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Optimum Color and Contrast
Enhancement for Online
Ferrography Image Restoration
Online ferrography, because of its nondestructive and real-time capability, has been
increasingly applied in monitoring machine wear states. However, online ferrography
images are usually degraded as a result of undesirable image acquisition conditions,
which eventually lead to inaccurate identifications. A restoration method focusing on
color correction and contrast enhancement is developed to provide high-quality images
for subsequent processing. Based on the formation of a degraded image, a model describing
the degradation is constructed. Then, cost functions consisting of colorfulness, contrast, and
information loss are formulated. An optimal restored image is obtained by minimizing the
cost functions, in which parameters are properly determined using the Lagrange multiplier.
Experiments are carried out on a collection of online ferrography images, and results show
that the proposed method can effectively improve the image both qualitatively and quanti-
tatively. [DOI: 10.1115/1.4044049]

Keywords: online ferrography, image formation model, image restoration, color
correction, contrast enhancement

1 Introduction
As a nondestructive evaluation technique, wear debris analysis

has been proven to be effective to reveal wear mechanism and
give an early warning of components failure [1,2]. Machine wear
states are estimated by inspecting the features of the wear debris
contained in lubricant, providing references for the condition-based
maintenance system to determine the scheduling of corrective main-
tenance. Thus, catastrophic breakdowns due to wear failure are
avoided [3].
Wear debris analysis has been widely used in experimental

researches and industrial applications [4,5]. Among the techniques,
images of wear debris can be obtained by ferrography. From these
images, more accurate features including concentration, size, wear
rate, and composition of debris can provide more reliable indica-
tions about the machine condition [6]. On the contrary, other
methods only represent features of wear debris indirectly. For
example, the technique based on magnetic induction takes the
number of voltage pulses as the number of wear debris [7].
However, a complete cycle of traditional ferrography operation is
time consuming and expensive. Moreover, the entire process, espe-
cially the analysis, relies on manual tasks. To make ferrography
analysis automatic and real time, the online visual ferrography
system was developed [8]. This system uses an electromagnetic

field to periodically attract wear debris and then captures images
using a camera. Finally, image processing and pattern recognition
techniques are utilized to infer wear states automatically [9–11].
Since the environment in which the online ferrography system

works is inferior to that of conventional methods, such as being
affected by scattered light from oil and wear debris accumulation,
the contrast of the captured image decreases and color cast
occurs. Therefore, it becomes difficult to identify wear debris
from morphology and color. To obtain accurate results, preprocess-
ing operations are required.
For video-based ferrography, motion blur is the dominating

degradation, and Wiener filtering [12] and detailed point spread
function estimation [13] were conducted to restore degradations.
An adaptive enhancement in which the gain factor changes with
the distance to the image center was applied to the restoration of
out of focus [14].
Different from the degradations mentioned earlier, the cause of

image degradations considered in this work is similar to that in
aerial and underwater images. Over the past decades, various
methods have been proposed to remove the degradation impacts
and improve the image quality. Methods including histogram equal-
ization (HE), unsharp masking filtering (UMF), and homomorphic
filtering are common contrast enhancement approaches [15–17].
Histogram equalization expands the range of pixel intensity, but
regions with nonuniform illumination are enhanced at the same
time. With the consideration of color correction, Retinex-based
methods, for instance, automatic color equalization (ACE), are
widely applied [18,19]. Although automatic color equalization
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has shown promising results in color constancy, nonuniform illumi-
nation becomes obvious due to dynamic data stretching.
When considering the cause of image degradation, the impact of

haze can be well removed by the dark channel prior method [20].
However, this method does not work when there are high-intensity
objects in images. Furthermore, the method relying on the assump-
tion that the transmission and surface shading are locally uncorre-
lated was developed [21]. However, it cannot handle heavily hazy
images well and may fail in cases where the assumption is not
valid. In addition, approaches based on light attenuations in differ-
ent wavelengths were proposed to restore images, especially under
macroscopic conditions [22,23]. In the case of microscopic images
considered here, attenuations are extremely small. Other than that,
compared with haze-free images, degraded images have lower con-
trast. There had been attempts to optimally restore image by maxi-
mizing its contrast value without any intend to recover their original
color [24–26].
In this work, instead of blind restoration, an algorithm based on a

