
Wear 460-461 (2020) 203477

Available online 13 September 2020
0043-1648/© 2020 Elsevier B.V. All rights reserved.

Optimized CNN model for identifying similar 3D wear particles in 
few samples 

Shuo Wang a, Tonghai Wu a,*, Peng Zheng a, Ngaiming Kwok b 

a Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Xi’an Jiaotong University, Xi’an, 710049, China 
b School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, 2052, Australia   

A R T I C L E  I N F O   

Keywords: 
Wear debris analysis 
Particle surface generation 
CNN 
3D particle identification 

A B S T R A C T   

Typical wear particles can be considered as distinctive indicators of on-going wear faults in machines. However, 
the small number of samples has limited the identification accuracy for similar fault particles. Besides, the three- 
dimensional (3D) characterization of wear particles may face huge challenges due to excessive surface param
eters. Focusing on the problems of high similarity particles and few samples, a CNN-based particle classification 
method is developed with an example set of fatigue and severe sliding particles, which are the product of severe 
wear of machines. For data reduction, imaged 3D particle surfaces are firstly converted into 2D depth maps 
without losing surface information. Virtual fault particle images are then synthesized using a Conditional 
Generative Adversarial Networks (CGAN), according to the particle generation mechanism and distinctive par
ticle features. Furthermore, a non-parametric particle identification model is established with the optimization of 
the CNN structures and training method, and the network is further optimized with the particle image stan
dardization and the network visualization. Validation experiments reveal that the proposed method can accu
rately identify all tested fatigue and severe sliding particles with their typical characteristics.   

1. Introduction 

Fault wear particles contained in the lubricant system carries sig
nificant information for the determination of wear severity and wear 
mechanisms of machines [1–4]. Therefore, wear debris analysis (WDA) 
can be considered as an effective non-interventional analysis method for 
the wear-induced fault monitoring and diagnosis. Accordingly, tradi
tional ferrography technique has been applied for over 100 years, and its 
2D images have been processed with advanced image processing 
methods. Still, the success rate in industrial applications is lower than 
50%, especially for fault particles with similar shapes [5], such as fa
tigue and severe sliding particle, which are produced in abnormal wear 
conditions and often treated as the precursor of on-going failures. This 
may be attributed to the limited information of the 2D images [6]. Based 
on increasing demands for a reliable WDA method, there has been a 
flourishing emergence by shifting from 2D to 3D analysis for acquiring 
more comprehensive and accurate information on particle morphol
ogies. However, the massive 3D information presents great challenges to 
the characterization and classification of similar fault particles, which 
only have ultra-few samples. 

Parameter characterization is the foundation of automated particle 

identification in traditional artificial-intelligent algorithms, and its val
idity directly affects the accuracy of the type identification. Referring to 
reported researches, different descriptors have been established from 
the particle shape and surface morphology [5,7]. The shape-based de
scriptors have been available to identify well-recognized particles, such 
as rubbing, spherical and cutting particles, with a nearly 100% accuracy. 
However, these descriptors may not work for similar particles whose key 
characteristics exist on the surface, such as fatigue and severe sliding 
particles. As the effect is concerned, the characterization of similar 
particles seems to be a big task through 2D images. Early, synthesis 
texture parameters are extracted with the gray level co-occurrence 
matrix (GLCM) and principal component analysis (PCA) for the two 
kinds of particles in ferrograph images [8,9]. However, these parameters 
character the relationship of surface colors rather than surface mor
phologies, and their value will be affected by mechanical equipment and 
oxidation of particles. In view of this, Laser Scanning Confocal Micro
scopy (LSCM) [10] and Atomic Force Microscopy (AFM) [11] are used to 
extract 3D features from wear particle surfaces. The introduction of 3D 
features has overturned the 2D-based characterization system and 
improved the accuracy of similar particle identification. Nonetheless, 
there exist over 200 artificially-designed features that contribute to the 
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description of particles from different perspectives [8]. Such excessive 
parameters will inevitably bring redundant information to the charac
terization of similar particles. 

