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Abstract

Lubricating oil contains a lot of tribological information of the machine and plays an important role in machine health.

Oil degrades with serving time and causes severe wear afterwards, which is a complex dynamic process, and difficult to

be accurately described by a single property. Therefore, the main purpose of deterioration prediction is to estimate the

remaining useful life that the oil can still fulfill its functions by analyzing oil condition monitoring data. With a large amount

of oil condition monitoring data collected, a vector autoregressive model is applied to the original oil data to describe the

dynamic deterioration process. Then dynamic principal component analysis, an effective dimensionality reduction

method, is employed to obtain the principal components capturing the most information of the oil data. The propor-

tional hazards model is then built to calculate the failure risk of the lubricating oil based on the condition monitoring

information, where its baseline function represents the aging process assuming to follow the Weibull distribution and its

positive link function represents the influence of covariates (the principal components) on the failure risk. Finally, the

remaining useful life prediction of lubricating oil can be obtained by explicit formulas of the characteristics such as the

conditional reliability function and the mean residual life function. This work provides an approach to assess the health of

lubricating oil, and a guidance for oil maintenance strategy.
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Introduction

Lubricating oil is one of the key components of a
machine, which contains a lot of tribological informa-
tion. Lubricating oil characteristics can describe the
deterioration of the oil and the operation conditions
of the machine.1,2 With serving time and the influ-
ences of many factors, lubricating oil degrades and
produces acidic substances, moisture, and insoluble
deposits,3,4 such as carbon deposits, sludges, etc.
Under such circumstances, lubricating oil deterior-
ates, and its performance characteristics are reduced,5

which subsequently leads to machine failure caused by
friction and wear problems.6,7 By oil monitoring and
analysis technologies, the physical and chemical prop-
erties of lubricating oil obtained from condition moni-
toring (CM) have been used to assess oil deterioration
and evaluate the current status of the machine.8,9 Due
to the fact that lubricating oil performance does not
depend only on one or several indicators, different
kinds of monitoring methods are required to obtain

as much oil information as possible. However, to our
knowledge, there may be a strong correlation between
variables of the CM data with both cross-correlation
and autocorrelation because they are related to the
same deterioration process of lubricating oil.
Moreover, the large amount of data makes it difficult
to assess oil deterioration and evaluate machine con-
dition. Therefore, it is first necessary to reduce the
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dimensionality of the oil data. Dimensionality reduc-
tion method is applied, which maps multi-dimensional
data to a low-dimensional space using fewer irrelevant
variables to represent the original oil data. Principal
component analysis is one of the most popularly used
methods for dimensionality reduction to overcome
‘‘dimensionality disaster’’ and improve analysis effi-
ciency.10 Dynamic principal component analysis
(DPCA) is an extension of principal component
analysis, which is very suitable for multivariate con-
tinuous data that are both cross-correlated and auto-
correlated.11,12

Lubricating oil will fail when the deterioration
degree reaches the pre-specified fault threshold. In
industry, the threshold of physical and chemical prop-
erties of lubricating oil is utilized to determine the oil
change time, but the value of the threshold relies heav-
ily on empirical values, and the control limit is differ-
ent depending on the characteristics of lubricating oil
performance and the working condition in actual
engineering applications.13 Therefore, at present,
there is still no criterion for determining the failure
of lubricating oil. In the literature, several statistical
models have been applied to describe the deterior-
ation process and obtain the failure time of a system
or a machine, such as the filtering-based model,14 the
hidden Markov model (HMM),15,16 the proportional
hazards model (PHM),17,18 the regression model,19 etc.
These models are data-driven methods which utilize the
lifetime information obtained from inspections. PHM,
which was proposed by Cox in 1972, has been widely
used to calculate the failure risk (hazard rate) with CM
information and predict the remaining useful life
(RUL) of the deterioration system first in the field of
biomedical sciences.20 Recently, this kind of method
has also been employed in the field of reliability and
maintenance of machines.21–23 Furthermore, the
method of PHM does not require the prior knowledge
of a given threshold.

