝑚(2)(Θ)is: 
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Besides, the comprehensive oil state can be obtained by 

aggregating multiple attributes as evidence and uses the 

orthogonal sum to combine multiple attributes as 𝐴1 ⊕ 𝐴2 ⊕
⋯ ⊕ 𝐴𝑟 . The recursive ER can be expressed with multi-

attributes of multiple states [19]. Suppose that any state level 

𝐻𝑐  of two adjacent attributes performs evidence combination, 
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Evidence combination on 𝑟  attributes yield the following 

recursive formula: 
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Similarly, the two parts of 𝑚(1,𝑟)(𝛩)  after evidence 

combination: the assignment probability �̃�(1,𝑟)(𝛩)  due to 

incomplete evidence and the assignment probability �̅�(1,𝑟)(𝛩) 

due to incomplete weight assignment, can be obtained. 
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Since the distribution of information in the evidence synthesis 

is complete, the following equivalence is constructed, 
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The value of K is obtained by solving the equation: 
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The following assignments of probabilities after composition 

can be obtained. 
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In the recursive ER, the unknown parameters 𝑚𝑖(𝐻𝑐), which 

is defined as BPA in ER, needs to be computed. To construct 

the BPA, namely 𝑚𝑖(𝐻𝑐), the membership of corresponding 

indicator is obtained by Eq.(2). The membership of each 

attribute to the states can be defined with the joint possibility of 

the associated indicators. With the assigned weights for the 

indicators, the joint membership for the i-th attribute can be 

defined as: 

 

    ,
ci c ij H ij

M H w a  (13) 

 

where 𝑤𝑖𝑗 is the weights of the indicators in the i-th attribute 

needed to be optimized. 

To assign the uncertainty in ER process, a correction factor 𝛼𝑅 

indicates that each evidence has the unknown portion, whose 

value needs to satisfy Eq.(14), 
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where 𝑤𝑖  is the weights of the attributes, 𝛿  is a sufficiently 

small non-negative real number denoting the decision 

uncertainty [17]. To satisfy the above constraint 𝛼𝑅 is assigned 

by the decision-maker as 0.9 [18]. 

To define the uncertainty of the attribute, the relative corrected 

BPA are modified according to Eq.(15), 
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Finally, the comprehensive assessment of oil state can be 

obtained by Eq. (12). In that case, two quantitative indicators 

are computed, namely belief degree 𝑚(𝑟)(𝐻𝑐) and uncertainty 

degree 𝑚(𝑟)(Θ) . Where 𝑚(𝑟)(𝐻𝑐)  denotes the aggregated 

probability assignment that the oil state is characterized as 𝐻𝑐 , 

and 𝑚(𝑟)(Θ) measures the degree of uncertainty by r pieces of 

evidence. 

B. Knowledge embedding in the three-layer structure 

Based on the fuzzy membership assignment of the oil attribute 

in FER, each attribute as evidence can be linked to a probability 

assessment. However, insufficient evidence is unavailable to 

ensure reliable assessment, mainly indicated as uncertainty is 

too large for decision-making. To reduce uncertainty, a rule 

base with expert knowledge is applied to handle inconsistent 

attribute assessment. In addition, multiple rules in modeling 

instead of inconsistent attribute evidence further eliminate 

decision uncertainty. Based on this strategy, an improved model 

(abbreviation as FERIES) is illustrated in Fig. 2. 

 

 

Fig. 2  The flowchart of FERIES. 
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In FERIES, limited pieces of evidence are orthogonally 

combined into multiple rules. Then the inference is made on 

each rule based on the prior expert knowledge, which is 

originated from two parts: the expertise and standard for the oil 

state judgment and the training samples in parameters 

optimization. Therefore, the combination of multiple rules 

compensates for the inconsistent assessment in ER. 

Practically, the k-th inference rule is formed as follow. 

 

IF: 𝐴1
𝑘 is 𝐻1 and ⋯ and 𝐴𝑟

𝑘 is 𝐻𝑁, 

THEN:{(𝐻1, 𝑚1
𝑘(𝐻1)) , ⋯ , (𝐻𝑁 , 𝑚𝑟

𝑘(𝐻𝑁)), (Θ, 𝑚𝑘(Θ))}, 

 

where 𝐴𝑖
𝑘(𝑖 = 1,2, ⋯ , 𝑟)  is the attributes in the k-th rule, Θ 

represents the uncertain information without evidence, 𝑚𝑘 

represents the probability assignment in the k-th rule. 

