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Replacement Scheme for Lubricating Oil
Based on Bayesian Control Chart

Ying Du , Chaoqun Duan , and Tonghai Wu

Abstract— Lubricating oil carries important health informa-
tion of operating machines, and oil replacement scheme is crucial
for ensuring machine health, reducing operation costs, and
improving machine availability. However, few works have been
done on the determination of reasonable replacement time for
lubricating oil in the industry. Therefore, the main motivation
of this article is to present a replacement scheme based on the
Bayesian approach to detect and prevent the potential failures of
lubricating oil. A three-state statistical model based on the hidden
Markov chain is applied to characterize oil deterioration, which
contains partially observable healthy and unhealthy states, and an
observable failure state. A novel Bayesian control scheme for oil
replacement based on the hidden stochastic process is proposed
under the objective of long-term expected average availability
maximization. A computational algorithm in a semi-Markov deci-
sion process is presented to estimate the optimal decision variable
of the Bayesian control chart. The 2-D oil data based on wear
debris collected at regular time epochs from a four-ball tester are
adopted to validate the effectiveness of the proposed replacement
approach. Given comparisons with the age-based scheme and
the failure-based scheme, the proposed Bayesian replacement
approach for lubricating oil is demonstrated to achieve better
fault detection performance and the longer average availability.

Index Terms— Bayesian control chart, fault prognosis,
hidden Markov model (HMM), oil deterioration modeling, oil
replacement.

I. INTRODUCTION

LUBRICATING oil is the “blood” and tribological infor-
mation carrier of the machine, whose performance

directly determines the safety, reliability, operating efficiency,
and maintenance costs of the industrial production process [1]–
[3]. Oil deterioration is a slow and complicated process and
can result in insufficient lubrication, excessive wear, and even
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Fig. 1. Relationship between the failure condition and maintenance costs [5].

catastrophic machine failures under the condition of high
temperature, high speed, and uncertain loads [3], [4]. It has
been illustrated that the maintenance cost will be low when
the machine is operating with deteriorated oil [5], as shown
in Fig. 1. As the oil status degrades seriously, the maintenance
cost is largely increased. Therefore, early fault detection and
identification of lubricating oil are very crucial for machine
operation and maintenance, and reasonable oil replacement
is especially necessary for extending machine useful life,
improving machine operational reliability, and saving energy
consumption.

Condition-based monitoring has been widely applied in
industry for better describing the machine’s health condition,
estimating its remaining useful life, and providing robust main-
tenance decision-making [6]–[9]. Compared with vibration-
based monitoring and thermography, oil-based monitoring is
more reliable on early detection of machine failures and is
capable to obtain the wear progress [10], [11]. A wide range
of research works have focused on oil condition monitoring
based on wear debris in recent decades for the purpose of
wear classification and machines’ fault diagnosis, and up until
now, a few articles studied oil performance assessment and
replacement policy using statistical models [12], [13]. It is
difficult to assess the actual health condition of the oil and
determine the optimal failure replacement time.

Currently, it has been commonly depended on expert expe-
riences and industrial demands to change the oil, and there is
a lack of a standard for oil replacement. For example, for
automobile engine oil, it is required to change the oil on
the basis of driving kilometers (e.g., 5000 km) or driving
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time (e.g., half a year), and for aeroengine oil, it is mainly
according to the flight mileage or operating time. However,
the premature replacement will cause the waste of lubricating
oil, and late replacement will cause oil deterioration and, thus,
result in the failure of operating machines. In order to avoid
this problem, it is essential to change the oil on the basis of
its actual quality. Researchers have paid much more attention
and efforts to effective oil replacement scheme in recent
years. Puckace et al. [14] presented a method to optimize
the oil drain interval of a vehicle. Wei et al. [15] proposed
a novel method to determine the oil oxidation stability on-site
and established a model based on oil oxidation stability to
evaluate oil life and provide supports on oil replacement [16].
Raposo et al. [17] proposed an approach to evaluate oil dete-
rioration and studied the oil degradation evolution to develop
an oil replacement policy based on time-series analysis [18].
Hence, to advance above studies the main purpose of this
article is to provide an effective scheme to estimate the optimal
replacement time for lubricating oil when the oil performance
cannot meet its requirements.

In this article, we present a Bayesian-based control scheme
to obtain the optimal replacement time for lubricating oil. The
concentration of wear debris in the oil system is considered
as the deterioration feature to demonstrate oil degradation and
evaluate machine health [3]. Then, 2-D oil data are collected
from a four-ball tester at equidistant time epoch, and a vector
autoregressive (VAR) model is fitted to the healthy oil mon-
itoring data to compute residuals of the oil data. The hidden
Markov process, which is considered as an efficient approach
to model degrading systems [8], [19], is applied to model
the oil deterioration behavior. The calculated oil residuals are
regarded as the observation process for building the hidden
Markov model (HMM) with partially observable healthy and
unhealthy states and an observable failure state. The two types
of unknown model parameters, state and observation parame-
ters, can then be estimated by the expectation–maximization
(EM) algorithm. Once parameter estimation is implemented,
we develop a Bayesian oil replacement scheme based on the
HMM for the optimal replacement decision-making [20], [21].
With two criteria to optimize the replacement scheme, which
is the expected average availability maximization and cost
minimization per unit time [13], [22], [23], we choose the
average availability objective. A computational algorithm in
a semi-Markov decision process (SMDP) is then developed
to estimate the optimal control limit for oil replacement [24].
To the best of our knowledge, it is the first article to apply
the HMM and Bayesian control chart to evaluate oil quality
and provide an optimal oil replacement scheme in the field of
tribology.

