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a b s t r a c t

Oxidation associated wear usually involves high temperature and often accelerates lubrication
degradation and failure processes. The color of oxide wear debris highly corresponds with the severities
of oxidation wear. Therefore, on-line detection of oxide wear debris has the advantage of revealing the
wear condition in a timely manner. This paper presents a color extraction method of wear debris for on-
line oxidation monitoring. Images of moving wear particles in lubricant were captured via an on-line
imaging system. Image preprocessing methods were adopted to separate wear particles from the
background and to improve the image quality through a motion-blurred restoration process before the
colors of the wear debris were extracted. By doing this, two typical types of oxide wear debris, red Fe2O3

and black Fe3O4, were identified. Furthermore, a statistical clustering model was established for
automatic determination of the two typical types of oxide wear particles. Finally, the effectiveness of
the proposed method was verified by performing real-time oxidation wear monitoring of experimental
data. The proposed method provides a feasible approach to detect early oxidation wear and monitor its
progress in a running machine.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Metallic oxidation, often caused by high temperature at metal-
to-metal contacts due to overload and/or lack of lubrication, is one
of the main causes of tribological failures. High flash temperature
generated in the wear process will not only tender the tribo
materials but also deteriorate the lubricant in use. Therefore, early
detection of oxidation wear is of significance for preventive main-
tenance of mechanical systems [1,2].

Wear debris is the direct by-product generated in a wear
process and contains valuable information about machine condi-
tions. Thus the features of wear debris are characterized for
machine condition monitoring and fault diagnosis. Among these
features, the colors of wear debris are used as critical information
for oxide wear debris identification. For instance, the predominant
oxide products of most tribo-systems made of steel (Fe–C alloy)
are Fe2O3 and Fe3O4, which can be identified by examining their
special colors. In addition, the oxide films of low alloy steel, from
inside to outside, are FeO (FeO cannot be produced under 600 1C),
Fe3O4 and Fe2O3 layer [3]. If the oxidation film breaks up to form
wear debris, it means that severe wear with a high wear rate
occurs and the types of oxide wear particles can reveal the wear

degree. At present, color-based classification of oxide wear debris
has been studied extensively and accepted as a theoretical base for
oxidation wear analysis [4,5].

Color extraction of wear debris is an essential step for oxidation
wear monitoring using off-line analysis techniques. Myshkin [4]
used optical microscopy to acquire wear debris images and extract
their colors. By using a multi-scale classification criterion, wear
particles were classified into red oxide (Fe2O3) and black oxide
(Fe3O4) based on their colors. Compared with off-line approaches
such as Myshkin's work, on-line monitoring technology has the
advantage of capturing real-time machine data [6,7]. Color images
of wear debris can also be captured using on-line ferrograph
technology to identify wear sources. Identification of some typical
metal particles, including copper, iron and aluminum debris was
achieved through extracting their colors from on-line images [8].
However, this method is effective only when wear debris images
are clear. Unfortunately, wear debris images sampled with an
online sensor are often fuzzy because of a number of reasons, e.g.
the movements of the particles and lubricant. Also, reported on-
line monitoring systems applied the ferrograph approach to
capture iron particles [9]. Consequently, the particles are often
in a chain pattern and overlapping, which make it difficult to
separate wear particles. Color recognition of moving wear debris
thus remains a bottleneck for on-line wear monitoring.

Video-based image processing technology provides a new
approach for dynamic characteristics extraction, and has been
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successfully applied in medical diagnosis [10], robot vision [11]
and intelligence transportation [12]. Specifically, video acquisition
can avoid the agglomeration of motion particles to achieve
accurate characteristics extraction of multiple wear particles.
Although the motion of wear debris introduces image blurring,
color information can be obtained using color image enhancement
methods [13,14].

Aiming at on-line oxidation wear monitoring, this work inves-
tigated the color extraction of wear debris from on-line sampled
images. An image capturing system was constructed to acquire the
color images of moving wear particles. To extract the colors of
wear debris effectively, the methods of improving on-line images
quality were studied, the color information was extracted, and
wear particles were classified based on their colors for on-line
oxidation wear monitoring. The practicability of the proposed
method was evaluated experimentally using a four-ball wear
tester.

