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a b s t r a c t

Lubricating oil plays a vital role in the full life-span performance of the machine. Lubricating oil dete-
rioration, which leads to the attenuation of oil performance and severe wear afterwards, is a slow de-
grading process, which can be observed by condition monitoring, but the actual degree of the oil de-
gradation is often very difficult to examine. The main purpose of lubricating oil degradation prediction is
to estimate the failure time when the oil no longer fulfills its functions. We suppose that the state process
evolution of lubricating oil degradation can be modeled using a hidden Markov model (HMM) with three
states: healthy state, unhealthy state, and failure state. Only the failure state is observable. While the
lubricating oil is in service, vector data that are stochastically related to the deterioration state are ob-
tained through on-line condition monitoring by an OLVF (On-line Visual Ferrograph) sensor at regular
sampling epochs. A method of Time Series Analysis (TSA) is applied to the healthy portions of the oil data
histories to get the residuals as the observable process containing partial information to fit the hidden
Markov model. The unknown parameters of the fitted hidden Markov model are estimated by the Ex-
pectation-Maximization (EM) algorithm. The remaining useful life (RUL) of lubricating oil can be eval-
uated through explicit formulas of the characteristics such as the conditional reliability function (CRF)
and mean residual life (MRL) function in terms of the posterior probability.

& 2017 Elsevier B.V. All rights reserved.
1. Introduction

Lubricating oil is used to reduce wear and friction from the
mobile components, eliminate contamination, remove heat from
friction surfaces, and avoid machine failure and reduce the cost for
unscheduled maintenance afterwards. Therefore, lubricating oil
condition should be monitored and the oil should be replaced
regularly to extend the period when the machine is in good state
[1]. Recently, condition monitoring (CM) of lubricating oil has at-
tracted a considerably attention in research and it plays a vital role
in industries [2]. The oil data obtained from CM have been used to
assess the actual condition of the operating machine in [3], but to
our knowledge, HM models for lubricating oil deterioration and
replacement when the machine is in the healthy state have not
been developed in the literature. Taking into account that the time
period when a machine is in the healthy state is usually con-
siderably longer than the length of time between oil replacements,
it is assumed in this paper that the machine condition is stable and
will not affect considerably the speed of oil deterioration.
Wear debris level in lubricating oil has been proved to be one of
the most common degradation features to evaluate lubricating oil
degradation [2]. Relative wear debris concentration has been ob-
tained from an image captured by an on-line sensor (OLVF) at a
sampling epoch [4]. By this, the wear debris presenting in a lu-
bricating oil sample can be categorized as a large and small group
according to their sizes by controlling the oil flow rate and magnet
field intensity [4]. When the machine is in operation, wear debris
accumulate in the lubricating oil and the concentration increases,
which leads to the lubricating oil degradation [5].

Although analysis on wear debris in lubricating oil has been
utilized in practice for many years to estimate machine condition,
little work has been done using statistical approaches to model
and analyze oil data for the purpose of assessing the lubricating oil
degradation and predicting its remaining useful life. The predic-
tion with the CM data can be obtained by the conditional relia-
bility function (CRF) and mean residual life (MRL) function [3],
which indicates the failure time when the oil cannot fulfill its
functions anymore, and should be changed. In condition mon-
itoring area, RUL prediction was applied for particle contaminated
lubricating oil by applying physical models using a particle filter-
ing technique [5], as well as the application on rotational bearings
with two-phase threshold model using Bayesian methods [6].
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Fig. 1. HMM-based procedure for RUL prediction.
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To our knowledge, no statistical models have been developed in
the literature which could be applied to the RUL prediction of
lubricating oil.