The replacement scheme for lubricating oil based on HMM
and SMDP is illustrated in Fig. 2, and the main contributions
are summarized as follows.

1) Multivariate HMM is presented for multidimensional oil
deterioration modeling.

2) Development of a Bayesian control scheme for oil
replacement.

3) SMDP approach to formulate the control problem and
optimize the replacement scheme.

Fig. 2. Replacement scheme for lubricating oil based on HMM and SMDP.

4) Considerably better oil failure detection compared with
published schemes.

The rest of this article is arranged afterward. In Section II,
a four-ball tester is adopted to simulate the oil deterioration
process, and a time-series model is applied to compute the
residual observations of oil data. In Section III, the calculated
residuals are used for the three-state hidden Markov modeling,
and the EM algorithm is employed to obtain the unknown
HMM parameters. In Section IV, the Bayesian replacement
scheme for lubricating oil is proposed in an SMDP framework
for the long-term expected average availability maximization.
Ultimately, the conclusions and future works are summarized
in Section V.

II. EXPERIMENTAL SETUP AND DATA PREPROCESSING

A. Experimental Setup

A four-ball tester was employed to simulate and accelerate
the deterioration process of lubricating oil. Lubricating oil
monitoring data were collected by an online visual ferro-
graph (OLVF) sensor [25], which can determine the wear
severity of tribo-pairs and indirectly reflect the performance
and health condition of the oil. To avoid overparameteriza-
tion, the 2-D oil data with the index of particle coverage
area (IPCA) were adopted. IPCA is focusing on the wear
debris concentration [25], which carries partial information
about the hidden states and health condition of lubricat-
ing oil. The oil monitoring data obtained in each sampling
epoch represent the generation of wear debris in the single
sampling interval, which has set as � = 40 min in this
research.

The experimental system includes: 1) four-ball tribo-pairs;
2) lubrication oil system; and 3) online oil monitoring system
with the OLVF sensor, as shown in Fig. 3. Fig. 3(a) shows the
principle of the tribology system with both the oil circulation
system and the sensing transmission system, and Fig. 3(b)
shows the experimental four-ball tester with the OLVF sensor
and the monitoring system.
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Fig. 3. Experimental system for lubricating oil deterioration.

Fig. 4. Typical failure oil data history.

B. Oil Data Histories

The total sampling data histories of lubricating oil are
M+N = 27, where M = 16 and N = 11 represent the suspen-
sion data histories and failure histories (FHs), respectively. The
suspension data represent that the data end when the oil is still
working to provide sufficient lubrication. Failure data represent
that the data end when the oil is in the failure state and cannot
fulfill its functions anymore, i.e., the failure of lubricating
oil has occurred and the oil replacement should be triggered.
In industry, oil failure is often determined by some potential
failure indicators, such as the element Fe (representing the
wear condition) [18] and the physical and chemical indicators
of lubricating oil. This article applied IPCA as the failure
indicator to determine oil failure. One of the typical failure
oil data histories is plotted in Fig. 4.

C. Data Preprocessing

Generally, oil properties obtained from condition monitoring
are cross-correlated and autocorrelated, which will affect the
results of oil analysis. Residual computation is a commonly
used method to eliminate redundant and noise information of
the monitoring data [13]. Therefore, the healthy portions of
both failure and suspension oil data histories, Zn , were first
obtained by graphical examination and then fitted to a VAR

Fig. 5. Computed residual observations of a failure oil data history.

model with the standard form by [3]

Zn = μ +
p�

i=1

�r Zn−i + εn, n ∈ Z (1)

where μ = μ0 − �p
i=1 �iμ0, εn are i.i.d. N2(0, C), p ∈ N

is the model order, μ0 ∈ R2 is the mean, C ∈ R2×2 is the
covariance, and �i ∈ R2×2 are the autocorrelation matrices.

The unknown parameters of the VAR model can be esti-
mated (for explicit computation, see [3]), where the estimate
of model order p̂ is 4, and the estimates of parameters

γ̂ = (μ̂, Ĉ, �̂1, �̂2, �̂3, �̂4) are given as μ̂ =
�

0.0974
0.0236

�
,

Ĉ =
�

0.0034 0.0001
0.0001 0.0018

�
, �̂1 =

�
0.2492 −0.0675
0.2318 −0.1982

�
, �̂2 =�

0.1887 −0.1083
0.4168 −0.0157

�
, �̂3 =

�
0.0011 0.0155

−0.0045 0.0161

�
, �̂4 =�

0.0143 −0.0042
0.0129 0.0026

�
.

The residuals for oil data histories without cross-correlation
and autocorrelation can be calculated with both healthy and
unhealthy data by

Yn� =

⎧⎪⎨⎪⎩Zn −



μ̂ +
p̂�

r=1

�r Zn−r

�
, n > 4

Zn − Eγ̂ (Zn|Z1, Z2, . . . , Zn−1), n ≤ 4.