model describing the cause of degradation is developed. According
to the comparison between online ferrography images and offline
images captured by the conventional method, priors are proposed
to formulate cost functions and constraints. Both contrast enhance-
ment and color correction are considered, because color is crucial
for the identification of the wear debris composition. Images are
restored by minimizing the cost functions, where optimal parame-
ters are obtained using the Lagrange multiplier.
The rest of the paper is organized as follows: In Sec. 2, a brief

introduction is given to online ferrography and image degradation.
The developed image restoration approach is described in detail in
Sec. 3. Section 4 reports experiments carried out to verify the per-
formance of the proposed method. Results are evaluated and dis-
cussed. Finally, a conclusion is drawn in Sec. 5.

2 Brief Introduction of Online Ferrography and Image
Degradation
A complete cycle of traditional ferrography operation primarily

consists of oil sampling, slide making, image capturing, and
debris identification. These four steps are manually carried out at
different times and in different places. To make it automatic,
online ferrography is essentially a technique integrating all those
procedures and allows for a short operation cycle.

2.1 Online Ferrography. The principle of online ferrography
is illustrated in Fig. 1. A stream of metallic debris is produced from
machine component contact and fatigue and then delivered by a
pump to a sensor installed on the oil returning pipe. The sensor is
made up of three parts: electromagnet, micro-flow channel, and
camera. Wear debris carried in the lubricant are deposited by the

magnetic field when going through the flow channel, and images
are captured by the camera. The images are stored in the 8-bit
BMP red-green-blue color format, and the size is 640 × 480 pixels
width by height.

2.2 Image Degradation. A typical online ferrography image
is shown in Fig. 2(a). From this image, gray level features can be
extracted for wear debris separation [27], and color features are
useful in the classification of wear debris [28]. However, the
image has both poor contrast and low colorfulness, which have sig-
nificant impacts on subsequent processes.
An offline image is shown in Fig. 2(b). This image has a higher

quality than the image taken online. It is not difficult to find that dif-
ferent capturing environments lead to different image qualities.
Online ferrography works in an environment with lubricant contam-
ination and nonuniform illumination. The poor performance of
online image is mainly caused by the following factors:

(1) The properties of the oil change over time, such as refractive
index. Moreover, lights are scattered by the microscopic par-
ticles in the lubricant, especially contaminated lubricant.

(2) The sensor is made of metal, and the inner surface around the
camera reflects light.

(3) Wear debris as microscopic particles also produce light
scattering.

These factors are major causes of challenges in online ferrogra-
phy. Thus, preprocessing is very necessary before extracting infor-
mation from online images. In this work, a restoration method is
developed to remove the influence of scattered light and improve
the image performance in both contrast and color.

3 Proposed Method
A block diagram of the image restoration process is shown in

Fig. 3. The process is carried out in three steps. First, a model is con-
structed to describe the degradation, and the image is divided into

Fig. 1 Schematic diagram of online ferrography process
Fig. 2 Ferrography images: (a) online image and (b) offline
image
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blocks. Then, combined with priors, a cost function is formulated in
each image block. Finally, optimal parameters are obtained by min-
imizing the cost function with Lagrange multiplier. Details are pre-
sented in the following sections.

3.1 DegradationModel Construction. Figure 4 illustrates the
process of image capture. In fact, lights entering the camera come
from two sources. One is the reflection from wear debris as
shown by the solid lines, and the other shown by the dotted lines
is the scattered light from other objects other than wear debris,
for instance, glass and oil. Obviously, the former should be retained,
while the latter needs to be removed. The degradation process is
shown in Fig. 5. The original image can be obtained by removing
the influence of scattered light.
Assume that I represents the observed image that is captured by

the camera, and R represents the original image that is an idealized
reconstruction. The degradation process can be described as
follows:

Ic(u, v) = Rc(u, v)α(u, v) + Lc(u, v)[1 − α(u, v)] (1)

where c∈ {r, g, b} represents one of the color channels, (u, v) is the
pixel coordinate, u= 1, 2, …, U, v= 1, 2, …, V, and U and V are
image width and height, respectively. L represents the scattered
light, and α represents the proportion of the original image. All var-
iables range from 0 to 1. In practice, the original image and its pro-
portion in the observed image are not known. To restore the original
image, R, L, and α have to be obtained in advance.