In this paper, a multivariate time series analysis of
the original lubricating oil data based on physical and
chemical properties is firstly applied to fit a vector
autoregressive (VAR) model. A dimensionality reduc-
tion methodology, DPCA, is then employed to reduce
the model dimensionality. The principal components
(PCs) are then obtained, which carry most informa-
tion of the oil data without cross-correlation and
autocorrelation. Subsequently, a PHM is built to cal-
culate the failure risk of lubricating oil, where the PCs
are regarded as the covariates of the model. Finally,
the explicit formulas of the conditional reliability
function (CRF) and the mean residual life (MRL)
function are computed to predict the RUL of lubri-
cating oil.24 The CRF represents the probability that
the lubricating oil can fulfill its functions during the
period of time and has not failed yet, and the MRL
function is employed to obtain the remaining time
that the oil can still survive.15 It is a very new
approach to apply PHM in the field of Tribology to

model the oil deterioration process and estimate the
RUL of lubricating oil with the CM data based on
physical and chemical properties. The complete pro-
cedure is shown in Figure 1.

Lubricating oil data description

The real experimental CM oil data based on physical
and chemical properties were obtained. The lubricat-
ing oil, which was used for large machines, was col-
lected from the engine of a loader. The CM data of
lubricating oil represent the oxidation of the oil, the
loss of additives and the deterioration of the oil. There
are several monitoring methods to inspect the physical
and chemical properties of lubricating oil, and dozens
of performance parameters are used to characterize
oil deterioration. In industry, the selected monitoring
indicators are oxidation, kinematic viscosity (40 �C),
TAN, TBN, Ca, Zn, P, etc. In this paper, we use the
seven-dimensional monitoring data to assess the lubri-
cating oil, where a typical data sheet is given in Table
1. The oil data were collected every � ¼ 100 h by off-
line monitoring of lubricating oil. TAN and TBN are
the total acid number and the total base number of
the lubricating oil, respectively. The measurements of
TAN and TBN represent the oxidation degree of the
lubricating oil, where the increase of TAN and the
decrease of TBN indicate the production of the
acid.2 The measurements of the metal elements phos-
phorus (P), zinc (Zn), and calcium (Ca) in ppm rep-
resent the content of additives in lubricating oil,25 so
the loss of additives can be obtained by monitoring
the contents of these elements. The total number of oil
data histories is 6, which consist of N¼ 2 failure his-
tories that end with a failure, and M¼ 4 suspension

Figure 1. Procedure for RUL prediction of lubricating oil.
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histories that end when the lubricating oil is still in
operation and has not lost its functions.

Vector autoregressive modeling of
the oil data

As described by Makis et al.,17,26 the oil data histories
are considered as a multivariate time sequence and
follow a VAR process27 given by

Zn ¼ �þ
Xp
r¼1

�rZn�r þ "n, n 2 Z ð1Þ

where Zn ¼ z1n, z2n, . . . , z7nð Þ
0, n 2 Z denotes the

seven-dimensional time series vector of random vari-
ables (CM data of lubricating oil), "n is the seven-
dimensional vector representing the white noise
process of lubricating oil with covariance matrix �
following i.i.d. N7ð0,DÞ, p 2 N is the model order,
�r 2 R7�7, r ¼ 1, . . . , p are coefficient matrices,
�0 2 R7 and � 2 R7�7 are the mean vector and covari-
ance matrices of Zn, respectively. All the model param-
eters are unknown and need to be estimated.

The regression representation is W ¼ VAþ E.15,26

W is defined as the a� 7 data matrix W ¼

Zpþ1,Zpþ2, . . .ZT

� �0
, where T is the time series

length of lubricating oil, T ¼
PNþM

i¼1 ti � pð Þ, and

a ¼ T� p. V is defined as the a� 7pþ 1ð Þ matrix,

whose typical row is Vn ¼ 1,Zn�1, . . . ,Zn�p

� �
,

n ¼ pþ 1, . . . ,T. A is defined as A ¼ �,�1, . . . ,½

�p�
0, and E is defined as the error matrix

E ¼ "pþ1, "pþ2, . . . , "T
� �0

.

Therefore, we have15

W ¼ z1pþ1, . . . , z1t1 , . . . , zNþMpþ1 , . . . , zNþMtNþM

h i0
ð2Þ

A ¼ �,�1, . . . ,�p

� �0
ð3Þ

E ¼ "1pþ1, . . . , "1t1 , . . . , "NþMpþ1 , . . . , "NþMtNþM

h i0
ð4Þ

V ¼

1 z1p . . . z11

1 ..
. ..