Great demands for automation are issued for this promising particle 
analysis technique, especially driven by artificial intelligence algo
rithms. The commonly-used identification methods are constructed with 
neural networks [9], fuzzy mathematics [12], or gray theory [8]. These 
methods use the 2D or 3D parameters as input vectors to automatically 
recognize particle types, but their accuracy relies heavily on the 
parameter characterization models. Inspired by the Convolutional 
Neural Networks (CNN) [13,14], the non-parametric recognition of 
similar particles is developed and achieve a high recognition rate in 
ferrograph images. However, this method is still limited due to the 
surface characterization defect of 2D images. Meanwhile, there are no 
sufficient real fault particles to train the CNN model. 

To address these issues, a non-parametric identification model of 3D 
similar particles is developed by taking fatigue and severe sliding par
ticles as examples. For the data reduction, the 3D surfaces of particle 
surfaces are first converted into 2D images without losing the faint 
surface features. Furthermore, a particle generation model is established 
based on CGAN to increase fault particle samples for the training of the 
CNN model. Aiming at the non-parametric identification of similar 
particles, a CNN-based model is constructed and trained with the opti
mization algorithm. This model is further improved with the results of 
the network visualization. The entire framework ensures an effective 
identification for similar particles in a few real samples. The perfor
mance of this methodology is verified using severe sliding and fatigue 
particles that are produced from a four-ball machine. 

The rest of this paper is organized as follows: Section 2 contains the 
description of the procedures involving the 2D mapping of 3D particle 
surfaces, fault wear particle sample generation, CNN-based particle 
identification and improvements on CNN-based identification model. 
The verification of the proposed method is given in Section 3, followed 
by discussions in Section 4. The conclusions are presented in Section 5. 

2. Materials and methods 

2.1. Framework of the proposed method 

A new method is proposed for recognizing of similar particles by 
taking fatigue and severe sliding particles as an example, and the 
framework is shown in Fig. 1. The idea is to use 3D surface information 
of particles as the system input and then convert to 2D images for sub
sequent CGAN and CNN processing. In step 2, an improved CGAN is 
employed to synthesize fault particles to assist the later identification. 
Based on the CNN structure, a non-parametric particle identification 
method is developed, in Step 3, according to the characteristic of fatigue 
and severe sliding particles. In Step 4, the working principle and im
provements of the established model are explored by visualizing the 
convolution kernel. Further details of the procedure are presented in the 
sections below. 

2.2. 2D mapping of 3D particle surfaces 

Compared with 2D images, 3D particle surfaces contain abundant 
morphology information, but they need to be handled with 3D-based 
CGAN and CNN models [15,16], which includes a large number of 
network parameters that are beyond 2D-based models. In addition, 
excessive training samples are demanded to optimize their structures. 
Given this, 2D characterizations of 3D surfaces are needed here. 2D 
mapping methods mainly include the contour map and the depth map. 
For the contour map, topographic fluctuations and altitudes are repre
sented with loops, in which the points in the same topographic height 
are projected into a horizontal curve. The depth map adopts the gray 
value of each image pixel to represent the distance between the object 
and the imaging plane of the camera. These two mapping methods are 
applied to characterize 3D surfaces of particles, as shown in Fig. 2. 

As can be observed from Fig. 2, the depth map can reflect the particle 
surface details by changing the gray level of the image, while the con
tour map can only sparsely represent the particle surface. Therefore, the 
depth map is chosen as the 2D mapping method of the wear particle 
morphology for the subsequent particle analysis. 

Fig. 1. The framework of the CNN-based particle identification model with few 3D surface samples.  
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2.3. Sample generation of fault wear particles 

Fault wear particles are usually considered as the failure precursor of 
mechanical equipment [5]. However, well-designed equipment rarely 
fails in the actual working condition, thus it is a challenging and 
time-consuming task to collect typical fault particles. Few particle 
samples will weaken the generalization ability of the CNN model, which 
is embodied in the fact that the model works well on the training set, but 
not for the tested set. Thus, it is necessary to expand the training samples 
before applying powerful CNN technology to the similar particle 
identification. 

Reported researches [5,7–9,13] show that the surfaces of fault par
ticles have typical characteristics. For example, the surface of fatigue 
particles owns many pits, while parallel scratches exist on severe sliding 
particles. Because of this, the fault particles may be generated with these 
typical surface characteristics. To accomplish this task, the GAN, as a 
non-parametric generation model, is employed. Among various 
GAN-based models, such as LSGAN [17] and WGAN [18], CGAN can 
impose constrains to generate high-quality images with desired features 
[19]. Thus, CGAN is more suitable to construct the fault particle gen
eration model. This section involves fault wear particle simplification, 
improvements on CGAN, and performance evaluation of particle gen
eration model. 