In this paper, we present a statistical approach to predict the
RUL of lubricating oil subject to deterioration using oil data ob-
tained by an OLVF sensor. Statistical methods of deteriorating
systems, which are utilized in industry to model the degradation
process for early fault detection using CM information, are cate-
gorized into one of three main approaches: the proportional ha-
zard modeling (PHM) [7], stochastic recursive filtering [8], and
hidden Markov modeling (HMM) [9]. HMM, which has been
proved to be efficient in gradual degradation system modeling
[10,11] and the RUL prediction [11], and applied in many areas
such as speech recognition, econometrics and condition-based
maintenance [12], is employed in this paper with two types of
stochastic processes, namely hidden state process and observation
vector process in order to model the degradation process and
predict the RUL of lubricating oil. The state and observation
parameter estimations of the fitted HMM under partial observa-
tions of lubricating oil deterioration can be obtained by the Ex-
pectation-Maximization (EM) algorithm [11].

The residuals are obtained using a vector autoregressive (VAR)
model as the observation process in the hidden Markov frame-
work. Once the parameters of the HMM are estimated, we use the
explicit formulas for the conditional reliability function (CRF) and
the mean residual life (MRL) function in terms of the posterior
probability [13], which can be used for RUL prediction of lu-
bricating oil. The CRF indicates the probability that the oil can
survive during a period of time and has not failed yet, and the MRL
can be calculated by using the posterior probability [14]. It is very
new in the Tribology area to apply the EM algorithm and HMM to
model the degradation process and estimate the RUL of lubricating
oil focusing on the lubricating oil condition.

The HMM-based procedure is shown in Fig. 1. The rest of the
paper is organized as follows. In Section 2, a VAR model is fitted to
the real 2-dimensional oil data from an OLVF sensor collected at
regular time epochs, and the residuals for both the healthy and
unhealthy portions of the oil data histories are obtained. In Section
3, the state and residual process are modeled as an HMM, and the
estimation procedure of the unknown parameters is developed
using the EM algorithm. In Section 4, the formulas for the condi-
tional RF and MRL have been applied, which can be used to predict
the RUL of lubricating oil. Finally, the conclusions and future re-
search are summarized in Section 5.
Fig. 2. Wear debris concentration of small and large particles.

Table 1
Working conditions for the test.

Test no. Load/N Rotated rate/rpm Time/min Downtime duration/min

1 1500 1000 360 0
2 1500 1000 360 240
3 2000 1000 210 720
4 2000 1000 240 60
5 2000 2000 60 480
2. Vector autoregressive modeling and computation of
residuals

The real condition monitoring data were obtained for the de-
tection of lubricating oil deterioration from a four-ball test rig [15]
in order to predict the RUL of the lubricating oil afterwards. During
the operational life of the tribo-pairs, oil data were collected every
▵ = 4 minutes by an OLVF sensor, which is an on-line ferrographic
sensor based on Image Technology, and it provided wear debris
concentrations that came from the direct wear during these
4 minutes. The total number of data histories recorded is 27, which
consist of N¼11 failure histories and M¼16 suspension histories.
The failure history is defined as the history that ends with ob-
servable failure, which indicates that the lubricating oil is out of
use at that moment, and the suspension history is defined as the
history that ends when the lubricating oil is still in operation and
has not lost its functions.

To avoid over-parameterization, we use the 2-dimensional
monitoring data consisting of small wear particles and large wear
particles obtained from the OLVF sensor for analysis. A typical data
history is given in Fig. 2, and the working conditions are listed in
Table 1. IPCA shows three stages including run-in, normal, and
severe stages, which agrees with the typical “Bathtub Curve”.



Fig. 3. Scatter plot for all the residuals. (For interpretation of the references to color
in this figure, the reader is referred to the web version of this article.)
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At the beginning of the sampling, the tribo-pairs are in the run-in
stage, which should be removed from the data set in the modeling
process. After the run-in period, the tribo-pairs are operating un-
der normal conditions, which are regarded as the healthy portion
of the data history. Severe wear dramatically appears at 190th
sampling epoch after 760 operational minutes, which is regarded
as the beginning of the unhealthy portion of the data history. For
our experiment, the four-ball test rig was stopped and restarted
whenworking conditions changed, which explains the peak points
at the beginning of each section in Fig. 2. Besides, this particular oil
sample failed at 290th sampling epoch after 1156 operational
minutes.