2. Dynamic wear debris image acquisition system

An experimental system for oxidation wear testing and mon-
itoring was designed and is illustrated in Fig. 1. A typical four-ball
wear tester was adopted as a testing machine that the on-line
monitoring equipment was set up on. Particles produced by the
friction pair flew into the oil tank and then were directed to the
designed oil flow path by a digital pump. Videos of dynamic wear

debris were captured using a video sensor with light-emitting
diodes (LED). A single chip microcomputer was utilized to drive
the digital pump and the LED. To avoid the circulation of analyzed
particles in the oil system, an oil bottle was set up in the return
pipe. The clean oil in the upper portion of the oil bottle was
drained by another digital pump into the oil tank. The return oil
with wear debris was sent to the bottom of the oil bottle so the
particles could be deposited.

The videos of dynamic particles were processed to extract
particle images. A typical wear debris image extracted from the
video stream is shown in Fig. 2(a). As can be seen, wear particles in
different colors were captured. By comparing with the analytical
ferrograph image in Fig. 2(b), two drawbacks of the on-line image
are revealed.

1) The background varies with light conditions and oil transpar-
ency, resulting in a low contrast between the particles and
background.

2) The resolution of the on-line image is less than that of an off-
line ferrograph image, which is caused by the movement of the
particles and lubricant involvement.

These issues make it difficult to extract the color information of
the wear debris. In order to effectively extract the information, the
background of the image needs to be segmented and the image
quality needs to be improved. Details of the wear debris image
segmentation and enhancement methods will be presented in the
next section.

3. Color extraction of dynamic wear debris

Images of moving particles captured by the video acquisition
system contain their color features for particle identification. How-
ever, it is difficult to extract color information from the dynamic
image because of the two issues described in Section 2. Thus image
segmentation and color enhancement are necessary before acquir-
ing useful color information.

3.1. Color segmentation of wear debris image

As depicted in Fig. 2, a particle image can be divided into two
parts: wear debris and background. For image segmentation, a
background subtraction method [15] was employed to separate
the wear debris. A series of images were extracted from a video
clip to reconstruct a real-time background of the images. Fig. 3
gives nine frames selected from the images sampled in 12 s. The

Fig. 1. Schematic illustration of the on-line monitoring equipment installed on a
four-ball rig.

Fig. 2. Typical images carried by on-line monitoring equipment and analytical ferrography: (a) on-line acquisition image and (b) analytical ferrograph image.
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Gaussian background modeling method [16] was adopted to recon-
struct the background using those image frames (600 frames) after
gray processing. An example of a reconstructed background image is
shown in Fig. 4.

Fig. 4 is a background image after the wear debris and artificial
colors shown in Fig. 3 were removed. The difference between
Fig. 2(a) and Fig. 4 was computed using the background subtrac-
tion method mentioned above to acquire a color image of wear
debris, and the resultant image is shown in Fig. 5. As can be seen,
the wear debris was well segmented from the background. How-
ever, the low resolution issue still needs to be resolved.

3.2. Enhancement of on-line wear debris images

A number of filters including Wiener filter [17] and median
filter [18] were proposed for color image enhancement. As stated
before, the dynamic particle images appear blurring mainly caused
by the motion of particles and random noise. Considering that
random noise needs to be removed and that the Wiener filtering
can minimize the mean square error between restored and sharp
images, it was adopted as the filtering method in this work.

Fig. 6 shows the degradation model of a blurred image. As
illustrated in the degradation model, a degraded image represented

using g(x, y) results from the convolution between a sharp image
f(x, y) and a degradation function h(x, y) and is also affected by noise
n(x, y).

Fig. 3. Some image frames extracted from wear debris video: (a) 50 frame, (b) 100 frame, (c) 150 frame, (d) 200 frame, (e) 250 frame, (f) 300 frame, (g) 350 frame, (h) 400
frame and (i) 450 frame.

Fig. 4. The reconstructed background image based on the wear debris images
shown in Fig. 3.
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The relationship between blurred and sharp images can be
described as

g x; yð Þ ¼ f x; yð Þnh x; yð Þþn x; yð Þ ð1Þ
where n denotes the linear convolution.

Image restoration is the inverse operation of image degradation.
The Wiener filtering method has superior performance in denoising
[19], but the degradation function h(x, y) still needs to be performed
to check the image restoration outcome. The relative motion of
particles to the video sensor is the main reason for image blurring.
The h(x, y) for motion blur can be expressed by [17]

h x; yð Þ ¼ 1=L;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
rL=2; y=x¼ tan θ

0; else

(
ð2Þ

where L is the length of blur; θ is the angle of blur.
Consequently, the parameters estimation of the blur angle θ

and length L is of significance for motion-blurred image restora-
tion. Generally, the wear debris motion can be simplified as
uniform linear motion at a constant velocity v and a blur direction
θ when the exposure time is short. During the exposure time

interval [0, T], the blur length can be calculated using L¼ vT . Fig. 2
(a) shows sampled in the conditions that the average speed of
wear debris was 2.4 mm/s and the video sampling rate was 50
frames per second (fps) with a resolution of 640�480 pixels.
Considering the scale factor of 1.5 μm per pixel, the length of blur L
was calculated to be 32 pixels.