2.3.1. Fault wear particle simplification 
The CGAN takes labeled samples and real images as the input, in 

which the labeled samples can guide the image generation. Therefore, 
the labels of particle image need to be first created. As mentioned before, 
the distinctive features of fatigue and severe sliding particles are pits and 

parallel scratches respectively [5]. On this account, it may be an effec
tive means to create labeled particle images based on their typical 
characteristics. The particle simplification process is shown in Fig. 3. 
Concretely, fatigue particles are simplified with circular colored areas 
that represent the pits; severe sliding particles are simplified with 
colored parallel lines for the scratches (blue lines representing low 
scratches and green lines representing high scratches). Besides, the 
edges of wear particles are represented by red lines, which are extracted 
by edge detection. The inner particle areas are marked with gray colors. 

2.3.2. CGAN improvements for wear particle images 
CGAN is an excellent model for the image generation, which can 

learn the mapping relationship between the real image r, label data z, 
and output vector v, i.e. G : {r, z}→v [20]. The CGAN is composed of the 
generator and the discriminator, which are alternately trained to 
improve the similarity between the generated image and the real image. 
The objective function is shown in Eq. (1). 

VCGAN = arg min
G

max
D

VGAN(G,D) + λ VL1 (G) (1)  

where VL1 (G) is L1 loss function, VGAN(G,D) is the loss function of GAN, 
its expression is: 

VGAN(G,D) = Ex,y∼(x,y)[logD(x, y)]
+Ex∼p(x),z∼p(z)[log(1 − D(x,G(x, z)))] (2) 

The specific structure of the model includes: 
Generator CGAN’s generator adopts the U-Net [21], which contains 

a symmetric structure: encoder and decoder, to generate the targeted 
image according to the labeled sample. Notably, the skip concatenation 

Fig. 2. 2D mapping of 3D wear particle surface: (a) 3D surface, (b) contour map, and (c) depth map.  

Fig. 3. Diagram of the fault particle simplification.  
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between the encoder and the decoder can enhance the generated image 
resolution and reduce the number of training samples. 

Discriminator The discriminator is established with Patch-GAN to 
distinguish the generated and real images [20]. The test image is divided 
into small patches, and they are identified with the CNN model. The 
average of all patch results is taken as the discriminator output. This 
would impose more constraints to highlight the sharp (high-frequency) 
details of images. With Patch-GAN, the efficiency of the discriminator 
has been dramatically improved due to the small number of network 
parameters. 

Different from traditional generated images [22], 2D mapped par
ticle images have abundant surface details, but they are gray images 
without color information. Therefore, further improvements are made 
on the objective function and the discriminator structure of the CGAN 
for the particle image generation.  

(1) Objective function construction 

Objective function describes the errors between the generated image 
and the actual particle image. A suitable objective function can drive the 
predicted value gradually approaching the real value. Due to fine surface 
details in particle images, there is a high requirement for the objective 
function in the particle image generation. Reference [20] shows that 
adding loss functions, such as L1 and L2, to the objective function will 
improve the effectiveness of the CGAN. However, the biggest problem of 
the L1 loss function is that the gradient is not smooth at zero, which 
takes a long time to find the extreme point for minute details on particle 
surfaces. Addressing this, Smooth L1 is introduced to replace the orig
inal L1 loss function. Smooth L1 is a combination of L1 and L2 loss [23], 
which takes advantages of the two losses in different intervals, as 
defined in Eq. (3). 

S L1 =

{
0.5n2 if |n| < 1
|n| − 0.5 otherwise

(3) 

For the particle image generation, a new objective function of CGAN 
is defined as: 

VCGAN = arg min
G

max
D

VGAN(G,D) + λVS L1 (G) (4)    

(2) Discriminator establishment 

CGAN can generate high similarity samples by means of the gener
ator and discriminator against each other, in which the discriminator 
strives hard to distinguish the generated image from the real one [20]. 
Nonetheless, the generator network may face gradient disappearance 
when the discriminator network is too vast. As gray images, 2D mapped 
particle images contain less color information than colored images, thus 
the discriminator structure is reduced from the original five layers to 
four layers, and the size of convolution kernel adopted in each layer is 
3× 3.The constructed discriminator is shown in Fig. 4. 