3.2 Priors Proposal. Although L and α vary over pixels, the
differences are small within an image block. Thus, these variables
are assumed to be constant. According to Eq. (1), the block in the
original image can be obtained by

Rc(u, v) =
Ic(u, v) − Lc

α
+ Lc (2)

where (u, v)∈Ωi,Ωi represents a block in the image. Equation (2) is
an indeterminate equation, and the restored results change with L

and α in each block. Additional information is required to solve
this problem. However, only a single image is available. As men-
tioned in Sec. 2, it is the environment that degrades the image.
Thus, offline images can be regarded as ground truth, while
online images are taken as degraded images. Statistical priors
about color and contrast are proposed from the comparison
between a collection of these images. In addition, a prior about
the image background is found by tracking the illumination.
First, as shown in Fig. 2, the offline image has a better appearance

in both contrast and color than the online image. Quantitative
metrics should be chosen to describe the differences. To this end,
50 online images and 50 offline images are collected for quantitative
comparison. Since the image backgrounds are different, only the
wear debris pixels are considered. Statistical results from these
images against color performance criteria, colorfulness and hue
standard deviation, are depicted in box plots in Fig. 6. Here, color-
fulness is defined as follows [29]:

C = σrgyb + 0.3 · μrgyb (3)

where

σrgyb =
����������
σ2rg + σ2yb

√
(4)

μrgyb =
����������
μ2rg + μ2yb

√
(5)

where σrg and μrg are the standard deviation and mean value of Δrg,
respectively. Similarly, σyb and μyb are the standard deviation and
mean value of Δyb, respectively, where

Δrg = r − g (6)

Δyb = 0.5 · (r + g) − b (7)

Fig. 3 Block diagram of online ferrography image restoration process

Fig. 4 Image capture process

Fig. 5 Image degradation formation

Journal of Nondestructive Evaluation, Diagnostics
and Prognostics of Engineering Systems

AUGUST 2019, Vol. 2 / 031003-3

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/nondestructive/article-pdf/2/3/031003/5186148/nde_2_3_031003.pdf by Xi'An Jiaotong U

niversity Lib user on 28 Septem
ber 2019



The hue standard deviation H is defined as follows:

H =

����������������∑n
i=1 (hi − �h)2

n

√
(8)

where hi represents the hue value of each pixel in the HSV color
space, �h represents the mean value, and n is the number of pixels.
In Fig. 6(a), degraded images have an average colorfulness of

0.065, which is much lower than 0.143 of the ground truth. From
Fig. 6(b), the two groups have almost the same level in the hue stan-
dard deviation, i.e., 0.235 and 0.245, respectively. Therefore, color-
fulness is an effective criterion to distinguish degraded images from
ground truths. The colorfulness of degraded image has a significant
degradation due to environment impact, and this criterion should
return to the ground truth average after restoration.
With respect to contrast metric, entropy and intensity standard

deviation (ISD) are collected and shown in box plots, see Fig. 7.
Entropy is given by the following equation:

E = −
∑255
i=0

pi log2 (pi) (9)

where pi is the probability of the occurrence of the ith magnitude.
The intensity standard deviation is defined as follows:

T =

���������������∑n
i=1 (si − �s)2

n

√
(10)

where si represents the intensity of each pixel in grayscale image, �s
represents the mean intensity value, and n is the number of pixels.
The grayscale image is given by the following equation:

s = 0.299r + 0.587g + 0.114b (11)

As shown in Fig. 7, with the influence of the scattered light,
intensity standard deviation shows a sharp drop while entropy
keeps general steady. Thus, intensity standard deviation is here
taken to quantify the contrast, and its value of the restored image
should go up to about 0.274.
Apart from the statistical priors about color and contrast illustrated

before, there is another prior about image background. As shown in
Fig. 8, it can be found that the light goes through the gap between
wear debris and transmits through the glass surface with only a
very small portion reflected. Thus, these areas should be close to
black in the original image. It can be expressed as follows:

Rc
b(u, v) → 0 (12)

where b represents the areas without wear debris.
Combined with Eq. (2), we have

Icb(u, v) = Lc(1 − α) (13)

However, Eq. (13) has no solution unless Icb(u, v) is constant within
a m×m block. Thus, it is approximated as follows:

�Icb = Lc(1 − α) (14)

Fig. 6 Statistical results of color criteria: (a) colorfulness and (b) hue standard deviation

Fig. 7 Statistical results of contrast criteria: (a) entropy and (b) intensity standard
deviation
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where

�Icb =

∑m
i=1

∑m
j=1I

c
b(i, j)

m2
(15)

3.3 Cost Function Formulation. In a ferrography image,
wear debris is regarded as foreground (Fg), and the others are back-
ground (Bg). The image blocks can be classified into three groups:
Bg only, Bg and Fg, and Fg only.
For the first group, the restored contrast should be minimized for

nonuniform background removal, and information loss should also
be minimized during the restoration, see Eq. (2). With respect to the
two objectives, a cost function concerning contrast and information
loss is defined as follows:

f1 = ω1 · T(α, Lc) + ω2 · P(α, Lc) (16)

where T represents the intensity standard deviation of a restored
image block. Combined with Eqs. (2), (10), and (11), T varies
with L and α. Since Eq. (2) is actually a linear transformation func-
tion from input Ic(u, v) to output Rc(u, v) as shown in Fig. 9, the
input higher than b or lower than a leads to information loss. P rep-
resents information loss, and it is defined in Eq. (17).

P(α, Lc) =
∑

c∈r,g,b

∑a
i=0

ic/255− Lc

α
+ Lc

( )2

zci

[ ]{

+
∑255
b

ic/255− Lc

α
+ Lc − 1

( )2

zci

[ ]} (17)

where zci represents the number of the occurrence of the ith mag-
nitude in color channel c, a is the intensity corresponding to output
0, and b is the intensity corresponding to output 255 that is further
normalized to 1. Since ω1 and ω2 are weighting parameters and

image contrast is more important than information loss, thus, we
have

0 < ω2 ≤ ω1 < 1 (18)

ω1 + ω2 = 1 (19)

For the other two groups, a cost function consisting of contrast,
color, and information loss is formulated to measure the differences
between the restored images and ground truth. To remove the envi-
ronmental influence, the differences should be minimized. Note that
only foreground pixels are considered in the cost function, and
background pixels are used as constraints in Eq. (13) if they exist.
Based on the priors mentioned before, the cost function is defined
as follows:

f2 = η1 · C(α, Lc)− 0.143[ ]2+ η2 · T(α, Lc)− 0.274[ ]2+ η3 ·P(α, Lc)
(20)

where C represents colorfulness of a restored block and η1, and η2,
η3 are weighting parameters. Since color extraction is the unique
feature that makes ferrography more advantageous than other tech-
niques, thus, we have

0< η3 ≤ η2 ≤ η1 < 1 (21)

η1 + η2 + η3 = 1 (22)

3.4 Parameters Optimization. Parameters in cost functions
significantly affect the restored results, and they should be opti-
mized to recover more accurate wear debris information. The aim
is to minimize the cost functions within a series of constraints. In
this work, Lagrange multiplier is employed to obtain the optimal
results.
The Lagrangian is given by:

L(x, λi, μi) = f (x) +
∑M
i=1

λigi(x) +
∑N
j=1

μ jk j(x) (23)

where x represents unknown parameters and f (x) is the function to
be minimized, that is, the cost function in this work. gi represent
equality constraints, and ki represent inequality constraints. λi and
μi are Lagrange multipliers. M and N are the numbers of equality
constraints and inequality constraints, respectively.
For a block belonging to the first group, the parameters

are x = α, Lc, ω1, ω2[ ]T . Equality constraints are derived from
Eqs. (14) and (19) as follows:

g1 = �Icb − Lc(1 − α) = 0
g2 = ω1 + ω2 − 1 = 0

{
(24)

