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As a significant technique in machine condition monitoring, wear debris analysis enables
investigation of machine running condition with respect to debris features including size,
quantity and morphology. In particular, being capable of providing more comprehensive
morphological information, three-dimensional debris features are regarded essential and
often acquired through a video-based debris imaging process. However, debris images cap-
tured often suffer degradation due to debris motion blur and lubrication contamination,
that hinder reliable debris features extraction. To address the image degradation issue, a
new method of wear debris image restoration is developed to reduce the effect of blur.
In order to avoid the expensive computation involved in blind deconvolution methods,
the debris image was restored using localized boundary features. Based on the fact that
debris area and background area indicate distinctive brightness, a step edge model is
applied to describe the original debris boundary. Localized kernels on each side of debris
are then determined. Next, restorations are conducted with the estimated kernels to pro-
duce sharper debris profiles with respect to different motion features. Final restoration is
conducted by fusing the restored profiles according to the maximum local sharpness.
Experimental results have demonstrated that this method allows reliable features extrac-
tion from blurred image, improving the robustness of video based wear debris analysis.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Condition monitoring of machinery is widely used to evaluate machine operation status so that proper maintenance can
be scheduled to postpone or avoid catastrophic failure. Among the existing condition monitoring strategies, wear debris
analysis has been recognized as a highly effective one [1]. By inspecting debris characteristics including quantity, size and
morphology, wear status of mechanical components can be estimated [2–5]. To obtain comprehensive debris features, in
particular, for wear mechanism assessment, image-oriented debris monitoring such as ferrography was developed [6]. How-
ever, those traditional approaches are being challenged recently, due to demands for rapid data interpretation in modern
condition monitoring [7]. Consequently, sensing approaches had been redirected towards on-line wear debris image acqui-
sition and analysis.
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Over the past decades, various image based on-line wear debris analysis methods have been developed to conduct real-
time debris data acquisition and interpretation [8]. Implementation of those sensing techniques proved that on-line
approaches provide data more efficiently, and making it possible to schedule more timely maintenance. However, compared
with tradition ferrograph images from which elaborated debris features can be extracted, current on-line wear debris images
only allow to extract features such as quantity, concentration, size and color, which are mainly about statistical character-
istics. The detailed morphology information of individual debris that are significant in wear mechanism interpretation, how-
ever cannot be reliably extracted so far. This is mainly because the limited image quality which has made the extraction of
reliable debris morphology an intractable issue.

In addition, by examining the information on height direction, 3-D debris features have been proved effective in the iden-
tification of fatigue chunk, laminar and sliding debris [9]. However, those comprehensive features are not accessible by most
existing on-line debris images. A video based debris sensing strategy then was developed for observing wear debris features
in multiple views [10]. Experimental result has demonstrated that this method outperforms current 2-D methods by provid-
ing volume and height information of wear debris [11]. Nonetheless, the captured debris images often suffer from motion
blur due to debris motion when its images are captured. The extracted debris morphology is accordingly significantly
affected by the blurry effect.

As can be concluded, the fundamental shortage of current on-line debris image lies in the fact that the image quality is
often limited due to contamination and motion blur. Correspondingly, restoration is needed to improve the quality of debris
images, allowing the on-line wear debris image to provide more detailed debris features. Image restoration is not a new topic
and numerous techniques including inverse filtering, Wiener filtering, least-square filtering and constrained iterative decon-
volution methods have been developed [12–16]. However, these techniques cannot be directly applied to address on-line
wear debris image as little blur features are known due to the random debris motion. Correspondingly, another estimation
strategy called blind deconvolution were proposed to obtain the sharp image and blur features simultaneously [17]. Success-
ful as the restoration is, the iterative computation is relative expensive for on-line wear debris image improvement.

Compared with general blurry image, wear debris image indicates some unique features. First, the blurry effects are
mainly generated due to debris motion during the exposure. Furthermore, the information carried is relative lower because
of oil contamination and low resolution. Due to this concern, previous research had been carried out to restore the motion-
blurred debris image by identifying zeros from the cepstrum of each frame [10]. However, it only works in the scenario with
high signal to noise ratio. In on-line monitoring, as the video quality is limited due to the commonly occurred lubrication
contamination and resulting in low information content videos, it is difficult or even impossible to identify those periodic
zeros. Therefore, a deblurring strategy which allows restoration of debris image with low information content is developed
in current work.

The rest of the paper is organized as follows. Related background including wear debris imaging equipment and blurring
phenomena of on-line wear debris image are given in Section 2. Section 3 presents the developed method which is composed
of four main steps: (1) edge prediction, (2) kernel estimation, (3) primary restoration and (4) image fusion. In Section 4, a 3-D
reconstruction experiment is conducted based on real debris profiles to evaluate the performance of the developed method.
Finally, a conclusion is given in Section 6.
2. Wear debris sensing equipment and image degradation

In traditional off-line ferrography image analysis, debris are usually manually cleaned and placed on a slide, imaged by a
microscope for further examination. However, only single-sided information can be obtained by those approaches. For the
purpose of rapidly collecting more comprehensive morphology information, a video based debris imaging system is used
[18].

2.1. Video based wear debris analysis

The video based imaging system allows to observe wear debris in different directions by collecting the projected profiles
of wear debris from multiple views in images. The system diagram is shown in Fig. 1a.