(2)

The corresponding calculated residual observations of the
oil data in Fig. 4 are plotted in Fig. 5, and the residuals
have been tested to be independent and normal distributed
(for details, see [3]). In Section III, the calculated residual
observations will be considered as the observation process
to develop an HMM framework, and the unknown model
parameters with both state and observation processes will be
estimated with the EM algorithm.

III. HMM DEVELOPMENT AND PARAMETER ESTIMATION

The oil deterioration is assumed as a hidden stochastic
process, {Xt : t ∈ R+}, with three states: S = {1, 2} ∪ {3}.
S = {1, 2} are hidden states of lubricating oil that cannot
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Fig. 6. Replacement time of the failure oil data.

be observed directly, where S = {1} represents the healthy
or good state, and S = {2} represents the unhealthy or
warning state. S = {3} is an observable state of lubricating oil
representing the failure state. We note that it can only convert
from the lower state to the higher state, and it is irreversible,
i.e., λi j = 0, j < i, i, j ∈ {1, 2, 3}, and λ33 = 0. Therefore,
the state transition rate matrix of the lubricating oil can be
written by

Q =
⎛⎝−(λ12 + λ13) λ12 λ13

0 −λ23 λ23

0 0 0

⎞⎠ (3)

where λ12, λ13, λ23 ∈ (0,+∞) are the instantaneous transition
rate of each state and need to be estimated. It is common that
failure rate of lubricating oil in state 2 is higher than that in
state 1, i.e., λ23 > λ13.

We assume that the initial state of the oil is S = {1}, repre-
senting a new and healthy start, i.e., X0 = 1, P(X0 = 1) = 1,
and the sojourn time in each of the partially observable state
follows exponential distributions. In addition, the state of
lubricating oil can make transitions from S = {1} to S = {2}
with probability p12 or from S = {1} to S = {3} with
probability p13. Let ξ ≥ 0 represent the failure time, as shown
in Fig. 6, and the oil should be replaced before the failure
occurs.

The residual observations Yn� computed in Section II are
regarded as the observation process to build the HMM frame-
work. Given the oil state, i.e., Xn� = s, (s = 1, 2), Yn� is
assumed to follow a bivariate normal distribution N2(μs ,�s),
whose probability density function (pdf) is given by

fYn�|Xn�
(y|s) = 1�

(2π)2 det(�s)

· exp

�
−1

2
(y − μs)

��−1
s (y − μs)

�
(4)

where μs ∈ R2 and �s ∈ R2×2, (s = 1, 2) are the mean
and variance of the observation process that need to be
estimated. When the oil fails and needs to be replaced, we have
P(Yn� = η|Xn� = 3) = 1, where η /∈ R2 is the observation
for Xn� = 3.

We denote O = {FH, SH} as the oil data histories and
C = {F̄H, S̄H} as the complete data set of lubricating oil,
where FH = {FH1, . . . , FH11} represents all the failure oil
data histories, and SH = {SH1, . . . , SH16} represents all
the suspension histories (SHs). Let L(λ, ϕ|O) represent the
associated likelihood function, where λ = (λ12, λ13, λ23) are
the unknown parameters with state information, and ϕ =
(μ1, μ2,�1,�2) are the unknown parameters with observation
information. The EM algorithm has been proven to be suitable

TABLE I

SPECIFIC STEPS OF EM ALGORITHM FOR PARAMETER ESTIMATION

to solve the parameter estimation problem for hidden Markov
modeling [13], [26], whose specific steps are shown in Table I.

The estimated state parameters λ∗ = (λ∗
12, λ

∗
13, λ

∗
23) can be

computed by

λ∗
12 = −

�N
i=1

�bi
12 + �M

j=1 �γ j
1 +

�M
j=1 �γ j

2

��N
i=1

�bi
12+

�M
j=1 �γ j

1

�
�M

j=1 �γ j
1 +�N

i=1
�bi

12+
�N

i=1
�bi

13�N
i=1 �ai

12 + �M
j=1 �α j

12

λ∗
13 = λ∗

12

�N
i=1

�bi
13�N

i=1
�bi

12 + �M
j=1 �γ j

1

λ∗
23 = −

�N
i=1

�bi
23�N

i=1 �ai
23 + �M

j=1 �α j
23

.

The estimated observation parameters ϕ∗ =
(μ∗

1, μ
∗
2,�

∗
1 ,�∗

2 ) can be calculated by

μ∗
1 =

�N
i=1 ni

1 ·�ci + �M
j=1 n j

1 · �β j�N
i=1

��ci , di
1

� + �M
j=1

��β j , d j
1

�
�∗

1 =
�N

i=1 ni
3 ·�ci + �M

j=1 n j
3 · �β j�N

i=1

��ci , di
1

� + �M
j=1

��β j , d j
1

�
μ∗

2 =
�N

i=1 ni
2 ·�ci + �M

j=1 n j
2 · �β j�N

i=1

��ci , di
2

� + �M
j=1

��β j , d j
2

�
�∗

2 =
�N

i=1 ni
4 ·�ci + �M

j=1 n j
4 · �β j�N

i=1

��ci , di
2

� + �M
j=1

��β j , d j
2

�
where vectors di

1 = (0, 1, . . . , Ti )
�, di

2 = (Ti , . . . , 1, 0)�, ni
1 =

(0,
�

n≤1 yn, . . . ,
�

n≤Ti
yn), ni

2 = (
�

n≥1 yn, . . . , yTi , 0),
ni

3 = (0,
�

n≤1 (yn − μ∗
1)(yn − μ∗

1)
�, . . . ,

�
n≤Ti

(yn − μ∗
1)