Inequality constraints from Eq. (18) and feasible ranges are as
follows:

k1 = ω1 − 1 ≤ 0
k2 = ω2 − ω1 ≤ 0
k3 = −ω2 ≤ 0
k4 = Lc ≤ 1
k5 = −Lc ≤ 0
k6 = α ≤ 1
k7 = −α ≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

For blocks with foreground and background pixels, the parame-

ters are x = α, Lc, η1, η2, η3
[ ]T

. Equality constraints deriving from
Eqs. (14) and (22) are as follows:

g1 = �Icb − Lc(1 − α) = 0
g2 = η1 + η2 + η3 − 1 = 0

{
(26)

Fig. 8 Illumination tracking

Fig. 9 An example of the transformation function
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Inequality constraints from Eq. (21) and feasible ranges are as
follows:

k1 = η1 − 1 ≤ 0
k2 = η2 − η1 ≤ 0
k3 = η3 − η2 ≤ 0
k4 = −η3 ≤ 0
k5 = Lc ≤ 1
k6 = −Lc ≤ 0
k7 = α ≤ 1
k8 = −α ≤ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

For blocks with only foreground pixels, their processing is the
same with pixels in the second group except for equality constraints.
The equality constraint is as follows:

g1 = η1 + η2 + η3 − 1 = 0 (28)

The optimization problem with constraints is converted to
unconstrained problem by the Lagrange multiplier. Optimal param-
eters are obtained by solving the first-order derivative under the
Karush–Kuhn–Tucker conditions. It can be expressed as follows:

∇xL(x, λi, μi) = 0
gi = 0
kj ≤ 0
μj ≥ 0
μikj = 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(29)

3.5 Parameters Refinement. Although optimal L and α are
calculated by the Lagrange multiplier approach in each block,
they should be further refined to the pixel bases. Otherwise there
will be significant changes at the boundaries between the blocks
in the resultant image, as shown in Fig. 10(d ).
As an edge-preserving smoothing method, the guided filter has

been applied in transmission refinement of the image haze
removal. This technique computes the filtering output by

considering the content of a guidance image, and it is defined as
follows [30]:

qi = �aiGi + �bi (30)

where q represents the output and G represents the guided image,
and

�ai =
1
|w|

∑
k∈wk

ak (31)

�bi =
1
|w|

∑
k∈wk

bk (32)

where |w| is the number of pixels in a window wk and ak and bk are
linear coefficients assumed to be constant in wk,

ak =
1
|w|

∑
i∈wk

Gipi − μk �pk
σ2k + ε

(33)

bk = �pk − akμk (34)

where μk and σ2k are the mean and variance of G in wk, respectively,
p represents the input, �pk is the mean value of p in wk, and is
defined as a small number. In this work, the grayscale image of
the observed image I is used as a guided image, and L and α are
taken as inputs. Results are shown in Fig. 11. After the refinement,
the restored image is finally obtained according to Eq. (1).

4 Experimental Results
A collection of 50 test images captured from the online ferrogra-

phy device is used to evaluate the performance of the proposed res-
toration method. All images are of 640 × 480 pixels in the BMP
format. The block size is 32 × 32 pixels. For convenience, the
optimum color and contrast enhancement method proposed in this
work is abbreviated as OCCE, and related restoration methods are

Fig. 10 Restoration without refinement: (a) input image, (b) α image, (c) L image, and
(d ) resultant image
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Fig. 11 Refinement results: (a) original α image, (b) refined α image, (c) original L image,
and (d ) refined L image

Fig. 12 Test image 1: (a) input, (b) HE, (c) UMF, (d ) ACE, (e) DCPBmethod, (f ) Fattal’smethod, (g) Kim’smethod, and
(h) OCCE
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included in the performance comparison. These include HE [15],
UMF [16], ACE [18], dark channel prior-based method (DCPB
method) [20], Fattal’s method [21], and optimum contrast enhance-
ment (Kim’s method) [25]. Results are assessed qualitatively and
quantitatively according to several widely used criteria.