As described by Kim and Makis [11], one should first fit a model
using only the healthy portions of the oil data histories that ac-
count for cross and autocorrelation in the data. Since there is no
agreed upon criterion for selecting the ‘optimal’ segmentation, in
order to partition a non-stationary time series data, we simply
divide the data histories into two portions (healthy and unhealthy)
via graphical examination. The purpose of segmentation is to
identify the healthy portions of the data histories so that a sta-
tionary time series model can be fitted and the residuals can be
computed using the fitted model. For each of the + =N M 27 data
histories, the healthy portions of the data histories are denoted as

{ }… = … +z z z i N M, , , , 1, 2, ,i i
t
i

1 2 i
.

The healthy portions of the data histories are assumed to follow
a common stationary vector auto-regressive (VAR) process [16]
given by

∑μ Φ μ ε( − ) − ( − ) = ∈
( )=

−Z Z n Z,
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n
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0

where εn are i.i.d. ( )N 0 C,2 , the model order ∈p N, the auto-
correlation matrices Φ ∈ ×Rr

2 2, and the mean and covariance
model parameters μ ∈ R0

2 and ∈ ×C R2 2. All the model parameters
are unknown and need to be estimated.
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Therefore, the regression representation = +W VA E is ob-
tained for the observed healthy portions of the data histories
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Using the method of least squares [16], the estimates for A and
C are given by

^ = ( ′ ) ′ ( )−V V V WA 71
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− ( + ) ( )
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where = ∑ ( − )=
+T t pi

N M
i1 is the total number of the available

healthy portions of the data histories, and = ( − ^)′( − ^)S W VA W VAp

is the residual sum of squares matrix. The estimation of model
order ∈p N is obtained by testing Φ =H 0: p0 against Φ ≠H 0:a p

using the likelihood ratio statistic given by
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For our real 2-dimensional oil data, we obtained =M 54.334

and = −M 25.645 . From the chi-square distribution with 2 de-
grees of freedom and α = 0.05, χ = 5.992,0.05

2 . Since χ>M4 2,0.05
2 and

χ<M5 2,0.05
2 , we reject Φ =H 0:0 4 and fail to reject Φ =H 0:0 5 .

Therefore, ^ =p 4 is an adequate model order, and the VAR model
parameter estimates are given by
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Using estimates γ μ Φ Φ Φ Φ^ = (^ ^ ^ ^ ^ ^ ^)p C, , , , , ,1 2 3 4 , we define the re-
sidual process ( )▵Yn by

= − ( |
→

) ( )Δ γ̂ −Y Z E Z Z: 10n n n n 1

where
→

= ( … )− −Z Z ZZ , , ,n n1 1 2 1 .

For > ^n p, μ Φ= − (^ + ∑ )▵ =
^

−Y Z Zn n r
p

r n r1 , and for < ^n p, we re-
cursively compute ▵Yn using the Kalman filter, applying the pro-
cedure used in reference [17]. Therefore, the residuals can then be
computed for both the healthy and unhealthy portions of all
monitoring oil data histories, provided graphically in a 2-dimen-
sional scatter plot shown in Fig. 3. The crosses in blue are residuals
computed from the healthy portions of the oil data histories, and
the circles in red are residuals computed from the unhealthy
portions of the oil data histories.

The statistical test of the normality assumption was performed
using the Henze-Zirkler Multivariate Normality Test [18] with a given
significance level α = 0.05, and the obtained results are shown in



Table 2
P-value of the residual normality test.

Test Healthy data set Unhealthy data set

Normality(Henze-Zirkler) 0.8232 0.2983
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Table 2, which show that the calculated residuals follow the multi-
variate normal distribution and satisfy the assumption of multi-
variate normality for both healthy and unhealthy data sets [19].