(yn − μ∗
1)

�), and ni
4 = (

�
n≥1(yn − μ∗

2)(yn − μ∗
2)

�, . . . ,
(yTi − μ∗

2)(yTi − μ∗
2)

�, 0).
Explicit formulas and specific computations for the esti-

mation process of the unknown model parameters based on
the EM algorithm can be found in [21] and [27] (see the
Appendix). The model parameters for hidden Markov mod-
eling are obtained and shown in Table II.
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TABLE II

ESTIMATED MODEL PARAMETERS USING EM ALGORITHM

Fig. 7. Flowchart of the developed Bayesian oil replacement scheme.

IV. BAYESIAN OIL REPLACEMENT SCHEME

In this section, we propose an oil replacement scheme
based on the Bayesian control chart to monitor the quality of
lubricating oil. The Bayesian control chart has been shown
to be an effective method in decision-making for quality
control [20]. For oil replacement decision-making, we formu-
late the Bayesian oil replacement scheme. When observations
Y�, . . . , Ym� are collected up to the mth sampling epoch,
the probability of the oil in the unhealthy or warning state
(Xm� = 2) can be computed by

�m� = P(Xm� = 2|ξ > m�, Y�, . . . , Ym�,�0 = 0). (5)

The Bayesian control chart monitors the posterior prob-
ability �m� at each decision epoch m�. The flowchart of
the developed Bayesian oil replacement scheme is illustrated
in Fig. 7. When the monitored �m� exceeds a control limit �
at the mth decision epoch, the Bayesian control chart alarms,
and full oil analysis is performed to examine the real quality
of the lubricating oil. Upon the examination, if the actual
status of oil is found to be in state 2 (unhealthy state), it is
a true alarm, and an oil replacement is initiated so that the
oil can be renewed as a new one. If the actual status of
the oil is found to be in state 1 (healthy state), it is a false
alarm, and the oil is left operating after necessary adjustments.
The necessary adjustments usually involve some inspections,
such as oil circuit inspection, oil leak inspection, lubrication
condition inspection of the tribo-pairs, and sensor transmission
system inspection. After full oil analysis, the oil quality is
renewed to be its initial healthy state.

The objective of the Bayesian oil replacement scheme is
to find out the optimal control limit �

∗
under the average

availability maximization. From the renewal theory, the avail-
ability maximization problem under the Bayesian control chart
is to find out the optimal value of control limit for conducting
the full oil analysis, which can be computed by

g(�
∗
) = E�

∗(UT)

E�
∗(CL)

= sup
�∈(0,1)

E�(UT)

E�(CL)
(6)

where UT is the uptime in one cycle of the oil system, and CL
is the cycle length of the oil system, which can be calculated,
respectively, as

CL = I(ξ>T ,XT =1)(T + TI ) + I(ξ>T ,XT =2)(T + TI + TPM)

UT = T (7)

where TI and TPM are full oil analysis and replacement dura-
tions, respectively. I(∗,∗) is an indicator that, if the condition
(∗, ∗) is satisfied, the value of I(∗,∗) is 1, otherwise, 0.

Using the Kolmogorov backward differential equations [28],
given the state space S = {1, 2, 3}, the probability transition
matrix of HMM can be obtained by

P(t) = [Pi j(t)]i, j∈S =
⎛⎝ P11(t) P12(t) P13(t)

P21(t) P22(t) P23(t)
P31(t) P32(t) P33(t)

⎞⎠ (8)

where

P11(t) = e−(λ12+λ13)t , P21(t) = P31(t) = P32(t) = 0

P12(t) = λ12(e−λ23t − e−(λ12+λ13)t)

λ12 + λ13 − λ23

P13(t) = 1 − e−(λ12+λ13)t − λ12(e−λ23t − e−(λ12+λ13)t)

λ12 + λ13 − λ23

P22(t) = e−λ23t , P23(t)=1 − e−λ23t , P33(t) = 1.
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Then, the posterior probability �m� can be computed
recursively after obtaining new multivariate data according to
the Bayes theorem, as in (9) shown at the bottom of the page,
where ra = fYm� |Xm�

(ym�|1)/ fYm�|Xm�
(ym�|2).

As we know that (μ1,�1) 	= (μ2,�2), using the pdf
formula, i.e., (4), we have

ra = h exp

�
1

2
(Ym� − B)T A(Ym� − B) + C

�
(10)

where h = (|�2| · |�1|−1)1/2, A = �−1
2 − �−1

1 , B =
(�−1

2 − �−1
1 )−1(�−1

2 μ2 − �−1
1 μ1), and C = (μ2

T �−1
2 μ2 −

μ1
T �−1

1 μ1) − BT (�−1
2 μ2 − �−1

1 μ1).
Therefore, the posterior probability in (9) can be

simplified to

�m� = D2
�(m−1)�

h exp
�

1
2 Vm� + C

�
D1

�(m−1)�
+ D2

�(m−1)�

(11)

where Vm� = (Ym� − B)T A(Ym� − B), D1
�(m−1)�

= P11(�)

(1 − �(m−1)�) + P21(�)�(m−1)�, and D2
�(m−1)�

= P12(�)
(1 − �(m−1)�) + P22(�)�(m−1)�.