Lubrication oil containing wear debris is pumped to a micro fluid channel, where a camera is mounted. Due to the viscous
drag applied, debris in the fluid channel will rotate and its profiles in multiple views are captured, see in Fig. 1b. Based on
those collected profile sequences, three dimensional shape of wear debris can be reconstructed and more detail debris fea-
tures including volume and thickness can be extracted for wear mechanism interpretation [11].

2.2. Degradation of wear debris image

Video based imaging is capable of acquiring debris information in different views and previous work has been conducted
to make it practical in machine monitoring. For instance, debris occlusion can be found when the concentration of debris is
large. Debris separation was investigated to extract individual debris from cluster [19,20]. In addition, debris occlusions can
also be addressed via a tracking process which allows to identify debris profiles in different poses [21]. However, the per-
formance of current video based debris imaging still needs to be improved as current debris image suffers degradation. It



Fig. 1. The imaging equipment and collected debris profile images, (a) the debris imaging system; (b) debris profile sequences.
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can be observed from Fig. 1b that the debris profiles are often blurry, especially in the boundary area, making reliable debris
shape measurement a challenging task.

Previous research has been conducted to tackle the blurring problem in wear debris analysis [10]. By assuming that wear
debris have similar motion speed, zeros in cepstrum are identified and applied to formulate the motion point spread function
(PSF). Wiener filtering deconvolution then was applied to obtain the restored debris profile. However, the motion speed of
individual wear debris in the flow channel is different due to the dissimilarity of applied viscous drag whose magnitude
depends directly on the shape and volume of each debris. In addition, this method only works when the image is captured
with sufficient quality. However noise in image is commonly observed due to oil oxidation and contamination, making the
identification of zeros from cepstrum a difficult process.

Therefore, a restoration method which could tackle the blurry issue in wear debris image is to be developed. For this pur-
pose, the blurry features of wear debris image is investigated. The motion of wear debris in the flow channel is illustrated in
Fig. 2. Once the lubrication oil containing debris is pumped into the flow channel, because of the viscous force applied, those
debris will translate and rotate. Motion blur then results from the relative motion between the debris and the camera during
the exposure period. On the other hand, as wear debris is a 3-D object, de-focus blur is also possible if the debris is located
out of the depth of field. However, this is not the major concern because the distance between the lens and debris is
restrained by the fluid channel which thickness is 0.5 mm. In addition, with a controlled flow rate, most of debris will drop
to the lower side of the channel due to gravity. As a result, motion blur is the dominating degradation suffered by current
video based debris images.

The motion induced blur varies according to the relative motion speed. That means, the image of a point on wear debris
will be subjected to more serious blur if the relative motion speed between this point and the camera is higher. As a result,
the blurry features of points on boundary areas can be quite different because the motion speed is varying over these areas.
Fig. 2. Viscous drag applied on wear debris and velocity distribution of boundary area.
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For the points from a single debris in different posture, shown in Fig. 2a and b, it can be observed from Fig. 2a that the hor-
izontal component of rotation indicate a large difference between the boundary areas on both sides due to different rotation
radii. This discrepancy will remit and emerge along with the debris moving, as shown in Fig. 2b. While for spherical debris
shown in Fig. 2c, the motion speeds of boundary areas are similar. For small debris which will not contact the flow channel,
as the debris motion is a combination of translation and rotation, the motion speed of boundary points will also indicate
discrepancy. Therefore, it can be concluded that the relative motion speed of boundary areas on wear debris, which is com-
posed of the translation speed and horizontal component of the rotation speed, are different. This phenomenon will lead to
blur of different levels on each side of the debris, this can be observed from the profile sequences shown in Fig. 1b.

Besides the image degradation induced by debris motion that will blur the boundary or even central region of a debris, the
quality of wear debris image is often low, namely low informative. This is because lubrication oxidation and contamination
are unavoidable, making the illumination from debris surface diffused and refracted by the oil and only partial quantity of
intensity is captured by the optical sensor. In addition, the contamination contained in lubrication oil will introduce noise in
the captured image. These two process will both reduce the signal to noise ratio of the captured images. As a result, the deb-
ris image quality is relative limited compared with those blurry images captured by general cameras which are elaborately
configured and their outputs can be well addressed by most of the existing deblurring methods. The blur features of wear
debris image can be characterized as:

1. Motion blur is the dominating degradation;
2. The information content is reduced due to insufficient resolution and oil contamination;
3. Due to the spinning and translating of wear debris, the blurry levels of different debris regions are distinct, making the

blurring process spatially variant.

Thus, there is the need to conduct the deblurring operation with respect to the specific features of wear debris image. For
this purpose, a deblurring method that tackles the varying motion speed of wear debris and low information content is
developed.

3. Proposed method

Fig. 3 illustrates the schema of the developed method to restore the blurred on-line wear debris image. Once the raw deb-
ris video is captured, particle extraction and tracking are conducted to obtain 2-D profile sequences of a debris that suffers
blurring effect. The blurred 2-D images are then processed separately using by the developed restoration method detailed
below.