. ..
.

1 z1t1�1 . . . z1t1�p

1 ..
. ..

. ..
.

1 zNþMp . . . zNþM1

1 ..
. ..

. ..
.

1 zNþMtNþM�1
. . . zNþMtNþM�p

2
6666666666666664

3
7777777777777775

ð5Þ

Using the method of least squares (LS)27 to esti-
mate the vector AR(p) model parameters of lubricat-
ing oil, the LS estimator of A minimizes the following
objective function15,26

tr Sp

� �
¼ tr W� VAð Þ

0 W� VAð Þ
� �

ð6Þ

where ‘‘tr’’ is the trace of the square matrix, which is
the sum of diagonal elements in the matrix, and Sp is
the residual sum of the matrix obtained from the
vector AR model of order p.

Then, the LS estimators of A and D can be com-
puted by the following formulas

Â ¼ �̂, �̂1, . . . , �̂p

h i0
¼ V0Vð Þ

�1
V0W ð7Þ

D̂ ¼
1

T� 7pþ 1ð Þ
W� VAð Þ

0 W� VAð Þ

¼
Sp

T� 7pþ 1ð Þ

ð8Þ

The estimation of the order of the VAR model
p 2 N is obtained by testing H0 : �p ¼ 0 against
Ha : �p 6¼ 0. The likelihood ratio statistic is given by

Mp ¼ � T� 7p� 1�
1

2

� �
ln

det Sp

� �
det Sp�1

� �
 !

ð9Þ

where the likelihood ratio statisticMp is approximately
distributed as �2

k2
, k is the dimension of the CM oil

data. We reject H0 : �p ¼ 0, when Mp 4�2�,k2 . And �

Table 1. Physical and chemical properties of lubricating oil.

No. Characteristic Unit 0 h 100 h 200 h 300 h 400 h 500 h

1 Oxidation A/cm 11.67 12.39 12.19 11.65 11.58 11.62

2 Viscosity cSt 103.3 95.80 95.52 94.89 94.69 96.1

3 TAN mgKOH/g 1.84 1.03 1.65 2.43 2.66 2.2

4 TBN mgKOH/g 6.89 6.17 5.54 4.24 4.49 3.04

5 Ca ppm 1332 1446 1396 1321 1290 1167

6 Zn ppm 773 809 788 737 740 670

7 P ppm 724 709 687 634 643 564

Du et al. 3



is the selected significance level of the likelihood
ratio test.

For our real seven-dimensional oil data, k¼ 7. For
p¼ 2 and p¼ 3, we obtain the LR statistic M2 ¼

81:9735 and M3 ¼ �168:23. For the significance

level � ¼ 0:05 and k2 ¼ 49 degrees of freedom, the

critical value is �20:05,49 ¼ 65:2352. Since M2 4�20:05,49
and M3 5�20:05,49, we reject H0 : �2 ¼ 0 and fail to

reject H0 : �3 ¼ 0. Therefore, p̂ ¼ 2 is the adequate
model order for the oil data. For the fitted vector

AR(p) model, the parameter estimates f�̂, �̂12,

�̂22, �̂g are given by equations (10) to (13)

�̂ ¼ ½11:8184, 98:1250, 1:9756, 5:3547,

1293:9167, 727:5556, 669:3611�0

ð10Þ

Dimensionality reduction of oil data
using DPCA

Principal component analysis is a method of multi-
variate statistical analysis, which is mainly used for
dimensionality reduction, feature extraction, and

fault diagnosis. This kind of method applies the
linear transformation to the CM data. DPCA is an
extension of the original principal component analysis
method, which can be applied to the matrix composed
of the time-shifted data vectors.16 By using DPCA,
the multivariate CM data of lubricating oil can be
reduced to a data set of variables (the PCs) that
accounts for the most information of the oil data.
The PCs are uncorrelated and independent of each
other,28 and the value of the covariance is 0.
Therefore, we adopt DPCA method to reduce the
dimensionality of the oil data, and the vectors of the
oil data consist of the current data vector Zn and
the time-shifted vectors Zn�1, Zn�2.