4.1 Qualitative Evaluation. Two sample test images and their
resultant images obtained from the proposed and related method are
shown in Figs. 12 and 13. The qualitative evaluation is conducted
by visually comparing the degree of scattering light removal, arti-
facts, and wear debris appearance.
It can be observed that input images, as shown in Figs. 12(a) and

13(a), have low contrast and saturation due to its undesirable cap-
turing environment. Moreover, the wear debris pixels mostly have
high intensity, and the color seems to be the same. From those
images, it is difficult to identify wear debris accurately.
For scattering light and artifacts, the HE method produces

obvious artifacts and leads to nonuniform illumination enhance-
ment. Most wear debris are covered with the enhanced scattered
light, and no effective information can be obtained from the
images in Figs. 12(b) and 13(b). The similar drawback can be
found in the Kim’s method due to contrast enhancement in both
background and foreground as shown in Figs. 12(g) and 13(g).
For the wear debris appearance, UMF only enhances the wear

debris edges seen in Figs. 12(c) and 13(c), while color cast still
exiting. Although ACE shows a good performance in color

correction in Fig. 12(d ), it makes no difference to the second test
image. Similarly, Fattal’s method works well in Fig. 12( f ), but
results in poor appearance in Fig. 13( f ). It proves that assumption-
based methods cannot be directly applied to ferrography images res-
toration. In addition, DCPB method does not work for the situation
shown in Fig. 13(e) due to large bright wear debris, and the restored
color is inaccurate.
For the proposed method, results are shown in Figs. 12(h) and

13(h). On the one hand, the scattered light covering over the
image is removed, and the original image is obtained. Furthermore,
wear debris with different colors, such as blue and tawny wear
debris, can be easily identified in the resultant images. Compared
with other methods, the proposed method performs more satisfacto-
rily and robustly.

4.2 Quantitative Evaluation. Criteria including colorfulness,
average saturation, and contrast are calculated and displayed in the
box plots as shown in Fig. 14. The mean and median values are
included as annotations above the plots, and the mean values are
summarized in Table 1 for comparison. Since wear debris appear-
ance is the focus, only foreground pixels are considered in these sta-
tistics. Colorfulness is given by Eq. (3). ISD given by Eq. (10) is
used to assess contrast. Average saturation is defined as follows:

S =
1
n

∑n
i=1

1 −
3 ·min {r, g, b}i

ri + gi + bi

( )
(35)

Fig. 13 Test image 2: (a) input, (b) HE, (c) UMF, (d ) ACE, (e) DCPB method, (f ) Fattal’s method, (g) Kim’s method, and (h) OCCE
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For colorfulness, results of the proposed method have a mean
value of 0.152, which is higher than those of other methods
expect for the Fattal’s method (0.218). This is the same with con-
trast evaluation. Results of the proposed method at 0.250, ranking
the second high mean value. However, it can be found that over
enhancements, shown in Figs. 12( f ) and 13( f ), make the two
metrics resulting in a high level. In addition, the average saturation
shows a sharp increase from 0.036 in input to 0.146 in the proposed
method. Mean values of all other methods are lower than that of the
proposed method.

As discussed earlier, the restored image quality are expected to be
improved to the level of offline ferrography image in both color and
contrast. From Figs. 14(a) and 14(b), the mean value of colorfulness
after proposed restoration is a bit higher than 0.143 as shown in
Fig. 6(a), and the restored contrast is close to 0.274 as shown in
Fig. 7(b).

5 Conclusions
Aiming at recovering wear debris information, a method based

on optimum color and contrast enhancement is developed for
online ferrography image restoration. By analyzing the image cap-
turing process, a degradation model is first constructed. Images are
divided into blocks to reduce the difficulty to obtain undetermined
parameters in the model. With the purpose of improving the image
quality in both color and contrast, cost functions based on priors are
formulated. Optimal parameters in each block are obtained by min-
imizing the cost functions using Lagrange multiplier, and these
parameters are further refined into pixel-wise by guided filtering
before restoration. Experimental results show that the proposed
method is capable of removing the influence of the scattered
light. With the wear debris appearance restored, colorfulness and
contrast are improved to the level of of-line ferrography images,
which facilitates subsequent processing including object extraction,
identification, and classification.
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