For a blurred profile pi, the restoration process is carried out in three main steps including edge based PSF estimation,
image restoration and profile fusion. Firstly, localized boundary areas are selected to predict the corresponding original sharp
boundary, from which two predicted local edges E1 and E2 are obtained. Based on the predicted sharp edge and their corre-
sponding observed blurry form, the corresponding localized blur PSFs, also known as blur kernel PSF1 and PSF2 are estimated
via the Bayesian process. Image restorations of the blurry image are then conducted based on the estimated motion kernels
PSF1 and PSF2, where different primary deblurred images I1 and I2 are obtained. To obtain the final restoration result, the
primary restorations I1 and I2 are combined by fusing them according to the localized gradient.

3.1. Blurring kernel estimation based on debris edge features

As blurring may significantly affect the shape measurement of wear debris, an operation known as deblurring is to be
implemented to remove this limitation. Previous research towards image deblurring often starts by modelling the observed
blurry image as a convolution of the underlying sharp image and blur kernel [22], that is
Ibðx; yÞ ¼
X

ðn;mÞ2X
Isðx� n; y�mÞ � Kðn;mÞ þ Nðx; yÞ; ð1Þ
where Ib is the observed blurry image, K is the PSF defined in patch X, and it is also know as blur kernel, Is is the underlying
sharp image, and N denotes additive noise. Given the above model, the objective of image deblurring is to recover the orig-
inal sharp image Is from the observed image Ib, which is known as an inverse process called deconvolution.
Fig. 3. Block diagram of the restoration process.
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Two types of methods called non-blind deblurring and blind deblurring have been proposed over the past decades to
tackle this inverse problem [17]. Blind deblurring attempts to obtain the sharp image Is and PSF K simultaneously from a
single blurry image Ib via an iterative process. Although it is regarded as predominant in recent de-blurring related research,
the implementation is often complicate, computationally expensive and is not suitable for wear debris image analysis. If the
PSF is given, the restoration process is called non-blind deconvolution. This operation is performed with the blurry image Ib
given a known blurring PSF, which means that the original sharp image Is can be obtained immediately via an inverse linear
operation. Compared with blind deconvolution, the non-blind strategy is more efficient, and therefore is selected as the
deconvolution method in our case, where rapid data interpretation is needed.

To implement non-blind deconvolution, the common procedure is to estimate the blurry PSF first and deconvolution is
then performed. A number of studies toward kernel estimation have been conducted including periodic zeros identification
and prior statistical assumption [23]. However, the performance of these methods degrade with low signal-to-ratio (SNR)
that is commonly observed in wear debris image. Another group of methods seek blur kernel based on edge features, which
assumes that edge in the real continuous scene being imaged are step edges of discontinuous intensity [24]. The edge based
method is suitable for kernel estimation in wear debris image because debris boundary region is easily identified even in low
SNR scenario due to intensity distinctiveness between debris and background. In addition, the estimation of kernel can be
handled efficiently compared with blind deconvolution. The following subsections present our method to estimate local blur
kernel of debris based on edge features. The process is conducted as two steps: (1) local edge prediction; (2) local kernel
estimation.
3.1.1. Local edge prediction
In wear debris image, even the edge is blurred, it is still possible to localized the edge or boundary region because the

intensity of debris and background are significantly different. The corresponding local sharp edge can then be predicted from
the local blurry boundary area as a process illustrated in Fig. 4. To illustrate the principle with verification, a synthesized
debris image is set up to compare the original edge and the predicted edge. In order to simulate the blur process of wear
debris, the sharp version of the synthesized debris shown in Fig. 4a is blurred with PSFs of different sizes on the left and right
half of the debris, leading to a blurry image shown in Fig. 4b. In particular, the size of PSF on the left half is greater than its
counterpart on the right half. This assumption is made based on the fact that the motion features of different surface points
are distinct, which can be observed from Fig. 2. Therefore, the blurry level of those two boundary areas in Fig. 4b are distinct,
which is consistent with the real blurry images shown in Fig. 1b. To involve the effect of lubricant contamination, Gaussian
noise is added to the artificially blurred image.
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3.1.1.1. Edge model of wear debris. To predict the local edge around the boundary area, the edge model is defined first.
Because the debris image intensity distribution is bimodal, a sharp debris image will indicate a step variation in the bound-
ary area due to the distinct intensity change of debris and background. A step edge model is applied to describe wear debris
boundary area [25],
IlsðxÞ ¼
Ib; x 6 xe
Id; x > xe

�
IrsðxÞ ¼

Ib; x P xe
Id; x < xe

�
; ð2Þ
where Ils and Irs are the 1-D step edges on the left and right debris boundary, xe are the edge location, Ib and Id are back-
ground intensity and debris intensity. The position of the local sharp edge is to be predicted by determining the parameters
in Eq. (2). The initial values of Ib and Id are determined by averaging the pixel intensity of background and debris area that
are away from the edge. The remained task then is to predict the position of xe and intensity values Ib and Id.

3.1.1.2. Debris edge prediction. Based on the assumed step edge Is, the unknown parameters in the model can be determined
by juxtaposing it with the blurred edge Ib. We assume that the step will locate within each ramp due to the linear properties
of motion blur. Then edge prediction is performed by minimizing the difference between the sharp image Is and the blurred
edge Ib, which is defined as,
Eð�xe; �Ib; �IdÞ ¼ argmin
XZ

x¼1

ðIsðxÞ � IbðxÞÞ; ð3Þ
where Z is the range of the boundary area, �xe is the estimated edge position, �Ib and �Id are the estimated intensity of back-
ground and debris respectively.