An orthogonal rule is developed based on expertise and 

standard for OCA. Each of rules contains the assessed level 𝐻 

and uncertainty Θ. A non-zero probability is assigned to any 

state level to prevent the zero-belief paradox in the evidence 

combination. 

The activation weight �̃�𝑘  should be incorporated with the 

membership assignment, in which �̃�𝑘 of the k-th rule is, 

 

 

 

1 1

1 1 1

,

N r k

i cc i
k

n N r k

i ck c i

M H
w

M H

 

  


 

  
 (16) 

 

where N is the number of states, r is the number of oil attributes, 

n is the number of inference rules,  𝑀𝑖
𝑘(𝐻𝑐) is the membership 

of the i-th attribute as a member of 𝐻𝑐  in the k-th rule. 

It should be noted that the multi-attribute of oil is combined in 

FER, while FERIES is aimed at the inference rules instead of 

the limited attributes. Two factors ensure the reduction of 

uncertainty: the more knowledge with rule base and the more 

evidence from rules. 

The combination of the inference rules is taken by Eqs. (7)-(12) 

to obtain the comprehensive assessment. 

The definition of the BPA for inferential results should be 

considered based on the activation weight of the rule. Similar 

to FER, the BPA of each rule is assigned as, 
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where max(�̃�𝑘)  denotes the maximum weight in the 

activation weights, 𝑀𝑖
𝑘(𝐻𝑐) represents the membership in the 

k-th rule. 

C. Parameter and decision optimization 

Parameter optimization includes two parts: the determination 

of state grades and the setting of parameters. The optimization 

strategies are construed with training samples.  

To determine the state grades {𝐻1, ⋯ , 𝐻𝑁}  with the oil 

indicators {𝑎𝑖1, ⋯ , 𝑎𝑖𝑗},  several intervals can be categorized 

as{[𝑎0, 𝑎1], (𝑎1, 𝑎2], ⋯ , (𝑎𝑐−1, 𝑎𝑐], ⋯ , (𝑎𝑁−1, 𝑎𝑁]}, where 𝑎𝑐 is 

the boundary of the corresponding state grade. Generally, the 

above categorization may vary for different oil indicators 

considering the different ranges. Therefore, the 𝑎𝑐  should be 

determined independently for each indicator by optimization. 

Currently, the Receiver Operating Characteristic (ROC) curve 

is adopted as the optimization accordance [20]. The optimal 

boundary is selected from all possible interval boundaries based 

on the maximum Youden index point [21] located at the upper-

left of the ROC. Thus, the primary classification can be 

accomplished by labelled data training. 

To set the parameters in modelling, the optimal parameters are 

searched by the optimization algorithm. The optimization 

includes two types of parameters, 1) the weights 

including 𝑊𝑖 , 𝑤𝑖𝑗 , �̃�𝑘, and 2) the mean 𝜇 and variance 𝜎2 in Eq. 

(2). The constraints of the parameters are constructed: 
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The labelled samples with known states are used as the training 

set, and the gradient descent or PSO algorithm [22] is applied 

to optimize the parameters. 

Finally, with the optimal parameters, a decision-making 

criterion for ER is defined as,  
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 (19) 

 

where 𝑚(𝑟)(𝐻𝑁1)  is the maximum combined probability 

assignment for state 𝐻𝑁1 , 𝑚(𝑟)(𝐻𝑁2)  is the second most 

combined probability corresponding to the state 𝐻𝑁2, 𝑚(𝑟)(Θ) 

is the measured probability for uncertainty. The threshold value 

ε0 and ε1 are set based on experiment and expertise. For example, 

ε0=0.01 and ε1=0.04 are feasible settings [18]. Consequently, 

𝐻𝑁1 that satisfies the constraints is the oil state. The properties 

can be summarized as follows: 

1) The assessed oil state should have the maximum 

combined probability assignment and should be 

greater than that of other states by a certain threshold 

휀0. 

2) The measured probability for uncertainty should be 

less than a threshold 휀1. 
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IV. CASE STUDY 

To identify the uncertainty in oil states, the selected case 

includes a group of oil monitoring data with multiple attributes. 

The selected oil samples are periodically collected from real-

world operating vehicles. 

A. Procedures 

The procedure of OCA includes:  

Step1: Match the measurements with indicators to their 

corresponding states. Set the interval and parameters 

with the training samples optimization. 

Step2: Obtain the indicator membership with the fuzzy 

approach. Weight indicators with the same attribute 

to obtain the membership of the oil attribute. 

Step3: Formulate the rule base for oil state inference based 

on expert knowledge, then construct multiple rules 

with attributes as antecedents of the rule. 