In addition, Fourier spectrum has been widely used to obtain
the motion-blurred angle of an image [20]. Parallel stripes will be
found in the frequency spectrum image if there is motion blurred
direction. With 901 clockwise rotation of the angle between the
parallel stripes and horizontal axis, the blur angle θ can be
confirmed. Based on this theory, the Fourier transform result of
the dynamic wear debris image (Fig. 7(a)) is shown in Fig. 7(b). As
can be seen, nearly no parallel stripes can be found in the middle
of the spectrum image. This is because the direction of the particle
movement is parallel to the video sensor as shown in Fig. 1. Thus
the motion direction of the wear debris can be regarded as
horizontal direction, namely θ¼ 0, in the short exposure interval.

The motion-blurred image of dynamic wear debris was restored
by utilizing the Wiener filtering method with the blur angle θ¼0

Fig. 5. Wear debris image after excluding the background (Fig. 4) from the initial
on-line image shown in Fig. 2(a).

Fig. 6. The degradation model of motion-blurred.

Fig. 7. Fourier transform result of a wear debris image: (a) dynamic wear debris image and (b) its Fourier spectrum image.

Fig. 8. The segmentation and restoration image of Fig. 7(a).

Table 1
Results of H and I extraction of the wear debris in Fig. 8.

Debris number 1 2 3 4 5 6 7 8 9

H /degree 0.66 0.74 0.50 0.90 0.73 0.60 0.18 0.02 0.13
I /dimensionless 0.38 0.28 0.30 0.06 0.13 0.19 0.28 0.36 0.14
Particles color other other other black black black red red red
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and the blur length L¼32 pixels, and the result is shown in Fig. 8.
Clearer particles are displayed in the restoration image than those
in Fig. 5. The processed image is appropriate for wear debris color

extraction. It is worth noting that the image separation and
restoration process does not alter the color information of the
particles.

3.3. Color extraction of wear debris

A color image can be expressed by twomodels including red, green
and blue (RGB) color model and hue-saturation-intensity (HSI) model.
R, G and B denote the pixels in the corresponding color channels of a
color image, which can be directly extracted using computer software.
The HSI model can be converted from the RGB model.

According to the previous work [8], wear debris classification
was achieved based on the combined hue and intensity compo-
nents of HSI color space. Hence, this study adopted the indexes of
hue and intensity to distinguish oxide wear debris. The hue and
intensity components can be transformed from R, G and B compo-
nents as follows [8]:

H¼ θ ; if BrG

360�θ ; if B4G

(
ð3Þ

I¼ 1
3
ðRþGþBÞ ð4Þ

Fig. 9. The training result of the identification model with the data in Table 1.

Fig. 10. Six typical wear debris images captured in the four-ball test monitoring: (a), (b), (c), (d), (e) and (f).

Fig. 11. Image enhancement by applying the segmentation and restoration methods to the particles: (a) the extracted wear debris from Fig. 10 and (b) the improved particle
images of (a).
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where,

θ¼ arccos
1=2 ðR�GÞþðR�BÞ½ �

ðR�GÞ2þðR�BÞðG�BÞ
h i1=2

8><
>:

9>=
>; ð5Þ

where H, S and I are the three components of the HSI model. The
value ranges of R, G and B components are normalized between
0 and 1 here.

The extraction results of the HSI components of the wear debris
in Fig. 8 are shown in Table 1. It can be seen from the table that,
based on the indexes of the hue and intensity, the marked
particles were categorized into three groups named as black, red
or other. Particles No. 7–9 were firstly identified to be red because
they had smaller hue values than the others. Second, the black
particles of No. 4–6 were separated because their intensities were
less than those of particles No. 1–3.

4. Multi-class classification of oxide particles based on support
vector data description

Two typical types of oxidation wear products including red
oxide (Fe2O3) and black oxide (Fe3O4) are concerned in this study.
For on-line monitoring, a dynamic clustering model of oxide wear
debris identification was established with a multi-class classifier
based on support vector data description (Multi-SVDD) [21,22].