Because the background and debris have distinct intensities, image gradient is used to obtain a coarse estimation on edge
location, which is regarded as the initialization of xe. The intensity value Ib and Id are determined by averaging the inten-
sities of pixels which are lying in the non-edge area. After the parameters are initialized, prediction is accomplished by min-
imizing the difference defined in Eq. (3) with simplex search [26]. The convergence of this optimization process results in the
position of the estimated edge �xe. Fig. 4c shows the result of edge prediction for 1-D boundary area.

Edge prediction is carried out with one blurred wear debris profile and the result is shown in Fig. 5. As can be observed,
based on this prediction model, the sharp edges of different local boundary areas are obtained. It should be noted that due to
debris rotation, the central region of debris may suffer from different blurry levels from the boundary region. However, only
the edge areas are investigated at this stage. This is because the subsequent PSF estimation will be carried out based on the
predicted edge and its blurry boundary, while pixels in the central region provide no useful information for motion features
exploration. To reduce the computation, only two local patches on each debris side are investigated. The obtained sharp
edges can then be used to estimate the corresponding local PSF.

3.1.2. Localized kernel estimation
As the local sharp edge is predicted, it allows to determine the corresponding kernel within this local boundary area,

which indicates the motion features of this region. According to the blur model in Eq. (1), the blurry image Ib can be
expressed as a convolution of the sharp image Is and the blur PSF K. Therefore, in the local boundary area, the formation
model can be defined as
ILbðx; yÞ ¼
X

ðn;mÞ2X
Isðx� n; y�mÞ � KLðn;mÞ þ NLðx; yÞ; ð4Þ
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where ILb is intensity of pixel in the local blurry boundary area, Is denotes intensity of the predicted sharp edge, KL is the local
PSF and NLðx; yÞ is the additive noise which is considered as Gaussian.

To estimate the PSF, a Bayesian framework using maximum a posteriori (MAP) is applied [27]. In particular, the PSF is
obtained by seeking the most likely estimation of blur kernel KL given the predicted sharp edge Isðx; yÞ and its corresponding
observed blurry boundary ILbðx; yÞ. This operation can be expressed with a conditional probability as
KL ¼ argmax pðKLjILb; IsÞ: ð5Þ

To calculate the conditional probability, the joint probability of ILb; Is and KL is determined as
pðILb; Is;KLÞ ¼ pðILbjIs;KLÞpðIsÞpðKLÞ; ð6Þ

where pðILbjIs;KLÞ denotes the likelihood of blurring process from Is to ILb via a kernel KL; pðKLÞ is the likelihood of kernel
KL; pðIsÞ represents the likelihood of the sharp edge Is. Similarly,
pðILb; Is;KLÞ ¼ pðKLjILb; IsÞpðILbÞpðIsÞ; ð7Þ

where pðKLjILb; IsÞ represents the likelihood of a blur kernel from a blurred image ILb and its sharp form Is.

By equating the right sides of Eqs. (6) and (7), the conditional probability of the kernel KL based on blurred image ILb can
be obtained as
pðKLjILb; IsÞ ¼ pðILbjIs;KLÞpðKLÞ
pðILbÞ : ð8Þ
Therefore, the optimal kernel KL can be determined by
KL ¼ argmax
pðILbjIs;KLÞpðKLÞ

pðILbÞ ; ð9Þ
As the blurred image ILb is the observation that is obtained already, pðILbÞ is regarded as constant, which means,
KL / argmax pðILbjIs;KLÞpðKLÞ: ð10Þ

The imaging noise is assumed as a Gaussian with variance g2

1 within the blur formation model shown in Eq. (4), which
means the probability pðILbjIs;KLÞ can be written as
pðILbjIs;KLÞ ¼ 1

ð
ffiffiffiffiffiffiffi
2p

p
g1Þ

N1
e
�kILb�Is�KLk2

2g2
1 ; ð11Þ
where N1 is the dimension of ILb;� denotes the convolution operator. For the likelihood term of kernel pðKLÞ, as the motion of
localized area of debris can be regarded as constant motion during the exposure period, the PSF will indicate smoothness.
Therefore the gradient of PSF KL is believed to favour a Gaussian with zero mean and a narrow variance g2, which therefore
can be defined as
pðKLÞ ¼ 1

ð
ffiffiffiffiffiffiffi
2p

p
g2Þ

N2
e
�krKLk2

2g2
2 ; ð12Þ
where N2 is the dimension of the PSF. If we define a logarithmic likelihood Lð�Þ ¼ logðpð�ÞÞ, then Eq. (10) can be converted into
KL ¼ argmin
kILb � Is � KLk2

g2
1

þ krKLk2
g2
2

: ð13Þ
Therefore, the estimated kernel can be determined by minimizing
E ¼ kILb � Is � KLk2 þ kkrKLk2; ð14Þ

where k ¼ g2

1=g2
2 is regarded as Lagrange multiplier, which represents the penalty regularizing the smoothness of the antic-

ipated kernel KL [26]. The target function defined in Eq. (14) is solved with Newton–Raphson method [28,13].
Accordingly, based on the local blurry image ILb and the corresponding predicted sharp edge Is, a localized motion blur

kernel KL can be estimated. Because the motion features can only be assumed invariant in a localized region, the kernel esti-
mation is conducted with blurry image and estimated edge from several truncated regions on the boundary regions. The esti-
mated kernel from those localized regions are shown in Fig. 6. It can be observed that the sizes of the estimated kernels are
different, which means that the motion of those boundary areas are indeed different. As mentioned in Section 3.1.1, the
motion features of central regions and boundary regions are different due to debris motion. However, as only the motion
PSF on the boundary area can be estimated with the predicted edge, we utilize the obtained PSF to represent motion features
of its adjacent regions, making the restoration spatially invariant in small patches. This is a common strategy to convert
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spatial variant deconvolution into spatial invariant deconvolution in multiple local patches [29]. Based on the estimated
motion kernels, further deblurring can be performed to obtain the sharp wear debris image.