Firstly, the correlation matrix R of the oil data

should be obtained, R ið Þ ¼ D�1� ið ÞD�1, i ¼ 0, 1, 2,
where i is the time lag.17 � 0ð Þ is the cross-covariance
matrix, � ið Þ, i ¼ 1, 2 are the auto-covariance matri-

ces, and D ¼ � 0ð Þ � ��
0

p�1ð Þ�
�1
p�1ð Þ�

�
p�1ð Þ is the diagonal

matrix of standard deviations of the oil data,

��
0

p�1ð Þ ¼ � p� 1ð Þ, . . . ,� 1ð Þ½ �, �p ¼
�p�1 ��p�1ð Þ

��
0

p�1ð Þ � 0ð Þ

" #
.

R i� jð Þ is the i, jð Þth block of the correlation

matrix, and R i� jð Þ¼ R j� ið Þ
0, if i� j5 0,

i, j ¼ 1, 2, 3.

�̂ ¼

0:1149 �0:0389 0:0364 �0:0274 �4:0151 �1:8773 2:1394

�0:0389 2:7879 �0:2121 0:5263 �20:8087 10:6991 32:7385

0:0364 �0:2121 0:1220 �0:0709 �5:3152 �3:5211 �1:2782

�0:0274 0:5263 �0:0709 0:6189 15:7660 2:3264 20:9676

�4:0151 �20:8087 �5:3152 15:7660 1950:7451 134:3497 322:1918

�1:8773 10:6991 �3:5211 2:3264 134:3497 425:8500 158:7244

2:1394 32:7385 �1:2782 20:9676 322:1918 158:7244 1123:1992

2
666666666664

3
777777777775

ð11Þ

�̂12 ¼

0:2232 �2:6817 0:3663 �0:1406 �42:2457 7:5913 8:5408

0:0030 �0:1545 0:0552 �0:0502 �5:9917 3:7117 �1:5628

0:2382 �4:4831 1:0524 �0:1513 �87:9208 �34:9342 17:8352

0:0253 0:2606 0:0537 0:4421 �44:4522 �13:5743 �20:6324

�0:0011 0:0079 �0:0028 �0:0012 1:0136 0:0527 0:0507

�0:00001 0:0020 0:0013 0:0047 �1:3197 0:4610 0:2472

0:0032 �0:0002 �0:0059 0:0001 0:8816 �0:1745 0:8429

2
666666666664

3
777777777775

ð12Þ

�̂22 ¼

�0:4685 0:2687 0:0885 0:1630 �28:5648 15:0614 �17:2206

0:0047 0:2210 �0:0185 0:0503 �5:0669 �0:0650 �1:9170

0:0018 �3:6632 0:2316 �0:8936 �60:9622 43:1238 �16:2975

0:1986 �0:5004 0:2145 �0:1676 43:2904 0:4863 43:7250

�0:0006 �0:0422 0:0060 �0:0017 �0:1838 0:2209 0:0210

0:0015 0:0169 �0:0089 �0:0015 0:6542 0:3032 �0:19750

�0:0034 �0:0784 0:0113 0:0064 �0:8847 0:4499 �0:3031

2
666666666664

3
777777777775

ð13Þ
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Secondly, the score vector of the dynamic PCs of
the oil data can be obtained as11

Sn ¼ U0On ¼ u1, u2, . . . , ukð Þ
0
�On ð14Þ

where U ¼ u1, u2, . . . , uk are the eigenvectors of the
correlation matrix R of the oil data, the vector

On ¼ O0n, O
0
n�1, O

0
n�2

� �0
is the standardized vector

obtained from the oil data set Zn, and O0n ¼
Zn,1�Z1

s1
,

Zn,2�Z2

s2
, . . . ,

Zn,k�Zk

sk

� 	
, Zi and si are the mean

and the standard deviation of variables Zi, i ¼ 1, . . . ,
k, respectively.

Cattell’s scree test29 is adopted to determine
the number of dynamic PCs to retain, and the result
of the test is shown in Figure 2. The eigenvalues
are drawn in continuous descending order of their
extraction, and then an elbow in the curve is identified
so that the bottom of the eigenvalues after the elbow
forms an approximate straight line. The retained
dynamic PCs are the eigenvalues that are above
the line.