Now, an efficient computational algorithm is developed in
the SMDP framework to determine the optimal control limit
�

∗ ∈ (0, 1). To formulate the SMDP state, we first need to
discrete the posterior probability process. The interval [0, 1] is
partitioned into L subintervals, and the control limit is defined
as � = k̄/L for 0 < k̄ < L. Suppose that, at sampling epoch
m�, �m� is updated as π , and the process is assumed to be in
state i ∈ {1, . . . , L}, where π ∈ [(i − 1)/L, i/L). If updated
π < �, the full oil analysis is performed, and the SMDP is
defined to be in ( j, I ) for j ∈ {k̄, . . . , L}. After analysis, if the
actual status of lubricating oil is found to be in the healthy
state, i.e., Xm� = 1, only necessary adjustment is performed,
and the oil continuously operates in the initial healthy state.
If the actual status of lubricating oil is found to be in the
unhealthy state, i.e., Xm� = 2, oil replacement is triggered,
and the SMDP process will be defined to be in state {PM}.
Let L1 = {i : i ∈ {1, . . . , k̄ − 1}} and I = {( j, I ) : j ∈
{k̄, . . . , L}}, and then, the SMDP state space is defined by
L = L1 ∪ I ∪ {PM}.

The number of subintervals L is crucial to achieve sufficient
precision of computation. An appropriate L to partition the
continuous posterior probability is determined by a basic
stopping rule: g(�

∗ | L = 2U+1) − g(�
∗ | L = 2U ) ≤ ρ,

where U is a positive integer and ρ is the selected small
number [29].

After defining the state space of the SMDP process,
we introduce a computational algorithm in the SMDP frame-
work to find out the optimal control limit for full oil analysis.
First, we define SMDP quantities to formulate the SMDP
algorithm. Given the current state of lubricating oil, i ∈ L,
the three SMDP quantities are presented as follows.

1) τi is the expected sojourn time until the next decision
epoch.

2) Ci is the expected cost incurred until the next decision
epoch.

3) Pi j is the probability that the oil system will be in state
j ∈ L at the next decision epoch.

Second, with the SMDP quantities, the control limit �
∗

that maximizes the average availability can be computed by
solving the following equations [30]:

vi = g(�
∗
)τi − Ci +

�
j∈L

Pi, j · v j , i ∈ L

vs = 0, s ∈ L (12)

where the quantities vi are related to the so-called relative
values for the control limit policy (parameterized by �) when
starting in state i . The so-called relative values indicate that
the transient effect of the starting states on the total expected
costs under the given policy. In our case, the quantities vi −v j

measures the difference in total expected costs between the
system whose initial state is i and the system whose initial
state is j (see [30] for more details). Both g(�

∗
) and vi

satisfy the abovementioned simultaneous system of linear
equations.

Using (12), we can obtain �
∗

with corresponding avail-
ability g(�

∗
). However, the abovementioned quantities are

unknown and need to be estimated. Then, the remainder of
the mathematical analysis in this section is the derivation of
SMDP quantities for Pi, j , τi , and Ci , where i, j ∈ L.

The transition probability from state i ∈ L1 to state j ∈ I
in the SMDP framework can be obtained as

Pi, j = P

�
j −1

L
≤ �m� <

j

L
, ξ > m�|ξ > (m−1)�,�m�

�
= P

�
j − 1

L
≤ �m� <

j

L
|ξ > m�,�m�

�
R(�|�m�)

(13)

where the conditional reliability function (CRF) R(t|�m�) can
be derived by

R(t|�m�) = P(ξ > m� + t|ξ > m�, Y�, . . . , Ym�,�m�)

= P(Xm�+t 	= 3|ξ > m�, Y�, . . . , Ym�,�m�)

= (1 − �m�)(1 − P13(t)) + �m�(1 − P23(t)).

(14)

The left formula P((( j − 1/L) ≤ �m� < ( j/L)|ξ > m�,
�m�) in (13) can be computed by (15), where a1 = 2 ln
[(((1 − ( j/L))D2

�(m−1)�
)/(( j/L)D1

�(m−1)�
))h] − C , a2 = 2 ln

[(((1 − (( j − 1)/L))D2
�t (m−1)

)/((( j − 1)/L)D1
�t (m−1)

))h] − C ,
and Vm� is defined in (11).