3.2. Wear debris image restoration with estimated kernels

As the motion PSF is estimated, the deconvolution process can be carried out to recover the original sharp image. For com-
putation efficiency, Wiener filtering is applied to restore the debris image in frequency domain. The process of blurring can
be modelled as the convolution in Eq. (4). Its representation in Fourier domain gives
Ibðu;vÞ ¼ I sðu;vÞ �Kðu;vÞ þN ðu; vÞ; ð15Þ
where Ibðu;vÞ; I sðu;vÞ;Kðu;vÞ and N ðu; vÞ are respectively the transforms of Ibðx; yÞ; Isðx; yÞ;Kðx; yÞ and Nðx; yÞ in frequency
domain.

Wiener filter allows to produce a sharp version �I s of the observed Ib by minimizing the mean square error between the
sharp estimation �I s and the ground truth I s [12]. The restored result via Wiener filter is given as
�I sðu;vÞ ¼ Ibðu;vÞ � Kðu; vÞ
jKðu;vÞj2 þ Snðu;vÞ=SIðu;vÞ

; ð16Þ
where Snðu;vÞ is noise power spectrum, SIðu;vÞ is signal power spectrum. As a result, with a known blur kernel Kðu;vÞ, the
sharp particle image �I sðu;vÞ can be estimated.

As the motion of wear debris in the vertical direction is far less than its motion in horizontal direction, the degradation is
dominated by a motion blur process. The motion blur kernel, Kðx; yÞ, which is correlated to the debris motion features, is
therefore defined as:
Kðx; yÞ ¼ 1=2d; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
< d

0; otherwise

(
; ð17Þ
where d is the size of estimated localized kernels. Based on defined kernel Kðx; yÞ, restoration �Ibðu; vÞ is obtained according
to Eq. (16).

Since the motion features are distinctive on left and right sides of wear debris, two restorations are implemented based on
two different motion kernels estimated from the left and right sides of debris, shown in Fig. 7b and d. The restorations results
are given in Fig. 7c and e.

After restoration, the contrast of wear debris profile from background is improved as part of the boundary area is sharper
than the original one. However, each restoration result still contains under-restored regions. As can be observed from Fig. 7,
the restoration result shown in Fig. 7c indicates a sharper boundary on the left side than its corresponding area in Fig. 7e, and
vice versa. This is because the PSF applied in each deconvolution is estimated from one side of debris, which means that it
can only cope with the restoration of wear debris near the corresponding boundary area, while the rest of blurred area can-
not be well recovered. This is also the shortage of most existing deblurring techniques that restore the degraded image with
one single invariant PSF. In order to maintain the sharp area and remove the undesired part, a fusion process is implemented
to obtain the final debris image after the primary restoration results are obtained.

3.3. Debris profiles fusion from multiple deblurring images

For the purpose of merely maintain the desired restoration area, a fusion method is introduced to obtain the final restora-
tion result. The local sharpness of restoration results are firstly evaluated to roughly determine the desired area. Image fusion
then is implemented to obtain the ultimate restoration.
Fig. 6. Estimated kernel for different boundary areas.
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3.3.1. Sharpness evaluation
The sharpness of an image can be quantified as the intensity distinctiveness in the local area around each pixel. A metric

called spatial frequency, SFðx; yÞ, has been developed as an effective indicator to reflect the clarity of the image [30]. For
instance, when the blur around one pixel increased, its spatial frequency reduces correspondingly. For a specific pixel
Iðx; yÞ, this indicator is defined as
SFðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RFðx; yÞ2 þ CFðx; yÞ2

q
; ð18Þ
where RFðx; yÞ and CFðx; yÞ are the row frequency and column frequency, which are determined as:
RFðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � N

XM
m¼1

XN
n¼1

½Iðx�m; y� nÞ � Iðx�m; y� nþ 1Þ�2
vuut ; ð19Þ
and
CFðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
M � N

XM
m¼1

XN
n¼1

½Iðx�m; y� nÞ � Iðx�mþ 1; y� nÞ�2
vuut ; ð20Þ
in which M and N are the size of a local image patch centered at position ðx; yÞ. With this indicator, the sharpness of indi-
vidual pixel could be quantified, allowing the identification and extraction of sharper region to fuse the final restoration
result that is illustrate as following.

3.3.2. Profiles fusion based on localized sharpness
The final restoration result is obtained by combining two restored debris profiles according to the local sharpness. The

fusion process is implemented in the following steps with the two restorations shown in Fig. 7c and e. The detailed process
are demonstrated as following with key results shown in Fig. 8.

