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Ferrography has emerged as a significant candidate for the provision of relevant information for the
determination of the status of machine wear. However, this conventional methodology provides only
marginal results due to its inability to provide 3-dimensinal (3D) surface information. The authors of this
paper have developed a methodology based on photometric-stereo towards the enhancement of the
capabilities of ferrography. This enhanced and innovative methodology consists of three main
components, the multi-illumination image acquisition, the wear particle extraction, and the 3D surface
reconstruction. The methodology ensures the reliable and efficient extraction of the wear particles
surface topographies for further feature-based wear particle identification. The performance of this
methodology has been compared with results observed from the laser scanning confocal microscopy.
The outcome of this comparison has depicted that the methodology involving this new low-cost ferrog-
raphy system exhibits very high accuracy for the 3D surface feature extraction of wear particles.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Wear particles bear very significant information inherent in the
determination of wear severity and wear mechanisms, whereby,
the wear particles result from the direct production of friction
interactions between mechanical parts [1]. WDAmay be accounted
for as a significant means for machine condition monitoring [2–4].
These methods have been extensively explored and implemented
focusing on particle morphological characteristics, and there is a
continuous improvement in the various methodologies towards
effectiveness.

Ferrography has emerged as one of the most recognized and
effective WDA methods in recent years [5]. In fact, it has been
widely used in industrial machines including the monitoring of
marine and aircraft engines [6–8]. Due to the ferromagnetic prop-
erties of wear particles, this methodology takes advantage of a high
gradient magnetic field for the collection of wear particles emanat-
ing from the lubrication oil. An optical microscope is then applied
to capture the particle images. The application of image processing
enables the acquisition and analysis of wear particle shapes, tex-
ture and material characteristics as inference parameters for wear
mechanisms [9]. The current acquisition and processing methods
only provide 2D characteristics of the image rather than spatial
features. The absence of spatial features offers only marginal
results since there is no reflection whatsoever of the real shapes
of the irregular wear particles including the laminar, adhesive
and severe sliding particles [10]. Whereas both laminar and severe
sliding particles exhibit similar shapes and edge features in 2D
images, laminar particles exhibit holes, wrinkles and other surface
defects in 3D images. In fact, severe sliding particles exhibit paral-
lel slips or cracks on the surfaces, therefore, there arises the
requirement for additional dimensions to enable further identifica-
tion of the unobservable types of wear particles.

The electron microscopy has enhanced research activities
towards the extraction of particle features in 3D. Some examples
of the enhancements for the provision of information with respect
to the wear debris contours and surfaces include AFM [11,12],
LSCM [13], and SEM [14], respectively. The analysis and compar-
ison of results clearly depict reliability and efficiency in the perfor-
mance of the 3D wear particles method over the 2D one. In spite of
this distinction, the application of this 3D methodology is still
marginalized due to its high costs and complex operation. Several
factors seem to impose restrictions on the application of the elec-
tron microscope in WDA. As an example, the measurement range
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Nomenclature

Items Definition
s scale factor
m0 the 2D coordinates of the image
K camera intrinsic matrix
R rotation matrix
t translation matrix
M 3D coordinate in space
u0 the x-coordinate of the pivot points
v0 the y-coordinate of the pivot points
f u the focal lengths of the camera on the u-axis
f v the focal lengths of the camera on the v-axis
(u, v) real pixel coordinates
ðu�;v�Þ ideal pixel coordinates
(x, y) the real image coordinates
ðx�; y�Þ the ideal image coordinates
k1 second-order radial distortion coefficients
k2 fourth-order radial distortion coefficients
x0 the proportion of the foreground
l0 average gray level of foregrounds
x1 the proportion of the background
l1 the average gray level of background

Diðx; yÞ the image handled by the difference method
f iðx; yÞ the image of the i-th IS
f 0ðx; yÞ the mask image
q the reflection coefficient of the object surface
N0 the unit normal vector on the WPS
L0 the IS direction
3D 3-dimensinal
2D 2-dimensinal
WDA Wear Debris Analysis
AFM atomic force microscope
LSCM the laser scanning confocal microscopy
SEM stereo scanning electron microscopy
PS photometric stereo
OTSU maximum between-class variance method
WPS wear particle surface
MII multi-illumination image
RWPS reconstruction of wear particle surface
IS illumination source
ITM the iterative threshold method
MESM by the maximum entropy segmentation method
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of the AFM is confined to wear particle sizes below 5 lm in which
case it may be deemed as insignificant for any practical engineer-
ing applications. The LSCM is more frequently applied in the exam-
ination of biological particles as opposed to particles from
mechanical parts. In addition to these restrictions is the fact that
these methods largely focus on the analysis of a single wear parti-
cle, but not simultaneously on the multiple particle morphologies.