Reference [31, Th. 3.1] proves that the pdf of Vt (m)|Xt (m)

obeys normal distribution, which can be expressed as

�m� = P12(�)(1 − �(m−1)�) + P22(�)�(m−1)�

ra · (P11(�)(1 − �(m−1)�) + P21(�)�(m−1)�) + P12(�)(1 − �(m−1)�) + P22(�)�(m−1)�
(9)
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Vm�|Xm� = 1 ∼ NX=1(μ1 − B,�1) and Vm�|Xm� = 2 ∼
NX=2(μ2 − B,�2). Therefore

P

�
j − 1

L
≤ �m� <

j

L
|ξ > m�,�(m−1)�

�
= P(a1 ≤ Vm� < a2|Xm� = 1)

�
D1

�(m−1)�

D2
�(m−1)�

+ D1
�(m−1)�

�

+ P(a1 ≤ Vm� < a2|Xm� = 2)

�
D2

�(m−1)�

D2
�(m−1)�

+ D1
�(m−1)�

�
(15)

can be simplified as

P

�
j − 1

L
≤ �m� <

j

L
|ξ > m�,�(m−1)�

�
= [�1(a2) − �1(a1)]

�
D1

�(m−1)�

D2
�(m−1)�

+ D1
�(m−1)�

�

+[�2(a2) − �2(a1)]

�
D2

�(m−1)�

D2
�(m−1)�

+ D1
�(m−1)�

�
(16)

where �1 and �2 represent the cumulative distribution func-
tion of Vm�|Xm� = 1 and Vm�|Xm� = 2.

Then, the SMDP state transition probability in (13) from
state i ∈ L1 to state j ∈ I can be rewritten by

Pi, j = P(� ≤ �m� < 1|ξ > m�,�(m−1)�)R(�|�(m−1)�)

= [1 − �1(a�)]
�

D1
�t (m−1)

D2
�(m−1)�

+ D1
�(m−1)�

�

+ [1 − �2(a�)]
�

D2
�(m−1)�

D2
�(m−1)�

+ D1
�(m−1)�

�
(17)

where a� = 2 ln[(((1 − �) · D2
�(m−1)�

)/(� · D1
�t (m−1)

))h] − C .
In addition, the SMDP state transition probability from state

( j, I ) ∈ I to state {PM} or to the initial healthy state i ∈ L1

with a false alarm can be computed, respectively, by

P( j,I ),PM = �m�, P( j,I ),1 = 1 − �m�. (18)

The SMDP state transition probability from {PM} state to
initial healthy state can be computed by

PPM,1 = 1. (19)

The following step is devoted to calculating SMDP mean
costs and mean sojourn times. Using the CRF defined in (14),
for state i ∈ L1, the mean sojourn time can be computed by

τi =
� �

0
R(t|�m�)dt (20)

and the remaining mean sojourn times are defined as

τI = TI

τPM = TPM (21)

where TI and TPM are the inspection time and replacement
time, respectively.

TABLE III

VALUES OF �
∗

AND g(�
∗
) UNDER A DIFFERENT

DISCRETIZATION LEVEL L

Fig. 8. Oil replacement process illustrated in the Bayesian control chart for
different FHs. (a) FH #1. (b) FH #2. (c) FH #3. (d) FH #4.

For the problem of average availability maximization,
the mean “costs” of the SMDP process are, in fact, the uptimes
for each corresponding SMDP state, which are given by

Ci = τi , i ∈ L1

C( j,I ) = CPM = 0. (22)

After computing the derivations of SMDP quantities by
substituting the abovementioned quantities into (13), the opti-
mal control limits �

∗
for oil replacement scheme with the

corresponding average availability g(�
∗
) can be obtained.

By coding (13)–(22), the optimal control limit for oil
replacement scheme is obtained as �

∗ = 0.2235 with cor-
responding g(�

∗
) = 0.938. The computation results under

different level of discretization L are illustrated in Table III.
We have found that, when L ≥ 32, the partition leads to a
sufficient degree of precision. We, therefore, choose 64 as
the appropriate value of L to guarantee the high computation
accuracy.

Examples of the Bayesian oil replacement scheme are
given in the following with different failure oil data histories
(i.e., FHs #1–#4), as shown in Fig. 8. Once the Bayesian
indicator exceeds the control limit, �

∗ = 0.2235, the full
oil analysis is initiated to examine the real quality of the
lubricating oil. For all the FHs, the Bayesian indicator alarms
before a physic failure occurrence. This is especially true when
we check the Bayesian control chart in the following four
cases. In Fig. 8, we can observe that the Bayesian indicator
gives an alarm when the real state of lubricating oil is in severe
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TABLE IV

COMPARISON OF DIFFERENT CONTROL SCHEMES

deterioration. For FH #3, we can notice that the risks of the
potential failures increase rapidly, and the oil fails quickly
thereafter.

From the four illustrated cases, we find that the Bayesian
control chart can predict the incoming risks and give the
optimal replacement time to prevent sudden failures of oil
systems. Besides, we also have compared our Bayesian oil
replacement scheme with the typical age-based oil replacement
scheme [32]. Consider that the oil replacement is initiated at
time n�. From the renewal theory, the expected availability
for the scheme is given by

g(T
∗
, T

∗ = n�) =
� n�

0 F̄(t)dt

TPM F̄(n�) + CF F(n�)
(23)

where F(n�) = p13(n�) is the distribution function of ξ ,
and F̄(n�) = 1 − F(n�). Barlow and Hunter [32] showed
that, under the age-based oil replacement scheme, the optimal
replacement time T

∗
satisfies

h(T
∗
)

� T
∗

0
R(t|0)dt − (1−R(T

∗|0)) = TPM

TF − TPM
(24)

where the CRF is given by

R(t|0) = 1 − p13(t)

= e−(λ12+λ13)t + λ12(e−λ23t − e−(λ12+λ13)t)

λ12 + λ13 − λ23
(25)

and the hazard rate function is given by (26), as shown at the
bottom of the page.