Step 1: For result comparison, the preliminary restorations obtained from Section 3.2 are listed as Fig. 8a and b. Spatial
frequency SF1 and SF2 for two primary restorations given in Fig. 8a and b are calculated according to Eq. (20). The local image
patch used is a 5� 5 window (M ¼ N ¼ 5). The spatial frequency of the two primary restoration are shown in Fig. 8c and d.
As can be observed, compared with the background, the boundary area indicates greater sharpness value.

Step 2: Focus map construction. The focus map is constructed by comparing the spatial frequency values SF1 and SF2 at
each pixel ðx; yÞ. As the pixel with higher spatial frequency value represent sharper image, it is regarded as the focused can-
didate. Based on this concept, the focus map Im is defined as
Imðx; yÞ ¼
1; SF1ðx; yÞ > SF2ðx; yÞ
0; otherwise

�
: ð21Þ
With Eq. (21), the pixel with higher sharpness will be labeled as 1 while the rest will be labeled as 0, the focus map of two
input images are then built, shown in Fig. 8e and f. It can be observed that the focus map can indicate which pixel is sharper
out of two images at ðx; yÞ.



Fig. 8. Image fusion based on the primary restored images, (a) blurry profile; (b) Restoration result based on PSF estimated from right debris boundary; (c)
Restoration result based on PSF estimated from left debris boundary; (d) spatial frequency of (b); (e) spatial frequency of (c); (f) focus map of (b); (g) focus
map of (c); (h) filtered version of (f); (i) filtered version of (g); (j) preliminary fusion result; (k) discontinuity area of (j); (l) final fusion result.
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However, there are still thin protrusions, narrow breaks and small holes remained in the map shown in Fig. 8e and f, while
the focus regions are usually continuous. To rectify those defects, morphological opening and closing, implemented by com-
bining dilation and erosion are conducted. With a defined structure element E (disk, radius = 5), the opening operation,
denoted as Im � E, is a erosion followed by a dilation, which can remove thin protrusion. The closing operation, denoted as
Im � E, is a dilation followed by erosion, which can fill the noncontinuous break and hole. After morphological filtering, a
smoothed focus map Imðx; yÞ is obtained, shown in Fig. 8g and h.

Step 3: Image fusion. the updated focus map indicates whether a pixel is sharp or not. As only the sharper pixel will be
maintained, a the fusion process followed to achieve this objective. The fused image is constructed as
If ðx; yÞ ¼ Ir1ðx; yÞ; Imðx; yÞ ¼ 1
Ir2ðx; yÞ; otherwise

(
; ð22Þ
which is displayed in Fig. 8 i. However, artefacts can be observed at the boundary area of focal map listed in Fig. 8. Median
filter then is applied to smooth the discontinuity, resulting in the ultimate restoration result, shown in Fig. 8k.

The above three steps allow to formulate the final restoration result based on two preliminary deblurred debris profiles
that contains under-restored area inside. Those under-restored areas will be removed and only the sharper part of the
deblurred profiles would be maintained in the final result. As can be observed, compared with the primary restoration,
the fusion result retains sharper region in the primary restoration output.
4. Evaluation of the developed method

The developed restoration strategy enables to obtain the debris contour with higher confidence, which will improve the
accuracy of debris identification. To evaluate the performance of the developed method, related methods are compared in
this section. In addition, experiments upon different debris images are carried out to demonstrate its capability in different
scenarios.
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4.1. Evaluation of the method with respect to edge prediction and image restoration

The developed method consists of edge prediction, kernel estimation and fusion based image deconvolution. However,
related approaches for edge extraction and image deconvolution have also been developed to address similar issues. To
demonstrate the performance of the proposed method, it is compared with those well-known techniques including edge
extraction and image deconvolution.

In this work, debris edge is predicted with a localized step model. However, the localized edge can also be estimated by
Canny and Sobel operator that are commonly applied in edge detection [31,32]. We implemented those two methods upon
the blurred debris image shown in Fig. 5 and the results are given in Fig. 9.

As can be observed, the edge extracted by Canny detector is very sensitive to detail features such as texture and noise. As
shown in Fig. 9a, redundant edges are extracted compared with the result presented in Fig. 5. The result obtained via Sobel
detector proves its higher robustness in details, but still suffers frommultiple edges in the localized boundary regions, shown
in Fig. 9b. As a single edge is required to estimate the motion kernel size, those two edge detectors cannot be used to predict
the localized edge of wear debris.

In the proposed method, the sharp debris image is obtained by fusing the deblurring results from Wiener filtering based
deconvolution. However, deblurring strategies such as Lucy-Richardson and blind deconvolution can also be used to restore
blurring image [16,17]. We have implemented image deblurring with those three methods and the results are shown in
Fig. 10.

Compared with the result of our method, Lucy-Richardson and blind deconvlution can achieve comparable restoration
performance, as shown in Fig. 10b and c. Nonetheless, our method is preferred due to its computation efficiency. The com-
putation cost of the aforementioned methods are detailed in Table 1. The size of the processed image is 118 � 114. The code
is programmed in MATLAB on a personal computer with Intel Core i5-4750 CPU and 16 GB RAM.