4.1. Oxide wear debris identification model based on Multi-SVDD

In this study, all particles were categorized into one of the three
groups, that is, Fe2O3, Fe3O4 and other, based on their indexes of H
and I. A large amount of the data (H, I) of each group were clustered
by SVDD to find the boundaries of the three sets. A newly captured
particle was classified automatically through calculating the short-
est distance between the particle and the boundaries. To train the
classification model, the samples in Table 1 were used as training

data. The hue and intensity values in Table 1 were normalized using

H0 ið Þ ¼ H ið Þ� min Hð Þ
max Hð Þ� min Hð Þ; i¼ 1; 2; :::; n ð6Þ

I0 ið Þ ¼ I ið Þ� min Ið Þ
max Ið Þ� min Ið Þ; i¼ 1; 2; :::;n ð7Þ

where, H0 ið Þ and I0 ið Þ are the normalized values of hue and intensity;
H ið Þ and I ið Þ are the original values of hue and intensity; max :ð Þ and
min :ð Þ are the maximum and minimum of all values, respectively; n
is the number of all particles.

Fig. 9 shows the training outcome using the data of the particles
listed in Table 1. As can be seen, the training model was correctly
established using the Multi-SVDD approach for oxide particle classi-
fication. Although the identification model shows a satisfied result,
more particle samples in other colors need to be used to update the
model so it can identify a wider range of oxide wear debris. By
training the model with more particles, the identification results will
be more reliable.

4.2. Application of oxide wear debris identification

For on-line oxidation wear monitoring, an application of the
identification model was carried out on the four-ball on-line
monitoring test rig shown in Fig. 1. A 4 h wear test was conducted
at a speed of 1000 r/min and a load of 1500 N. The digital pump
drained the lubricant with a flow rate of 1 mL/min. Videos of dynamic
wear debris were sampled at a sampling rate of 50 fps, and the images
were presented in a true color format with a resolution of 640�480
pixels.

Fig. 10 shows six typical images of wear debris generated in the
test. It can be seen that the particles had different colors and the
background also varied in color. The extracted particles from the
images in Fig. 10 are displayed in Fig. 11(a). As can be seen, the
original images are fuzzy due to the particle motion. By applying
the color image segmentation and enhancement techniques described
in Sections 3.1 and 3.2, the quality of the final wear debris images
shown in Fig. 11(b) was improved significantly.

The hue and intensity values of the wear debris were extracted
for particle identification. The identification results using the trained
model are given in Table 2. Fe2O3, Fe3O4 and other particles were
marked to be “1”, “2” and “3” respectively. The results reveal that
oxide wear debris was produced during the test, which indicates the
occurrence of oxidation wear.

Fig. 12. Images of the worn steel ball: (a) image of the ball and (b) enlarged image of the worn surface.

Table 2
The values of H and I of the wear debris in Fig. 11.

Particles No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8

H /degree 0.81 0.21 0.11 0.81 0.65 0.68 0.41 0.64
I /dimensionless 0.30 0.32 0.29 0.25 0.23 0.05 0.28 0.11
Particle type 3 1 1 3 2 2 3 2

Y. Peng et al. / Wear 332-333 (2015) 1151–11571156



To further verify the identification results, the tested steel balls
were checked and the wear condition is shown in Fig. 12. As can be
seen from Fig. 12(b), the radius of the wear scar is nearly 1.25 mm,
and the color around the wear scar is darker than other areas. This
is because a large amount of heat was generated at the metal–
metal contacts during the sliding motion. Metallic oxidation
occurred under high temperature turning the material into a black
color. At the same time, the oxidation surface of the friction pair
was worn away during wear. Thereafter, oxidation continued and
local oxidation spot appeared.

5. Conclusions

Aiming at monitoring oxidation wear in a running machine, an
on-line oxide wear debris identification method was established
by focusing on the color feature extraction of dynamic wear
particles. The color extraction from a blurred image of moving
wear debris was studied to characterize different types of oxide
wear debris. The following conclusions can be drawn.

1) A video-based imaging system was adopted to acquire real-time
color images of moving particles. To solve the blurring problem
associated with these on-line images, the image segmentation
and restoration methods were proposed to improve the image
quality.

2) The hue and intensity components of the HSI model were
utilized for oxide wear debris classification. By using a Multi-
SVDD classifier, two typical types of wear particles, red Fe2O3

and black Fe3O4, were identified.
3) Experiment results proved that real-time oxidation wear mon-

itoring can be realized using the method of color extraction
developed in this work. This development is potentially useful
for industry applications.
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