From Figure 2, we can conclude that there is a
break between the first 4 and the remaining 17 eigen-
values, which indicates that we need to retain the first
four dynamic PCs for the subsequent fitting of PHM.

A more detailed description of the eigenvalues and
their contribution rates obtained after applying
DPCA is shown in Table 2, where the eigenvalues li
are in the successive descending order. It can be seen
that the first four eigenvalues li, i ¼ 1, 2, 3, 4 are
6:3883, 5:3891, 2:5405, 1:5635f g, and the contribution
rates Ci, i ¼ 1, 2, 3, 4 of the first four components
are 30:42 %, 25:66 %, 12:10 %, 7:45 %f g. It is indi-
cated that the selected four dynamic PCs contain the
most information of the lubricating oil performance
from the original oil data. Therefore, it is very reason-
able and feasible to choose the four dynamic PCs.

Proportional hazards modeling and RUL

prediction of lubricating oil

Proportional hazards modeling

PHM is utilized to estimate the failure time of the
system according to the CM variables and lifespan
data of lubricating oil. The relationship between the
CM data and the hazard rate is described by using
PHM shown in Figure 3,22 which is considered
to be very successful to model the lifetime data.

Figure 2. Scree test for the lubricating oil data.

Table 2. Eigenvalues li and contribution rates Ci of the oil data vector in the successive descending order.

i¼ 1 2 3 4 5 6 7 8 9 10 11

li 6.3883 5.3891 2.5405 1.5635 1.0414 0.8416 0.6981 0.4927 0.4587 0.3762 0.3102

li � liþ1 0.9992 2.8486 0.9769 0.5221 0.1998 0.1435 0.2054 0.0339 0.0826 0.0659 0.0836

Ci % 30.42 25.66 12.10 7.45 4.96 4.01 3.32 2.35 2.18 1.79 1.48

12 13 14 15 16 17 18 19 20 21

li 0.2266 0.1912 0.1496 0.1154 0.0768 0.0599 0.0437 0.0200 0.0116 0.0050

li � liþ1 0.0355 0.0416 0.0342 0.0386 0.0169 0.0162 0.0237 0.0084 0.0066 –

Ci % 1.08 0.91 0.71 0.55 0.37 0.29 0.21 0.10 0.06 0.02

Figure 3. Hazard rate calculation by CM data using PHM.
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PHM is one of the statistical regression models to
calculate the hazard rate of the system for the purpose
of life analysis,18 which provides a mapping relation-
ship between the CM data and the hazard rate of the
system. Therefore, by monitoring the CM data of
lubricating oil, the hazard rate of the oil can be
obtained by using PHM.

The composition of the PHM is the failure
rate, which is the product of a baseline hazard rate
h0ðtÞ, and the positive link function  ð� � ztÞ, which
represents the effect of the operational environment
on the deterioration process. Thus, the hazard rate
function for the proportional hazards modeling has
the common form17

hðt, ztÞ ¼ h0ðtÞ �  ð� � ztÞ ð15Þ

where hðt, ztÞ is the hazard rate under the condition
of the covariates ztf g of lubricating oil, which is
assumed to be a continuous time Markov process;
h0ðtÞ is the baseline hazard rate commonly using
Weibull distribution, which has the form h0ðtÞ ¼

�
�

t
�

� 	��1
, and �, � are the parameters of Weibull distri-

bution;  ð� � ztÞ is the positive link function commonly
having the form  ð� � ztÞ ¼ expð� � ZðtÞÞ, and � is the
vector of regression coefficient indicating the effect of
the PCs of oil data on the hazard rate function.

Therefore, the PHM using the Weibull proportional
hazard function can be computed by equation (16) 17

hðt,ZtÞ ¼
�

�

t

�

� ���1
� expð�1 � z1ðtÞ þ :::þ �k � zkðtÞÞ ð16Þ

Equation (16) can also be written as

log h t,ZðtÞð Þð Þ ¼ log
�

�

t

�

� ���1 !
þ � � ZðtÞ ð17Þ

For the oil data histories, dynamic PCs computed
previously are regarded as the covariates for the
PHM, ZðtÞ ¼ PC1t, PC2t,ð PC3t, PC4t, PC1t�1,
PC2t�1, PC3t�1, PC4t�1Þ

0. The columns of matrix
U ¼ u1, u2, u3, u4½ � are the eigenvectors correspond-
ing to the first four largest eigenvectors of the correl-
ation matrix R of the oil data, which is presented in
equation (18).