As listed in the Table 1, three steps including PSF estimation, image deconvolution and image fusion are required to
restore the blurring image. For non-blind restoration strategy including our method and Lucy-Richardson deconvolution,
the PSF needs to be determined before image deconvolution can be implemented. However, the Lucy-Richardson deconvo-
lution incurs higher total computation than the developed method. This is because it is implemented as an iterative process.
For blind deconvolution, although the PSF is usually not required for the deconvolution process, the deconvolution step asks
for much higher computation than the other two methods. In addition, the blind deconvolution process is highly dependent
on the size of the initialized kernel, as shown in Fig. 10d, e and f. As a result, although those three methods can be used in the
deconvolution step and achieve comparable final results, the Wiener filtering approach is most preferred because this
method is developed to process on-line wear debris image where computation cost is a major concern.
4.2. Evaluation of the method with respect to 3-D debris morphology measurement

The motivation of this research is to improve the accuracy of the extracted debris profile that will significantly influence
the ultimate measurement of debris shape such as size and morphology. In particular, 3-D features including thickness and
volume will also be affected. All those features will directly impact the wear debris identification and classification. To eval-
uate the performance of the developed method, restoration of blurred debris profiles is conducted firstly, then 3-D shape
measurements follows based on the restored debris profiles.

Fig. 11 illustrates the restoration result of the multiple view profiles shown in Fig. 1b. In particular, those blurry profiles
are firstly converted into their grayscale forms for comparison, as depicted in Fig. 11a. Due to the blurry effect, those
(a) (b)

Fig. 9. Debris edge extraction with Canny and Sobel detector, (a) result of Canny detector, (b) result of Sobel detector.



Fig. 10. Deblurring with different deconvolution approaches, (a) restoration result of our method, (b) fusion result of Lucy-Richardson deconvolution, (c)
fusion result of blind deconvolution, (d) blind deconvolution with initial kernel size of 10, (e) blind deconvolution with initial kernel size of 20, (f) blind
deconvolution with initial kernel size of 40.

Table 1
Computation cost of three restoration methods.

Step Restoration method

Our method Lucy-Richardson Blind deconvolution

PSF estimation (/s) 0.0536 0.0521 0.0527
Image deconvolution (/s) 0.0181 0.1115 0.1647

Image fusion (/s) 0.2152 0.1968 0.2101
Total time (/s) 0.2869 0.3604 0.4275
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extracted contours do not accurately indicate the actual 2-D debris silhouettes. With the developed method, restored profiles
are obtained and given in Fig. 11b. As can be observed, those blurry profiles are sharpened by the developed method to
remove the degradation effect on contour extraction. The ultimate recovered debris profiles are extracted by removing
the artifacts emerged in the background area, as shown in Fig. 11c. It should be noted that there are some bright regions
in the restored debris profile, as shown in Fig. 11b and c. This phenomenon is usually induced by two sources. Firstly, as
the product of friction, some regions on debris can be very smooth that may reflect the illumination light into the camera
and then produce the bright region. Those white regions in debris image can also be observed in Ferrography images
[33]. In addition, the Wiener filtering deconvolution may also cause over saturation due to the operation of matrix inversion.
However, as the presented method is to improve the 3-D debris measurement, those bright regions are still tolerable for deb-
ris shape investigation. The updated contours extracted from the recovered profiles then can be applied for 3-D debris
measurement.

Fig. 11 demonstrates that the developed method is capable of recovering profiles of individual debris in different views
that indicate different blur level. To further evaluate the method, restoration is also carried upon blurry profiles from differ-
ent wear debris in various illumination condition, shown in Fig. 12.



Fig. 11. Improvement of the restoration on debris shape measurement, (a) blurry profile sequences, (b) restored profile sequences, (c) extracted profile
sequences.

Fig. 12. Restoration of blurry profiles from different wear debris.
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(a)

(b)

(c)

(d) (e)

Fig. 13. 3-D measurements based on blurred and restored profiles, (a) contours of the blurry profiles, (b) contours of the restored profiles, (c) differences
between the blurry contours and the restored contours, (d) 3-D reconstruction with blurry contours, (e) 3-D reconstruction with restored contours.

Table 2
Detail features of 3-D reconstructed debris in Fig. 13d and e.

Debris Debris features

L ðlmÞ W ðlmÞ H ðlmÞ HAR V ð�103 lm3Þ
Fig. 11f 36 28 26 1.38 12.67
Fig. 11g 35 27 18 1.94 7.39

Difference (%) 2.78 3.57 30.77 40.58 41.67
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As can be observed, most of the blurry profiles can be restored significantly with respect to debris contour. However, it
should be noted the profiles in brighter illumination condition will arise less artifacts in the restoration, which is due to the
fact that brighter image indicate higher SNR.

It can be concluded that the developed method is able to restore blurred debris profiles under different motion and illu-
mination conditions. Compared with the contours of the blurry profile, the contours extracted from restored images indicate
apparent differences, shown in Fig. 11. Considering the nature of shape-from-silhouette, those 2-D dissimilarities will accu-
mulate and eventually result in greater error in 3-D debris features. To demonstrate this discrepancy, 3-D reconstructions are
carried out based on the original blurry contours and the recovered contours respectively, which is illustrated in Fig. 13.

To implement 3-D reconstruction, the blurry and restored debris profiles listed in Fig. 11 are converted into binary forms,
as shown in Fig. 13a and b. The contour differences, shown in Fig. 13c will result in a diversity in shape measurement. 3-D
reconstruction based on the blurry and restored profiles are given in Fig. 13d and e, which morphological details are listed in
Table 2. Indicators L;W;H represent the length, width and thickness of a debris respectively. V denotes the volume. Height
Aspect Ratio (HAR) is the ratio of the maximum dimension to minimum dimension, which is also known as thickness. As can
be observed, from the reconstruction result, those two 3-D debris suggest markedly morphological distinction.