Step4: Combine the activation rules with FER to obtain a 

comprehensive assessment. Obtain the maximum 

probability assignment 𝑚(𝑟)(𝐻𝑐)  and the suitable 

uncertainty of the oil state as the output. 

The implementation flowchart is shown in Fig. 3.  

 

  

Fig. 3  Flowchart of state assessment by FERIES 

 

B. OCA for loaders  

As the most convincing evidence, real data experiments are 

necessary for our method in the paper. The real oil data is from 

the OCA project of a construction machinery company. The 

case is derived from the oil condition monitoring of the loader’s 

hydraulic system. For two years, hydraulic oil was sampled 

regularly on the six loaders under different working conditions 

and operating environments. This project aims to establish 

intelligent OCA for preventive maintenance of loader 

machinery under various operating conditions. Ten indicators 

with failure thresholds are adopted according to the test 

specification for hydraulic oil. From the examination for each 

oil sample, five indicators with the highest weights are selected 

for further evaluation.  

The indicator set {𝑎11, 𝑎12, 𝑎21, 𝑎22, 𝑎31}  includes viscosity, 

TAN, particle number, Fe content, and zinc content. The 

attribute set {𝐴1, 𝐴2, 𝐴3} is formed, where 𝐴1 represents the oil 

physicochemical attribute, 𝐴2 represents the pollution attribute, 

𝐴3  represents the oil additive attribute. The setting of 𝑎𝑖𝑗𝑔 

refers to the criterion [23] and 𝑎𝑖𝑗0 is set as the value of new oil. 

The state set is defined as 𝐻 = {𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5} 

corresponding to the state set {excellent,
good, average, poor, serious}. 36 oil samples were collected as 

shown in Fig. 4. 

 

 

Fig. 4  The original oil data with five indicators 

 

With the training samples shown in the literature [22], the 

weight sets of indicators and attributes are set as 

{0.42,0.58; 0.59,0.41; 1} and {0.41,0.30,0.28}. Moreover, the 

ROC curves are used to determine the boundaries of the 

indicators, as shown in Fig. 5. With the well training model, the 

proposed methods are adopted for verification with 36 oil 

samples. 

 

Fig. 5  The ROC determination for boundaries of Fe indicator 

 

Furter, the 36 oil samples collected from the hydraulic system 

are processed by FER and FERIES. The assessments of three of 

these samples are shown in TABLE I. The accuracy of the FER 

 Divide oil data into different attributes.

 Formulate the state for assessment with ROC curve.

 Normalize the oil monitoring data by Eq. (1).

 Belief and uncertainty degree calculation using Eq. (15) .

 Parameters optimization with the constraint in Eq. (18).

 Decision-making based on Eq. (19).

 Membership calculation by Eq. (2).

 BPA initialization with Eq. (7).

 BPA correction with Eq. (9).

 Construct the rule base for oil inference.

 Compute the activation weight of rules by Eq. (16).

 Define the BPA by Eq. (17).
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method presents poor performance without considering 

evidence conflict. The 𝑚𝑟(𝛩) in samples 1 and 3 exceeds the 

threshold in FER, which means the unachievable assessment. 

 
TABLE I 

THE RESULTS OF OCA WITH FER AND FERIES 

Method No. 𝑚𝑟(𝛩) 𝑚(𝐻1) 𝑚(𝐻2) 𝑚(𝐻3) 𝑚(𝐻4) 𝑚(𝐻5) 

FERIES 1 0.01  0.01  0.01  0.89  0.07  0.01  

FER 1 0.05  0.11  0.22  0.10  0.00  0.53  

FERIES 2 0.00  0.00  0.01  0.95  0.03  0.00  

FER 2 0.03  0.07  0.53  0.00  0.00  0.36  

FERIES 3 0.00  0.00  0.00  0.02  0.93  0.04  

FER 3 0.05  0.00  0.13  0.13  0.18  0.51  

 

Uncertainties in OCA are effectively detected, as shown in Fig. 

6. In FER, the uncertainty, arising from inconsistent attribute 

assessment, has exceeded the threshold specified in Eq. (19). In 

FERIES, the evidence is enhanced by the introduction of expert 

knowledge, and smaller uncertainties are obtained based on 

FER, indicating that a reduction in uncertainty is effectively 

achieved using FERIES method. 