To enhance the generalization ability, Batch Normalization (BN) is 
introduced into the convolution layer of the second and third convolu
tion layers of the discriminator [24]. In this way, each mini-batch data 
will be normalized to the normal distribution of N(0, 1). In addition, 
Leaky-ReLU [25] is adopted to replace the original ReLU function, 
which assigns a 0.2 slope to allow all neurons to continue to be updated 
in the negative interval. 

With the above optimization, a new CGAN model is constructed for 
generating fault particle images: U-Net is selected as the generator; the 
discriminator is developed with four convolution layers, Batch 
Normalization and Leaky-ReLU activation function; Smooth L1 loss 
function and the original CGAN loss function are combined to construct 
the objective function of the particle image generation. 

2.3.3. Evaluation of particle generation model 
The constructed CGAN is trained with the standard approach [20]: 

we alternate between one gradient descent step on the discriminator and 
one step on the generator. For the generator training, its weights are 
updated according to the generated image deviation, the discriminator 
output, and Smooth L1. The discriminator weights are adjusted based 
on the discriminant deviation. The Adam algorithm is selected as the 
trainer with a learning rate of 0.0002, and the batch size is set to 1 [20]. 
Twelve groups of severe sliding particles and fatigue particles are 
collected from the lubrication oils of a four-ball tester, which can 
simulate the wear process from the start to the end of the machine life 
[26]. The test ball is manufactured with carbon chromium bearing steel 
(GCr15). With image rotating, original particle samples are expanded to 
48 groups. The CGAN model is trained using these particles and their 
simplified images, and the training process is shown in Fig. 5. As can be 
observed, the discriminator and the generator are confronted with each 
other in the early training. Both of their training losses tend to stabilize 
after the 300th iteration. 

To evaluate the performance of the particle generation model, 100 

Fig. 4. The parameters of each layer of the discriminator.  
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simplified images of each type of particles are first produced by 
simplifying the typical characteristics of 2D fault particle images. This 
approach will ensure that the obtained images have a similar charac
teristic distribution to the real particles. These simplified images are 
dealt with the trained CGAN model to generate virtual particle surfaces. 
The average time of creating a particle surface is about 0.8 s. Example 
results are shown in Fig. 6. As can be observed, the particle features, 
defined by the simplified images, are produced in the corresponding 
position at generated surfaces. In contrast, the undefined area is auto
matically generated by the trained CGAN model. Overall, the generated 
surfaces remain relatively reasonable. 

To further evaluate the generated surfaces, the 3D surface parame
ters are introduced to characterize the surface morphology quantita
tively. Surface arithmetic mean height (Sa) and central liquid retention 
index (Sci) have been reported for the identification of typical particles 
[27], thus these two 3D surface parameters (Sa and Sci) are selected to 

evaluate the generated images. The parameters are extracted from the 
real and generated surfaces, as shown in Fig. 7. It can be observed that 
the distribution of parameters of generated particle surfaces is similar to 
the real ones, but each of them owns different values. This can reveal 
that the constructed CGAN model can generate virtual particle surfaces 
according to the simplified images. Given this, the constructed CGAN 
model can be considered an effective particle image generation method. 
These generated particle surfaces can be adopted to improve the training 
performance of the CNN model. 

2.4. CNN-based particle identification 

The feature-based identification methods have resulted in lower 
recognition accuracy of fatigue and severe sliding particles than that of 
other particles, which may be blamed on the characterization incom
pleteness of artificial-designed features for similar particles. For 
example, Sa and Sci cannot be adopted to distinguish the fatigue and 

Fig. 5. Adam-based training process of the constructed CGAN model (D Loss 
represents the discriminator loss, and G Loss is the generator loss). 

Fig. 6. Particle of generated particle samples: (a) simplified sliding particle, (b) generated sliding particle, (c) front view of the 3D surfaces converted from (b), (d) 
oblique view of the 3D surfaces converted from (b), (e) simplified fatigue particle, (f) generated fatigue particle, (g) front view of the 3D surfaces converted from (f), 
and (h) oblique view of the 3D surfaces converted from (f). 