In the next section, we will apply the HMM framework using
the obtained residuals as the observation process, and estimate the
state and observation parameters by applying the EM algorithm.
3. Hidden Markov modeling and parameter estimation using
EM algorithm

Lubricating oil deterioration is a slow degrading process, and it
is difficult to be examined. In order to investigate the RUL of the
lubricating oil, a degradation model of the process should be
considered. We assume that the deterioration state of lubricating
oil characterized by the two monitoring indexes follows a con-
tinuous time homogeneous Markov process { }( ∈ )+X t R:t , with
the state space { } { }= ∪S 0, 1 2 . In general, states 0 and 1 are
always unobservable, representing the healthy and unhealthy
operational states of lubricating oil, respectively. Only the failure
state (state 2) is observable. It is assumed that the lubricating oil
starts in a “good as new” state, i.e. =X 00 , and the transition rate
matrix is given by

Λ
λ λ λ λ

λ λ=
− ( + )

−
( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟0

0 0 0 11

01 02 01 02

12 12

where λ λ λ ∈ ( + ∞), , , 0,01 02 12 are unknown model parameters.
Let { }ξ = ∈ =+inf t XR : 2t be the observable failure time when

the lubricating oil no longer fulfills its functions. The residual
process ( ∈ )▵Y n N:n defined in Eq. (10) is assumed to be con-
ditionally independent given the state of the lubricating oil, and
for each ∈n N, we assume that ▵Yn , conditional on =▵X xn , has
bivariate normal distribution μ Σ( )N ,x x2 , where x¼0,1, with the
density given by

π Σ
μ Σ μ( | ) =

( ) ( )
− ( − )′ ( − )

( )
|

−
Δ Δ

⎛
⎝⎜

⎞
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1
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exp

1
2 12

Y X
x
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1

n n

where μ ∈ Rx
2 and Σ ∈ ×Rx

2 2, ( = )x 0, 1 are unknown parameters of
the observation process.

When the oil fails, η( = | = ) =▵ ▵P Y X 2 1n n , η ∉ R2 is the failure
signal obtained by the OLVF sensor. We denote the N¼11 failure
Table 3
Iterations of the EM algorithm.

Parameters Initial values First iteration

λ01 0.01 0.0118
λ02 0.0005 0.00056
λ12 0.5 0.4884
μ0 ( )0

0 ( )−
−e

0.0011
4.31 4

μ1 ( )0.05
0.02 ( )−

0.0036
0.0020

Σ0 ( )0.02
0.02

0.02
0.05 ( )0.003088

0.000266
0.000266
0.001828

Σ1 ( )0.03
0.02

0.02
0.05 ( )0.003893

0.000823
0.000823
0.001858

Q �81.3594 �168.3331
Time/s 0.25 0.4063
oil data histories as { }…F F F, , N1 2 , with the form of

( )= …y y yY , ,i
i i

T
i

1 2 i
, ( = … )i N1, 2, for each failure history Fi. The

observable failure time ξi for each history is
ξ = ( ▵ < ≤ ( + )▵)t T t T, 1i i i i i . The sampling history Yi consists of the
residuals ∈ ≤y t TR ,t

i
i

2 , calculated from the collection of oil data
until the lubricating oil fails at time ti.

Similarly, we denote the M¼16 suspension oil data histories as

{ }…S S S, , M1 2 , with the form of ( )= …y y yY , ,j
j j

T
j

1 2 j
, ( = … )j M1, 2,

for each suspension history Sj. The failure time ξj is unobservable,
where ξ = > ▵t Tj j j . The sampling history Yj consists of the re-
siduals ∈ ≤y t TR ,t

j
j

2 , calculated from the collection of oil data but
the lubricating oil is still in operation at time tj, and has not failed
yet.

Let { }= … …O F F F S S S, , , , ,N M1 2 1 2 represents a vector of all the
observable lubricating oil data, and λ θ( | )L O, be the associated
likelihood function, where λ λ λ λ= ( ), ,01 02 12 are the unknown state
parameters and θ μ μ Σ Σ= ( ), , ,0 1 0 1 are the unknown observation
parameters. Expectation-Maximization (EM) algorithm is adopted
by iteratively maximizing the so-called pseudo likelihood function
to estimate the unknown parameters.