Using the same replacement parameters in Section III and
solving (24), the optimal oil replacement time is T

∗ = 18, and
the maximum availability is 0.792. The results are rather low,
and the scheme is less effective than the proposed Bayesian
oil replacement. The results of the comparison for the same
failure oil histories are presented in Fig. 9. For FHs #1, #2,
and #4, the age-based scheme stops the oil system and replaces
the oil at least 3 sampling intervals earlier than the Bayesian
control scheme, while, for FH #3, the age-based scheme stops
the oil system much later when the risk is already high.
We have examined all the oil data histories and presented the
average replacement time in Table IV. Then, we have found

Fig. 9. Comparison with the age-based oil replacement scheme for different
FHs. (a) FH #1. (b) FH #2. (c) FH #3. (d) FH #4.

that the proposed Bayesian replacement scheme for lubricating
oil gives approximately 3.3 longer survival time than the age-
based scheme. In addition, the age-based scheme gives a fixed
replacement time, which results in much conservative or delay
replacement control results. This is because the age-based oil
replacement scheme does not use the updated oil information
in decision-making, which leads to suboptimal results.

We have further examined the misalarm rate and false-
alarm rate of failure prediction for the age-based scheme,
the failure-based scheme, and our proposed scheme, as shown
in Table IV. Let N1 and N2 denote the misalarm rate and false-
alarm rate of the replacement scheme, respectively. We have
found that our proposed model achieves the lowest misalarm
rate of 3.7% and the false-alarm rate of 7.4% in the failure
prediction. The age-based scheme gives as high as 37% of
false-alarm rate, while the failure-based scheme replaces the
oil upon failures and misses alarming all the incoming failures.
These two conventional schemes cannot give a satisfactory
performance with high degrees of true-alarm rate, which may
not be effective in the real oil replacement applications.

h(t) = 1

R(t|0)
·
�

−d R(t|0)

dt

�
= (λ12 + λ13 − λ23)(λ12 + λ13)e−(λ12+λ13)t − λ12((λ12 + λ13)e−(λ12+λ13)t − λ23e−λ23t )

(λ12 + λ13 − λ23)e−(λ12+λ13)t + λ12(e−λ23t − e−(λ12+λ13)t )
(26)
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Through the abovementioned comparisons, we can conclude
that the proposed Bayesian oil replacement scheme gives
considerably better prediction and prevention of imminent
failures.

V. CONCLUSION

The oil replacement scheme plays an important role in
reducing unexpected random failures caused by oil deteriora-
tion, improving machine availability, and extending its service
life. In this article, an oil replacement scheme based on the
Bayesian approach has been proposed for the optimal replace-
ment time determination for lubricating oil. Oil deterioration
was simulated and implemented by a four-ball tester, and the
2-D vector oil data histories were regularly collected by an
OLVF sensor. The lubricating oil deterioration process was
assumed to be modeled as a stochastic Markov chain with
three states, and the sojourn time in each hidden state was
assumed to be exponentially distributed. A VAR model was
adopted to fit the healthy parts of the oil monitoring data
set for obtaining the residuals, which were regarded as the
observation process for hidden Markov modeling. The EM
algorithm was employed, and the unknown HMM parameters
were estimated. A Bayesian control chart was presented to
formulate the oil replacement scheme in an SMDP framework
to find out the optimal control limit �

∗
by maximizing the

long-term expected average availability. Ultimately, compar-
isons with the age-based control scheme and the failure-based
scheme were given, which demonstrated that our approach
achieved better failure detection performance and the longer
average availability. In addition, it is very new to apply the
Bayesian control chart to provide a replacement scheme for
lubricating oil.

In future research works, a more efficient hidden semi-
Markov model for early detection of a degradation oil sys-
tem can be considered to model the deterioration process.
A three-state HMM can also be extended to an N-state model
to accurately describe the deterioration process of lubricating
oil. However, it will be more difficult to realize the modeling
and analysis process. Another possible topic for future works
will be to apply a two-level Bayesian control chart to for-
mulate an oil replacement scheme and consider the average
cost minimization as the optimization objective. In addition,
an adaptive sampling strategy for online oil monitoring based
on the Bayesian control chart will be a worthwhile research
work, which can obtain appropriate sampling intervals in
each deterioration stage according to the actual status of
lubricating oil.

APPENDIX

The pseudo-log-likelihood function is defined as
Q(λ, ϕ|�λ,�ϕ) = �N

i=1 QFHi(λ, ϕ|�λ,�ϕ) + �M
j=1 QSHj (λ, ϕ|�λ,�ϕ), and for each single oil history, the function can

be decomposed as Qκ (λ, ϕ|�λ,�ϕ) = Qκ
State(λ|�λ,�ϕ) +

Qκ
Obs(ϕ|�λ,�ϕ).