Fig. 7. Surface parameters of real particles and generated particles.  
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severe sliding particles in the interface area in Fig. 7. To address this 
issue, a non-parametric recognition method is constructed with CNN, 
including 1) CNN construction for similar particle recognition, 2) loss 
function selection, and 3) CNN training with the parameter optimization 
method. 

2.4.1. CNN construction for similar particle recognition 
Referenced by typical CNN models [28,29], the CNN model mainly 

consists of three basic layers: convolution layer, pooling layer, and full 
connection layer. The function of the convolution layer is to extract 
image features by local receptive fields and weight sharing. As the depth 
of convolution layers increases, convolution kernels gradually extract 
high-level features. The pooling operation can reduce the number of free 
variables and the size of feature maps. With the full connection layer, the 
local features in previous layers are transferred to the classifier to 
recognize similar particles. The structure of the constructed particle 
classifier is shown in Fig. 8. 

In view of that the main difference between severe sliding and fa
tigue particles remains on the surface texture, a four-convolution-layer 
CNN can be considered as a moderate structure for extracting suffi
cient surface textures. The particle height images are the model input. 
Similar to the image feature extraction approach reported in Ref. [30], 
convolution layers use a filter of 3× 3 to convolve the input tensor to 
obtain the output tensor. Then these tensors are inputted to the 
Max-pooling layer, which can retain more texture information than the 
mean pooling. After convolution and pooling operation, a flatten layer 
and two full connection layers are applied to turn the image information 
to a feature vector of 1× 1. The sigmoid classifier is introduced to output 
the possibility of particle types. 

In addition, the dropout layer [31] and BN layer are introduced to 
the constructed CNN model to improve the performance of CNN. In this 
work, the dropout ratio is selected as 0.5, which means that the acti
vation value of a neuron will stop working with a probability of 0.5, so 
that the model will not depend on local characteristics. 

2.4.2. Loss function selection 
Loss function can be considered as a measurement of training errors. 

Choosing an appropriate loss function can improve the recognition ac
curacy. Mean square error function and cross-entropy function are two 
kinds of common-used loss functions [32]. Among them, the 
cross-entropy function can accelerate the CNN training when cooperated 
with the sigmoid function. Considering that the identification of fatigue 
and severe sliding particles belongs to a two-class problem, binary 
cross-entropy is chosen as the loss function. Its principle can be 
described as in the following. 

For the sample (x,y), x is the corresponding label of the sample y. In 
the binary classification, the probability of belonging to a certain class is 
in {0,1}. Assume that the real label of the sample is yt and the proba
bility of yt = 1 of the sample is yp, the loss function can be defined as: 

log
(
yt
⃒
⃒yp

)
= −

(
yt × log

(
yp
)
+(1 − yt)× log

(
1 − yp

))
(5)  

2.4.3. CNN training with parameter optimization method 
CNN training is the process of updating and adjusting the initial 

values of the parameters according to the error between the actual 
output value and the expected value. To solve this unconstrained 
problem, many iterative optimization algorithms have been proposed 
based on gradient descent (GD), such as SGD, RMSRrop, Adam, and so 
on [33–36]. To determine a suitable training method for the particle 
classification, these GD-based methods are adopted to train the con
structed CNN model, respectively. The sample database consists of real 
and generated particles, involving 110 severe sliding particles and 110 
fatigue particles. One hundred groups of severe sliding and fatigue 
particles are randomly selected as training samples, and the rest are test 
samples. Training samples are further expanded from one to five by 
image flipping, shifting, and amplification [37] to provide sufficient 
images for CNN training. The learning rate of the optimizer is 1× 10− 4, 
and the training process is shown in Fig. 9. 

As can be observed, the training process with AdaDelta, SGD and 
Adagrad may face a low learning rate, learning rate disappearance and 
slow convergence, failing to reach high accuracy. Inversely, RMSProp, 
Adam and NAdam have an effective convergence speed. Moreover, 
Adam has a faster learning speed in the early stage of the training than 
the other two algorithms. Therefore, Adam is chosen as the optimization 
method to train the constructed CNN model. The Adam-trained model is 
adopted to identify fatigue and severe sliding particles, as shown in 
Fig. 10. The result indicates that the model can accurately identify all 
tested particles. 