As a contribution towards the further enhancement of the
aforementioned issues, it becomes very necessary to develop other
effective WDA methods. One of such possibilities is the 3D RWPS
based on 2D image sequences [15]. The principles underlying these
video based techniques are very similar, and they function as fol-
lows: wear particles are rolled into a free-flow channel whereby
a camera is mounted on the microscope for capturing the video
images of the particles in the flowing lubricant. A scheme that is
similar to this method is reported for the estimation of 3D particle
information in reference [16], which extends WDA from 2D to 3D.
In fact, the resulting 3D model does not represent a comprehensive
reflection of the particle since only two images may be under con-
sideration. There follows a further improvement of this approach
through the extraction of 2D features from multiple views for the
construction of 3D features [17]. Furthermore, the 3D model of
the particles is constructed based on a silhouette-based method
from full-view images [18]. However, 3D surface morphology of
wear particles may not be observed through these methods.

Although current WDA methodologies have gained some suc-
cesses in machine condition monitoring, yet still, they are insuffi-
cient in the acquisition of comprehensive, reliable and accurate
wear information. This paper introduces a new 3D reconstruction
ferrography system based on photometric stereo for the analysis
of WPSs. Wear particles from lubricants are acquired using proce-
dures of ferrography. An optical microscope is then applied for the
acquisition of the particle images under multiple ISs located at
specifically selected positions. This proposed method consists of
four main stages; (1) an image acquisition system consisting of
an optical microscope and eight- ISs, (2) a processing arrangement
for the enhancement of image degradations due to possible lens
distortions, (3) the extraction of the wear particles using the OTSU
and differencing methods, and (4) the reconstruction of the WPSs
using the surface normal and height calculations. Finally, there fol-
low a comparison of the reconstructed surfaces with those from
the LSCM.

This paper is further organized as follows: Section 2 is the
description of the procedure involving the acquisition of multi-
illumination particle image, the wear particle extraction, and the
3D RWPSs with photometric stereo; the verification of the pro-
posed method is given in Section 3; discussions are presented in
Section 4; and conclusions are depicted in Section 5.
2. Materials and methods

PS technology is a significant methodology that enables the
estimation of the surface normal from the captured MIIs for the
reconstruction of the surface [19]. In view of the particularity of
wear particles, a 3D Reconstruction of WPS method based on PS
is developed in this section that consists of three steps; (1) Image
acquisition from multiple ISs, (2) Wear particle extraction, and (3)
3D Reconstruction of WPS.

2.1. Image acquisition from multiple ISs

Considering the small size of wear particles, it becomes very dif-
ficult to obtain multiple ISs using only traditional camera phenom-
ena. Therefore, an additional optical microscope is included in the
optical path to enhance the capture capabilities of images of the
wear particles under multiple ISs. The subsequent processing pro-
cedures involving the estimation of the direction of the incidence
illumination and the rectification of the distorted images are fur-
ther described below.

2.1.1. Wear particle image acquisition system
PS technology recovers WPSs from MIIs taken from the same

view. It follows the assumption that ISs are sufficiently so far away
from the object such that all incidence ISs may be considered as
parallel rays with equal intensity, as shown in Fig. 1 (a) and (b).
Hence, a PS system is designed consisting of an optical microscope
and eight LEDs, as shown in Fig. 1 (c). The distance between the IS



Fig. 1. Diagram of the 3D RWPS: (a) object illuminated by parallel rays; (b) surface shadows; (c) acquisition system for MIIs.
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and the wear particles should exceed 40 mm. Furthermore, it may
be considered that the LEDs are located at infinity such that their
incidence illuminations are in parallel to the wear particles since
the wear particle sizes are, generally, less than 200 lm. In order
to collect real MIIs of wear particles, white illumination sources
are introduced into the wear particle image acquisition system.
The luminous intensity (IV) ranging between 9000 mcd and
14,000 mcd enables the illumination source to light up wear parti-
cles, but will not generate any specular reflections on WPSs. The
LED specifications are given in Table 1.

Wear particle samples, collected by ferrography, are placed
under the microscope. When the eight LEDs are sequentially pow-
ered on and off, MIIs are captured by the microscope-camera
arrangement. Additionally, a fully illuminated wear particle image
is captured when the eight LEDs are simultaneously powered on.
The acquired images are shown in Fig. 2. As may be observed from
Fig. 2 (a) � (h), the shadow on the WPS rotates with the eight LEDs
powered on and off which clearly illustrates the effectiveness of
the designed PS system.

2.1.2. Illumination direction estimation
The perception of an object depends on its geometric and

brightness variations on the surface. In addition, a significant factor
for brightness variations is the direction of the incidence illumina-
tion. This factor has a direct influence on the computation of the
normal vector of the surface, hence, the necessity for an appropri-
ate procedure in the estimation of the direction of the illumination
[20].

Traditional methods estimate the directions of the incidence
illumination with reference to known geometric or spatial posi-
Table 1
LED specification.