EM algorithm consists of two steps: E-step and M-step, where
E-step computes the expectation of the associated likelihood
function and M-step obtains the maximization of the unknown
states and observation parameters. The E-steps and M-steps are

repeated until the Euclidean distance ( )λ θ λ θ ε( * *) − ^ ^ <, , , where

λ θ^ ^, are the estimates of the unknown parameters from the former
M-step, λ θ* *, are the new parameters estimated from the current
M-step, and ε is the selected stopping criterion value. More spe-
cifically, the EM algorithm works as follows.

E-step: the pseudo likelihood function is defined by

( )λ θ λ θ λ θ| ^ ^ = ( ( | )| ) ( )λ θ^ ^Q E L C O, , : ln , 13,

where { }= ¯ … ¯ ¯ … ¯C F F S S, , ,N M1 1 represents the complete lubricating
oil data histories.

M-step: compute λ θ* *, by

λ θ λ θ λ θ* * ∈ ( | ^ ^)
( )λ θ

Q, argmax , ,
14,

Explicit formulas for the computation of the pseudo likelihood
function defined in Eq. (13) and the unique maximums of the
unknown state and observation parameters can be found in
[11,17].

With the stopping criterion ( )λ θ λ θ( * *) − ^ ^ < −, , 10 4, we ob-

tained the results shown in Table 3.
Thus, the deterioration state of lubricating oil is modeled as a

continuous time homogeneous Markov chain ( ∈ )+X t R:t with
Second iteration Final iteration

0.0132 0.0189
0.00059 0.000047
0.4572 0.1812

( )− −
−

e
e
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3.99 4 ( )−

− −
e
e

1.25 4
8.16 4

( )−
0.0030
0.0067 ( )−

0.0197
0.0131

( )0.003068
0.000264

0.000264
0.001829 ( )0.002767

0.000288
0.000288
0.001680

( )0.003604
0.001222

0.001222
0.001984 ( )0.002966

0.02096
0.002096
0.002077

�169.7593 �329.8362
0.5313 2.3281



Fig. 4. The residual observation process of real failure history. (For interpretation of
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three states { }0, 1, 2 . The transition rate matrix is given by

Λ =
−

−
( )

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

0.01894 0.018893 0.000047
0 0.18116 0.181160
0 0 0 15

and the observations ▵Yn conditional on = =▵X x x, 0, 1n , have
bivariate normal distribution μ Σ( )N ,2 0 0 for healthy portions of the
oil data histories and μ Σ( )N ,2 1 1 for unhealthy portions, where

( )

μ Σ

μ Σ

=
−

=

=
−

=

⎛
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0.000125
0.000816
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0.000288 0.001680
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0.002096 0.002077

0 0

1 1

In the next section, we use the estimated parameters of the
model to compute the CRF and MRL functions for RUL prediction of
lubricating oil based on the posterior probability that the oil is in
state 1 (warning state), which is not observable.
the references to color in this figure, the reader is referred to the web version of this
article.)
4. CRF and MRL functions for RUL prediction

Explicit formulas of the CRF and the MRL functions of the
model proposed in Section 3 for the RUL prediction of lubricating
oil will be considered in this section, and as it is shown in [3], both
formulas are functions of the posterior probability of the lu-
bricating oil being in the warning state (state 1).

We assume that the deteriorating state process of lubricating
oil is described by a continuous-time homogeneous Markov chain
( ∈ )+X t R:t , with state space { }=Z 0, 1, 2 , where state 0 denotes
the state that the lubricating oil is working in a healthy condition,
state 1 denotes the state that the lubricating oil is operating in a
warning condition, and state 2 represents the failure or absorbing
state of lubricating oil, which indicates that it requires an im-
mediate replacement. The transition rate matrix of the state pro-
cess is given by Eq. (15). Moreover, lubricating oil starts in state
0 and runs on a continuous basis. While the lubricating oil is in
service, the residual observation process ( ∈ )▵Y n N:n , which is
obtained from Eq. (10) using the collected data through condition
monitoring at equidistant sampling times ▵ ▵ … ▵n, 2 , , for
▵ = 40 min, has a state-dependent multivariate normal distribu-
tion defined in Eqs. (15,16). By solving the Kolmogorov backward
differential equations [20], the transition probability matrix for the
state process Xt has the following form:
λ
λ λ λ
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12 01 02