2.5. Visualization and improvements on CNN identification model 

The application of CNN is driving the parameter-based particle 
identification to a non-parametric one. But the inner of the constructed 
CNN model is like a ‘‘black box”, its working principle cannot be 
explored. To address this issue, the visualization of the CNN model is 
studied to explain the effect of convolution layers. Further improve
ments are applied to enhance the CNN-based particle identification 
model. 

Fig. 8. The structure of the CNN-based wear particle identification model.  
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2.5.1. Visualization of CNN convolution kernel  

(1) Output visualization of convolution kernel 

With the Adam training, each convolution layer has possessed 
unique feature extraction abilities. The role of each convolution kernel 
in the CNN identification model can be explored by checking the kernel 
output with the fatigue or severe sliding particle images. As the 
convolution layer closely connected with the classifier, Conv4 provides 
significant information for particle identification. Thus, Conv4 is visu
alized through the sixth image (a fatigue particle) in Fig. 10. The result is 
shown in Fig. 11. 

As can be observed from Fig. 11, there are several texture feature 
maps embedded in the fatigue particle pits, which proves that the four- 
convolution-layer CNN model can extract fine texture features for the 

characterization of similar particles. However, Conv4 extracts various 
edge feature maps, even exceeding the number of texture feature maps. 
This phenomenon reveals that the constructed CNN identification model 
pays more attention to the particle edge than textures, and it may not 
apply the essential features to distinguish severe sliding particles and 
fatigue particles. In addition, many similar feature images exist on the 
output of Conv4, which means their function may be similar. It can be 
concluded that the ability of the constructed CNN is far beyond identi
fying two similar particles.  

(2) Heat-maps of class activation 

The kernel output visualization proves that the constructed network 
can extract a small number of critical feature maps for similar particles, 
but cannot explain which parts of the tested particle image play a 

Fig. 9. The CNN training process with different optimization methods: (a) training accuracy, (b) training loss.  

Fig. 10. The identification results of fault particles (Note that the number in the green area indicates the probability that the particle belongs to the fatigue type and 
the number in the yellow area for the severe sliding type). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 11. Output visualization of convolution kernel of Conv4 for a fatigue particle image (Note: texture feature maps are marked in red box). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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dominant role in its classification. To further understand the constructed 
CNN-based particle identification, Grad-CAM is introduced to show the 
recognition results [38]. With Grad-CAM, the discriminative regions of 
the classification are calculated by weighting the importance of each 
channel of the output feature maps to the category, as described in Eq. 
(6). As mentioned before, Conv4 is closely connected to the classifier, 
thus Conv4 is processed to highlight the discriminative regions in the 
particle classification. 

Yc =
∑

k
ωc

k
1
Z
∑

i

∑

j
Ak

ij (6)  

where, Z is the number of pixels in the feature map, Yc is the importance 
of given category c, and Ak

ij refers to the activation at location (i, j) of the 
feature map Ak, ωc

k is the weight connecting the kth feature map with the 
cth class. 

Fig. 12 is a set of heat-maps of class activation to explain the clas
sification results of the constructed CNN model in Section 2.4. As can be 
observed, the heat-maps for severe sliding and fatigue particle images 
mainly concentrate on the edges rather than the scratch area or pits. This 
phenomenon reveals that the discriminative regions are not adopted to 
identify similar particles in the trained CNN model. On account of this, 
the constructed CNN model cannot be considered an effective particle 
identification method, even though it has accurately distinguished se
vere sliding and fatigue particles. 

2.5.2. Optimization on CNN-based particle recognition model  

(1) Training sample standardization 

CNN can distinguish the main features of different types of images, 
but it is sensitive to data features. With further checking of Fig. 10, there 
are apparent differences in the average gray between severe sliding and 
fatigue particle images. As a result, the constructed CNN model uses the 
gray feature to distinguish these two kinds of fault particles instead of 
discriminative features (scratches or pits). To address this issue, the 
training sample images are standardized with the average gray and 
variance-based method, which can be expressed as: 

D0[i, j] =
σ0

σ (D[i, j] − u) + u0 (7)  

where σ0 is the target variance, σ is the image variance, u0 is the target 
mean, u is the image mean, D[i, j] represents the gray value of the pixel at 
[i, j]. 