For FHs, QFH
State(λ|�λ,�ϕ) = ��A, λ�+ ��B, ln λ� and QFH

Obs

(ϕ|�λ,�ϕ) = ��C, ln G�, where G = (g−→
Y |ξ,τ1

(−→y |t,�), . . . ,

g−→
Y |ξ,τ1

(−→y |t, T �), g−→
Y |ξ,τ1

(−→y |t, t))�, which is the vector of

the conditional density function g−→
Y |ξ,τ1

(−→y |t, k�),
−→
Y =

(Y1, . . . , YT ) is the residual observations, ξ = t is the failure
time with T � < t ≤ (T + 1)�, τ1 ∈ ((k − 1)�, k�] ≤ t , k =
1, . . . , T , and the vectors are defined as �A = (�a12,�a13,�a23)

�,�B = (�b12,�b13,�b23)
�, and �C = (�c1, . . . ,�cT ,�ct )

�. For SHs,
QSH

State(λ|�λ,�ϕ) = ��α, λ� + �γ1 ln(λ12) + �γ2 ln(λ12 + λ13) and
QSH

Obs(ϕ|�λ,�ϕ) = ��β, ln G�, where �α = (�α12,�α13,�α23)
� and�β = (�β1, . . . , �βT , �βt )

�.
The explicit formulas for estimating state parameters and

observation parameters mentioned earlier are given by

�a12 = −�p12�λ23e−�λ23t�d ��δ2, �G� − t�p13e−(�λ12+�λ13)t�d g−→
Y |ξ,τ1

(−→y |t, t)�a12 = �a13

�a23 = �p12�λ23e−�λ23t�d (��δ2, �G� − t��δ1, �G�)

�b12 = �b23 = �p12�λ23e−�λ23t�d ��δ1, �G�

�b13 = �p13e−(�λ12+�λ13)t�d g−→
Y |ξ,τ1

(−→y |t, t)

�ck = �p12�λ23e−�λ23t�δk
1�d g−→

Y |ξ,τ1
(−→y |t, k�), k = 1, . . . , T

�ct =

�p12�λ23e−�λ23t�δt

1 + �p13e−(�λ12+�λ13)t�d
�

g−→
Y |ξ,τ1

(−→y |t, t)

�d = �p12�λ23e−�λ23t��δ1, �G� + �p13e−(�λ12+�λ13)t g−→
Y |ξ,τ1

(−→y |t, t)

�α12 = −�λ12e−�λ23t�ν ��δ2, �G� − (t + (�λ12 +�λ13)
−1

)e−(�λ12+�λ13)t�ν
× g−→

Y |ξ,τ1
(−→y |t, t)�α12 = �α13

�α23 = �λ12e−�λ23t�ν (��δ2,�g� − t��δ1,�g�)

�βk = �λ12e−�λ23t�δk
1�ν g−→

Y |ξ,τ1
(−→y |t, k�), k = 1, . . . , T

�βt =

�λ12e−�λ23t�δt

1 + e−(�λ12+�λ13)t�ν
�

g−→
Y |ξ,τ1

(−→y |t, t)

�γ1 = �λ12e−�λ23t�ν ��δ1, �G�

�γ2 = e−(�λ12+�λ13)t�ν g−→
Y |ξ,τ1

(−→y |t, t)

�ν =�λ12e−�λ23t��δ1, �G� + e−(�λ12+�λ13)t g−→
Y |ξ,τ1

(−→y |t, t).

The vectors �δ1 = (�δ1
1, . . . ,�δT

1 ,�δt
1) and �δ2 = (�δ1

2, . . . ,�δT
2 ,�δt

2)
can be computed by

�δk
1 · (�λ12 +�λ13−�λ23) = e−(�λ12+�λ13−�λ23)(k−1)�−e−(�λ12+�λ13−�λ23)k��δt
1 · (�λ12 +�λ13 −�λ23) = e−(�λ12+�λ13−�λ23)T � − e−(�λ12+�λ13−�λ23)t�δk
2 · (�λ12 +�λ13 −�λ23) = �δk

1 − k�e−(�λ12+�λ13−�λ23)k�

+ (k − 1)�e−(�λ12+�λ13−�λ23)(k−1)��δt
2 · (�λ12 +�λ13 −�λ23) = �δt

1 − te−(�λ12+�λ13−�λ23)t

+ T �e−(�λ12+�λ13−�λ23)T �.
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To obtain the maximization of the pseudo-log-likelihood
function, we set

∂ Q(λ, ϕ|�λ,�ϕ)

∂λ12
= ∂ Q(λ, ϕ|�λ,�ϕ)

∂λ13
= ∂ Q(λ, ϕ|�λ,�ϕ)

∂λ23
= 0

∂ Q(λ, ϕ|λ̂, ϕ̂)

∂μ1
= ∂ Q(λ, ϕ|λ̂, ϕ̂)

∂μ2
= 0

∂ Q(λ, ϕ|λ̂, ϕ̂)

∂�1
−1 = ∂ Q(λ, ϕ|λ̂, ϕ̂)

∂�2
−1 = 0.

Then, we can obtain the state parameters λ∗ = (λ∗
12,

λ∗
13, λ

∗
23) and the observation parameters ϕ∗ = (μ∗

1, μ
∗
2,

�∗
1 ,�∗

2 ), respectively.
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