  

Fig. 6  The uncertainty detection with FER and FERIES methods 

 

The assessments are shown in Fig. 7 with two methods. It can 

be seen that FERIES presents higher accuracy and consistency 

with real value, which has been assessed based on expert 

knowledge. The discrepancy between the FERIES and the real 

values is mainly manifested in the inconsistency of adjacent 

intermediate states (H2, H3, H4), which has less impact on the 

failure determination. On the other hand, the error in the FER 

decision is mainly expressed in the incorrect detection of the 

invalid state H5, which may lead to Type I errors [24], namely, 

incorrectly determining the failure state. The essence is that a 

single indicator failure is considered in the formulation of the 

rule. That is, the rule consequent is determined as a failure if 

anyone indicator exceeds the threshold. Thus, the risk of local 

failure for maintenance is avoided. 

 

   

Fig. 7  The assessed comparison with FER and FERIES 

 

C. Performance evaluation 

Accuracy is a common and critical criterion to assess 

performance. However, accuracy itself is insufficient since high 

accuracy may give low consistency. Therefore, the accuracy 

rate (A) and the consistency rate (C) should be considered in 

OCA. The rates A and C are computed by Eqs. (20) and (21) 

[25], 
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where 𝑇𝑠𝑝  is the total number of samples with successful 

assessment and Ttc is the total number of samples, 𝑃𝑖  is the 

number of the i-th state with successful assessment, 𝑆(𝑖) is the 

total number of the ith states, N is the total number of states.  

As illustrated in Table II, the attribute with higher weights 

is selected for ER. The oil physicochemical attribute, and the 

pollution attribute are selected in FERIES with two attributes. 

In FERIES with three attributes, all three attributes are used to 

compare. It can be found that both models present high 

performance, but FERIES with three attributes can obtain better 

accuracy and consistency. 
TABLE II  

THE COMPARISON OF DIFFERENT MODELS  

Method 
The number of 

attributes 

Accuracy 

(A)% 

Consistency 

(C)% 

FE 3 69.4% 59.4% 

FER 2 47.2% 23.9% 

FER 3 50.0% 26.1% 

FERIES 2 61.1% 38.2% 

FERIES 3 94.4% 76.0% 
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To verify the performance of the models, the oil states are 

assessed by fuzzy evaluation (FE) [26], FER [18], and FERIES. 

Considering the impact of different numbers of indicators on 

the assessment, three and two attribute evidence are constructed 

respectively. The evaluation results are shown in Table II. It is 

obvious that the more attributes prove the better assessment. 

Compared with fuzzy evaluation, FER presents a worse 

assessment due to the uncertainty arising from inconsistent 

evidence, further validating that the inconsistency of multiple 

attributes probably brings additional uncertainty in decision-

making. FERIES with the same attributes presents the best 

performance, which demonstrates the effectiveness to eliminate 

the uncertainty. 

As the improved method, multi-attribute decision making is 

determined with FER, but it cannot remove uncertainty due to 

inconsistent attribute assessment. For the proposed model that 

combines ES and FER, there are two critical factors 

determining better performance. One is the enhancement of 

evidence with the rule base combination. The other is the 

introduction of expert knowledge, and the inference is much 

consistent with the real-world data, which is determined by 

expert knowledge. The assessment errors of the different 

methods are shown in Fig. 8, and it is confirmed that FERIES 

with three attributes shows excellent robustness and 

consistency. Therefore, the epistemic uncertainty can be 

eliminated by the introduction of knowledge, resulting in 

accurate oil condition assessment and identification. 

 
 

 

 

Fig. 8  The comparison of the errors of different methods 

 

V. CONCLUSION 

A knowledge-guided approach has been proposed shooting at 

the uncertainty problem in OCA. To deal with the uncertainty 

caused by data dispersions, a mechanism-driven three-layer 

model is used to integrate oil attributes based on the FER 

method. To reduce the uncertainty caused by inconsistent 

decisions, the improved model is proposed based on the 

introduction of inference rules. The main conclusions are as 

follows: 

1) To quantify the uncertainty arising from data 

dispersions, an indicator-attribute-state three-layer 

model is used to assess the oil state combining the 

probability assignment and ER. 

2) Modelling with the rule base in ER provides an 

effective solution for the uncertainty due to 

inconsistent decisions with multiple attributes. 

3) The performance of the proposed model is verified 

with the multi-attribute data in real-world OCA. 

There are still some limitations in the proposed method, and 

the accuracy of the model directly relies on the quantity of 

irregular oil data. In practice, limited by the complex condition 

and measured uncertainties, the oil data is dominated by small 

samples. We have taken the expertise and multiple attributes to 

deal with the decision uncertainty. To solve the uncertainty 

problem with insufficient data, the viable solution is to explore 

the essence of data law. 
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