Variables u0 and σ0 are acquired by calculating the average gray and 
variance of all images in the fault particle database. With the stan
dardization process, all particle images possess the same mean and 
variance, i.e., u0 = 68.598 and σ0 = 38.943. Part of the standardized 
particle image is shown in Fig. 13. As can be observed, the key features 
of severe sliding and fatigue particles are enhanced, while the non- 
detected feature in the image has been weakened or eliminated, such 

as the average gray difference of the two types of particle images.  

(2) Structure optimization of CNN model 

The output visualization of convolution kernels has shown that the 
structure of the constructed CNN model is too redundant for identifying 
two kinds of particles, which will lower the efficiency of the CNN-based 
particle identification model. In the trained CNN model, the unnecessary 
kernels cannot be directly removed; otherwise the network connection 
will be destroyed. One efficient method is to reduce the convolution 
kernel and re-train the network. Referring to the number of redundant 
kernels in the CNN model in Section 2.4, the number of convolution 
kernels is reduced to construct Model 2. Model 3 is deduced by further 
decreasing the convolution kernel in Model 2. The number in the first 
layer remains unchanged for the diversity of feature images extracted in 
the following three layers. The number of convolution kernels per layer 
is shown in Table 1. 

The optimized CNN models are trained by using the Adam algorithm, 
and the training process is shown in Fig. 14. Similar to the Adam training 
process in Fig. 9, the identification accuracy of optimized CNN models 
gradually converges to 1 as the iteration number increases. Importantly, 
the difference is that these models spend more iteration to achieve the 
maximum classification accuracy. This can be contributed to the stan
dardization of fault particle images, which diversifies the features of 
fault particle images. 

Fig. 14 also reveals that the learning rate of the CNN model decreases 
with the reduction of the number of convolution kernels. Although the 
learning rate of Model 2 is slow in the early stage, it starts to possess the 
same accuracy with Model 1 at the 40th iteration, and the accuracy of 
the two models converges to 1 at about 130th iteration. With fewer 
convolution kernels, the training time of Model 2 is reduced from 703 
min of Model 1 to 584 min. In Model 3, due to the over reduction of the 
convolution kernel, its learning rate is low and the iterative accuracy is 
only 0.99 when iterating 200 times. 

As shown in Fig. 15, the three CNN models are visualized with 
inputting the same fatigue image of Fig. 11. As can be observed in the 
visualization of Model 1, owing to the standardized particle images, 
more attention is placed on texture features in the feature maps of 
Conv4, which can be deduced from the number of texture feature maps 
in Figs. 11 and 15. Unfortunately, Model 1 still owns many similar 
convolution kernels. With the simplification of the CNN model, similar 
convolution kernels in Conv4 in Models 2 and 3 are greatly reduced, and 
the critical feature images (including pits) can be extracted for fatigue 
particles with Conv4. Therefore, the image standardization enhances the 
classification features for severe sliding and fatigue particles, and the 
CNN model is simplified by removing redundant convolution kernels 
without losing key features for the characterization of fault particles. 

Fig. 16 is the heat-maps of class activation of the trained CNN model 
with fatigue and severe sliding particles. As can be observed, all trained 
CNN model can adopt the discriminative surface regions to identify 
these two types of particles, except for the fatigue particle in Fig. 16 (h). 

Fig. 12. Heat-maps of class activation: (a) severe sliding particle image, (b) the heat-maps of (a) relative to the sliding type, (c) fatigue particle image, (d) the heat- 
maps of (c) relative to the fatigue type. 
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There are deviations of the discriminative regions for the fatigue particle 
in Model 3, and they focus on the edge features rather than the pit area. 
The reason may be concluded that the convolution kernel of Model 3 is 
reduced too much, which results in a low learning rate and insufficient 
training. The results of heat-maps of class activation undoubtedly reveal 
that Models 1 and 2 can classify severe sliding and fatigue particles with 
their discriminative features. 

Considering the algorithm structure and efficiency, Model 2 can be 
recognized as an effective particle identification model, and this model 
can be used for classifying severe sliding and fatigue particles. 