01 02
12 01 02

12 12
where the transition probabilities { }( ) = ( = | = ) ∈P t P X j X i i j, , 0, 1ij t 0 .
We will show that the CRF and MRL functions can be expressed

in terms of the posterior probability statistic Πn, denoting the
posterior probability that the lubricating oil is in warning state
(state 1) given all available information until time ▵n , which is
defined as

Π ξ Δ= ( = | > … ) ( )Δ Δ Δ ΔP X n Y Y Y1 , , , , 18n n n2

where Π = ( = ) =P X 1 00 0 . Using Bayes’ rule for ≥n 1, we have
Π
ξ Δ ξ Δ

ξ Δ ξ Δ
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where Pij are given in Eq. (17), and the ratio of normal densities has
the following representation
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For more details, see reference [17].
Suppose that at decision epoch n, the lubricating oil has not

failed, i.e. ξ > ▵n . For any ∈ [ ▵]t 0, , the conditional reliability
function (CRF), which denotes the probability that the lubricating
oil will not fail by ▵ +n t , is defined as

Π ξ ξ Π
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( | ) = ( > ▵ + | > ▵ … )

= ( ) + ( ) + ( ( ) − ( ) − ( )) ( )
▵ ▵R t P n t n Y Y
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Using the CRF in Eq. (23), the MRL function at the nth epoch can
be obtained by the following formula:



Fig. 5. Posterior probability of the typical failure oil history.

Fig. 6. The conditional reliability function of real failure history.
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The CRF and MRL functions have been widely used for RUL
prediction [3]. (See e.g., [3] and the references in that paper for
more details).

We apply the above formulas to one of our failure histories
with bivariate residual observations, which is shown in Fig. 4. This
failure history ended between 25th and 26th sampling epoch. The
black solid line denotes the residual observations of small parti-
cles, and the red solid line denotes the residual observations of
large particles.

Fig. 5 plots the posterior probability of lubricating oil data
history presented in Fig. 4. The posterior probability was calcu-
lated using Eqs. (21,22). The plot shows that the lubricating oil
started in the healthy state (state 0) at time 0, ran under the
healthy condition till sometime between 1st and 15th sampling
epoch, and after 16th sampling epoch, the lubricating oil was
working in the warning state (state 1).

Fig. 6 provides the estimated conditional reliability at each
sampling epoch for this failure oil data history shown in Fig. 4. It
can be seen that the value of the reliability dropped at the 15th
sampling epoch when the state changed to the warning state
(state 1), and after 25th sampling epoch, the lubricating oil shifted
to the failure state (state 2). It is shown that there is a high
probability at that time that the state of the lubricating oil has
changed, and the full inspection and a subsequent oil replacement
action should be taken.
5. Conclusions and future researches

In this paper, we have considered the situation where the lu-
bricating oil degradation is driven by a continuous time homo-
geneous Markov chain and the observation process is represented
by a 2-dimensional on-line monitoring oil data obtained from a
four-ball test rig, where the actual oil states are unobservable
except the failure state. A vector autoregressive model has been
fitted to the healthy portions of all oil data histories classified as
failure histories and suspension histories. The residuals calculated
from the VAR model are then used as the observation process in
the HMM framework, and the state and the observation process
parameter estimates of the lubricating oil have been obtained
using the EM algorithm. With the unknown parameters estimated,
RUL prediction of lubricating oil has been developed by deriving
the explicit formulas of the CRF and MRL functions expressed in
terms of the posterior probability for the purpose of future deci-
sion-making.

The HMM considered in this paper assumes that the sojourn
times in both the healthy and warning states are exponentially
distributed, which may not be realistic in some situations. Also,
this paper studies only the degradation process of lubricating oil
when the machine is in healthy condition, and the RUL from the
‘good as new’ state to the oil failure state. In future research, more
general distributions of the sojourn times will be considered, such
as Erlang of phase-type distributions, which will cover more real
situations and provide better estimates of RUL when exponentially
distributed sojourn times are not appropriate.
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