By comparing the 3-D shape from the recovered profiles and blurry profiles, it is shown that the blurring effect are
reduced, making the contour extraction more accurate. As a result, debris features especially for thickness and volume
can be modified significantly with the developed restoration process.
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Fig. 14. 3-D debris reconstructed from original blurry images and restored images.
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To further evaluate this method in debris shape description, 3-D measurements were implemented with three types of
wear debris, whose video was collected from gearbox lubrication oil. In the experiment, the initial 3-D debris shape mea-
surement was firstly carried out based on blurry debris profiles. Those blurry profiles then were recovered by the developed
deblurring method to remove the blurry effect. The 3-D shape measurement was repeated based on those recovered debris
profiles. The 3-D reconstructed results are illustrated in Fig. 14.

The morphological details of debris shown in Fig. 14 is listed in Table 3. The updated 3-D debris shape measurements,
denoted as R were compared with the initial 3-D debris shape measurements, denoted as O, to demonstrate the perfor-
mance of the deblurring operation.

As can be observed from the comparison result, debris shape measurement from the blurry profile and the restored pro-
file indicate significant difference. For instance, debris 6 was originally classified as spherical debris based on its HAR value
that is close to 1. However, because the thickness features were ameliorated via the restoration operation, the HAR value
increase dramatically, making them to indicate laminar features. Similar features can also be observed from debris
5;7;12 and 8. Due to the improvement of thickness features, cutting features will also be enhanced by recovering the blurred
profiles. In addition, as the debris shape is more reliably described, the estimation of material loss that is related to debris
volume, will also be obtained with higher confidence.



Table 3
Difference of initial and updated debris morphology in Fig. 14.

Debris Debris features

L ðlmÞ W ðlmÞ H ðlmÞ HAR V ð�103 lm3Þ
Type ID O R O R O R O R O R

Sphere (1) 25 24 23 19 21 18 1.19 1.33 5.75 3.87
(2) 45 43 36 34 32 28 1.41 1.54 24.80 19.57
(3) 52 50 47 44 43 39 1.21 1.28 47.77 38.82
(4) 60 56 51 47 40 32 1.50 1.75 58.57 40.29

Laminar (5) 34 32 29 24 19 13 1.79 2.46 8.87 4.61
(6) 46 45 39 34 33 16 1.39 2.81 27.28 10.98
(7) 53 50 35 31 28 22 1.89 2.27 24.05 15.70
(8) 53 53 45 45 40 25 1.33 2.12 44.58 27.73

Cutting (9) 46 43 20 20 15 14 3.07 3.07 5.31 4.18
(10) 57 55 15 13 14 10 4.07 5.50 6.02 3.81
(11) 62 62 17 13 15 12 4.13 5.17 7.19 4.46
(12) 75 76 18 10 16 8 4.69 9.50 10.59 5.98
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This method is able to mitigate motion blur degradation that is common in on-line wear debris image. It can improve the
robustness of video-based debris imaging in industrial application. In addition, the rectification of debris profile will influ-
ence the further wear mechanism interpretation as well because of the modified debris features. Based on the blurred fea-
tures, the debris is similar as a sphere debris according to its HAR value. While after the restoration, the HAR varies
dramatically enabling this debris to indicate laminar and cutting features.
5. More discussion

This approach differs from previous ones in several ways. Firstly, multiple motion PSFs are utilized to restore the blurred
debris profiles that suffer distinct motion blur in different regions. Second, a fusion process is implemented to remove the
undesired restoration and maintain the sharp regions. It enables describing the morphological information of debris with
higher confidence.

With the improved 2-D profiles, debris contours can be described more accurately, allowing the morphological features
defined in off-line debris image to be applicable in on-line analysis. In addition, 3-D debris shape can be measured more
elaborately with the improved 2-D contours. Debris in fatigue chunk, laminar and spherical then can be classified, enabling
interpretation of more detail wear mechanism. Furthermore, the 3-D features such as debris volume can be used to estimate
material loss from machinery components, which is regarded as an indicator of wear rate.

However, future works are still needed to make it more practical and robust. Although motion blur is the major issue
addressed in this work, de-focus blur can also be observed when the dimension of debris is large. However, most existing
methods are developed to tackle specific blur degradation. The presented method therefore is needed to be improved as a
comprehensive strategy that can restore debris image in various degradation in the future. On the other hand, the developed
method can improve the boundary information that is important in shape description. However, the surface information still
cannot be restored with sufficient confidence. Future research is still needed to recover more detail debris surface informa-
tion such as texture.
6. Conclusion

In this work, a fusion based deblurring strategy is developed for the restoration of wear debris image with low informa-
tion content. Debris edge features are adopted to predict the local motion kernel that is difficult to be estimated directly by
other methods. Based on the fact that debris blur is a spatially variant process, Wiener filtering is employed to obtain the
deblurred images with different local kernels. To maintain the desired sharp area and discard parts containing residual blur,
a fusion process is implemented to extract the optimal restoration effect. The experiment result demonstrates that this
method is capable of restoring debris image captured under lubrication contamination and oxidation. With the debris profile
restored, shape measurement and morphology analysis of debris are improved, making the video based debris monitoring
more robust and practical.
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