3. Verification 

Since Model 2 has been verified in detail using kernel visualization, it 
is only verified by recognizing typical particles. The test sample consists 
of two parts, i.e., ten groups of severe sliding and fatigue particles 
selected from the established particle database, and eight groups of new 
fault particles collected from the four-ball tester. With the 2D mapping 
method and image standardization method, these particles are identified 
with the constructed network (Model 2). The network can identify fa
tigue and severe sliding particles with a recognition accuracy of 100%. 
Parts of the recognition results are shown in Fig. 17. Combined with the 
visualization results of Model 2 and the recognition results, a highly 
effective particle identification model is established with optimizing the 

CNN model. 

4. Discussions 

A non-parametric automatic analysis method is constructed for 
identifying 3D surface of similar wear particles in a few real samples, 
involving the 2D mapping of 3D particle surfaces, wear particle sample 
generation, CNN-based identification, and improvements on CNN-based 
identification. The structure of the CNN-based identification model is 
optimized and verified with the results of network visualization. The 
constructed particle identification model is applied to identify severe 
sliding and fatigue particles and achieves high accuracy. It may be 
mentioned here that the model needs more iterations to be fully trained 
due to network simplification; otherwise, the identification accuracy 
may be limited. The comparison between the proposed method and 
other methods is shown below. 

The combination of 2D images and parameter-based intelligent 
method (support vector machine and BP neural network) or non- 
parametric intelligent method (CNN) has promoted the automation of 
wear particle identification [5,8]. However, the 2D images of particles 
only provide the color information rather than the surface morphology, 
which can reflect the essential difference between these two particles. 
Compared with 3D particle analysis methods [12], the advantage of the 
proposed identification method is that the CNN model directly adopts 
the surface as the input, which effectively avoids the loss of surface in
formation caused by the incompleteness of artificial-designed features. 
In addition, the 3D morphology of typical particles is difficult to be 
collected from actual machines. This will result in the over-fitting of the 
network in the training process. To address this issue, this paper in
troduces an improved CGAN to generate sufficient fault particle surfaces 
for the CNN-based particle identification model. Therefore, the devel
oped system can be regarded as a practical particle identification 
approach for wear debris analysis. 

Fig. 13. Fault particle image standardization: (a) severe sliding particle image, (b) standardized image of (a), (c) fatigue particle image, (d) standardized image 
of (c). 

Table 1 
Convolution kernel number of each layer of the constructed CNN model.  

Convolution layer Model 1 Model 2 Model 3 

Conv1 16 16 16 
Conv2 32 16 16 
Conv3 64 32 16 
Conv4 64 32 16  

Fig. 14. The CNN training process: (a) identification accuracy, (b) identification loss.  
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Although the constructed similar particle identification model 
accurately identified all test particles, more particle samples are 
required to verify its reliability. This model will be combined with 
clustering algorithms [9] for typical wear particle recognition. The 
clustering algorithm is aimed at particles with distinct shape features, 
such as rubbing, cutting, and spherical particles. The other particles will 
be handled with the model described in this paper. With the application 
of this system, new wear particles will be collected and identified to 
expand the sample dataset, thus the efficiency of this system will be 
further enhanced. 

5. Conclusions 

A new similar particle 3D surface identification model is proposed 
and applied to the identification of fatigue and severe sliding debris. The 
main features are: 1) The 3D particle surfaces are converted to the form 
of 2D images without losing surface details. 2) A CGAN-based sample 
generation model is constructed to expand the 3D sample database of 
fault particles by optimizing the loss function and discriminant network. 
3) By selecting CNN network parameters and optimization algorithm, a 
non-parametric identification model is constructed, and further opti
mized based on the results of the network visualization. The proposed 

Fig. 15. The visualization of convolution kernel output with CNN models for the sixth particle image in Fig. 10.  

Fig. 16. The heat-maps of class activation for CNN model: (a) severe sliding particle, (b) the heat-maps of (a) with Model 1, (c) the heat-maps of (a) with Model 2, (d) 
the heat-maps of (a) with Model 3, (e) fatigue particle, (f) the heat-maps of (e) with Model 1, (g) the heat-maps of (e) with Model 2, (h) the heat-maps of (e) with 
Model 3. 
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method can accurately identify all tested fault particles using key par
ticle features. This investigation offers an insight into improving the 
efficiency of similar particle classification. This work will contribute 
toward enhancing the analysis of machine wear state. 
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