The hazard rate at each sampling epoch of the
lubricating oil is plotted in Figure 4. It can be seen
that the hazard rate increases gradually. Specifically,
the hazard rate increases slowly at the early stage of
the oil deterioration, and with the deterioration
of the lubricating oil, the hazard rate gets higher in
the later period.

U ¼ u1, u2, u3, u4½ � ¼

�0:1845 0:0665 0:1419 �0:0560

0:2729 �0:1131 �0:1486 0:1577

�0:1696 0:2910 0:1947 0:1544

0:0941 �0:3273 �0:2273 0:2630

0:1607 �0:2664 �0:2329 �0:2776

0:1519 �0:3565 �0:1243 �0:0248

0:0897 �0:3331 �0:0972 0:3073

�0:1767 �0:0663 0:0171 0:2254

0:2393 0:1935 0:1642 �0:1775

�0:3517 0:1100 �0:0615 0:0051

0:2507 �0:0207 0:4365 0:0733

0:3119 �0:0795 0:0887 �0:2972

0:3408 �0:0613 0:1979 �0:0018

0:2356 0:0037 0:4251 0:2702

�0:0467 �0:2102 0:0240 0:3835

0:0604 0:2118 �0:4411 �0:1322

�0:2846 �0:2530 0:0314 �0:0176

0:1514 0:2682 �0:2613 0:3211

0:2607 0:1885 �0:1667 �0:1264

0:2534 0:2535 �0:1641 0:1063

0:1055 0:3044 �0:1437 0:4032

2
666666666666666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777777777777777775

ð18Þ
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RUL prediction of the lubricating oil

The CRF and MRL functions have been widely used
for RUL prediction.15,30 Therefore, CRF and MRL
functions are employed in this paper to predict the
RUL of lubricating oil. The CRF based on equation
(16), which denotes the probability that the lubricat-
ing oil will not fail at time t, can be computed by

Rðt,ZðtÞÞ ¼ P T4 tj04s4tð Þ

¼ exp �

Z t

0

exp � � ZðsÞð Þd
s

�

� �� !
ð19Þ

Then, the MRL function can be calculated by

MRLt ¼

Z 1
0

Rðt,ZðtÞÞdt ð20Þ

The computed CRF for the selected failure history
is illustrated in Figure 5.

It can be seen that the CRF of the PHM decreases
gradually as the lubricating oil gets degraded.
Meanwhile, the reliability decreases slowly at the
early period of the oil deterioration, but drops faster
in the late stage of deterioration. For the estimated
results of the oil data history, the reliability remains
high at time t ¼ 250 h, and the oil can still fulfill its
functions at time t ¼ 500 h but with a low perform-
ance. The results indicate that the oil can still fulfill its
functions at the end of the detection time as well.
Therefore, the predicted results agree with the actual
results very well.

Conclusions and future research

In this paper, we have applied a vector AR(2) model
to represent the dynamic deterioration process of the
lubricating oil by a seven-dimensional oil monitoring
data obtained from the loader. The method of DPCA
has been employed to reduce the data dimensionality.
By doing this, four dynamic PCs have been selected
using the scree test. Then, the four PCs have been
regarded as the covariates for a Weibull PHM.
RUL prediction of lubricating oil has finally been
developed by deriving the explicit formulas of CRF
and MRL functions. It is verified by the agreement
between the predicted results and the actual results
that the proposed approach can assess the deterior-
ation of lubricating oil and provide a guidance to oil
maintenance strategy as well.

However, the Weibull PHM in this paper assumes
the values of the model parameters of Weibull distri-
bution based on experience, and additionally, the
number of oil data histories used in this paper is
very limited. Due to the influencing factors, the pre-
diction accuracy of the proposed model will be
reduced. In future research, the pseudo-likelihood
function, which can be used to estimate the unknown
model parameters of Weibull distribution by maxi-
mizing the function iteratively, will be considered.
As the precision of the Weibull PHM depends on
the CM data, enough oil data histories will be col-
lected in the subsequent research. Moreover, the
PCs could be investigated and interpreted with the
corresponding physical mechanisms, which is another
research focus in the future work.
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