Indicator Parameters

IV(mcd) 9000–14,000
CCT(K) X:0.2890–0.3168/Y:0.3008–0.3203
VF(V) 2.8–3.0
Colors white
tions. Image features, e.g. specular points, are estimated when
the IS strikes on the object surface [21]. Alternatively, the direc-
tions of the incidence illumination may be deduced by normalizing
the actual distances between the ISs and the wear particles. Due to
the very small distance (negligible) between the particle and the
microscope for referencing the indicators, the latter method is
applied in the system and the estimation results are then illus-
trated in Table 2.

2.1.3. Distorted image rectification
The real camera lens is, generally, incapable of satisfying the

strictly essential center projection relationship required by the pin-
hole imaging principle. Based on this shortcoming, there arise dis-
tortions in the captured images. It becomes then necessary to
rectify the original images through the estimated parameters of
the camera for further processing. From reference [22], it is
required to move either the camera or the plane checkerboard to
various positions in space, and then capture the images of the
plane checkerboard.

(a) Camera intrinsic matrix

In order to solve the problem involving distortion coefficients,
there is the initial requirement to calibrate the intrinsic matrix of
the microscope-camera arrangement. Within the context of image
processing as in reference [23], a point in space maps to pixels in
the image and this relationship may be expressed in Eq. (1) as:

sm0 ¼ KR�1 Ij � t½ �M ¼
f u 0 u0

0 f v v0

0 0 1

2
64

3
75R�1 Ij � t½ �M ¼ HM ð1Þ

where s is the scale factor,m0 is the 2D coordinates of the image, K is
the camera intrinsic matrix, R is the rotation matrix, t is the trans-
lation matrix,M is the 3D coordinate in space, H ¼ h1;h2;h3½ �, u0 and
v0 are the coordinates of the pivot points (the intersection point of
the optical axis with the imaging plane), f u and f v are the focal
lengths of the camera on the u-axis and v-axis, respectively.

From Eq. (1), the constraints of the intrinsic matrix parameters
may be solved as in Eqs. (2) and (3) as,



Fig. 2. Wear particle images captured from multiple ISs: (a) wear particles captured under L1; (b) wear particles captured under L2; (c) wear particles captured under L3; (d)
wear particles captured under L4; (e) wear particles captured under L5; (f) wear particles captured under L6; (g) wear particles captured under L7; (h) wear particles captured
under L8; (i) the fully illuminated wear particles image.

Table 2
Incidence illumination direction estimation results.

LED Real distance ðx; y; zÞ Incidence illumination direction ðx�; y�; z�Þ
L1 (�29.7, 29.7, 33) (�0.56, 0.56, 0.62)
L2 (0, 42, 33) (0, 0.79, 0.62)
L3 (29.7, 29.7, 33) (0.56, 0.56, 0.62)
L4 (42, 0, 33) (0.79, 0, 0.62)
L5 (29.7, �29.7, 33) (0.56, �0.56, 0.62)
L6 (0, �42, 33) (0, �0.79, 0.62)
L7 (�29.7, �29.7, 33) (�0.56, �0.56, 0.62)
L8 (�42, 0, 33) (�0.79, 0, 0.62)
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hT
1K

�TK�1h2 ¼ 0 ð2Þ

hT
1K

�TK�1h1 ¼ hT
2K

�TK�1h2 ð3Þ
These two constraint equations are derived from one image.

Thus, the four parameters (f u,f v ,u0 and v0) in the intrinsic matrix
may be derived only from two images. To facilitate an improve-
ment in the calibration accuracy, eight images of plane checker-
board are acquired through the variation of the relative positions
between camera and checkerboard, as in Fig. 3. Every checkerboard
image has 20 corner points, and these corners are extracted by
using the Harris method [24]. The extracted corner positions are
fed into Eqs. (2) and (3), so that the camera intrinsic matrix can
be estimated as:

K ¼
34043:51 0 863:53

0 33376:80 430:49
0 0 1

2
64

3
75 ð4Þ
(b) Radial distortion coefficient

Radial distortions are always inherent in images. Based on this
hypothesis, the distortion center is always considered as the main
point of the camera, in which the distortion is similar in both the x-
axis and y-axis, respectively. A combination of the camera internal

reference model may be expressed as u
� ¼ u0 þ x=dx and

v
� ¼ v0 þ y=dy, the mathematical model of the radial distortion
may be expressed as,

u ¼ u
� þðu� �u0Þ k1 x

�2 þ y
�2

� �
þ k2 x

�2 þ y
�2

� �2
� �

v ¼ v
� þðv � v0Þ k1 x

�2 þ y
�2

� �
þ k2 x

�2 þ y
�2

� �2
� �

8>>><
>>>:

ð5Þ

where (u, v) are the real pixel coordinates, ðu�;v�Þ are the ideal pixel

coordinates, (x, y) are the real image coordinates, ðx�; y�Þ are the ideal
image coordinates, and k1,k2 are second-order and fourth-order
radial distortion coefficients, respectively.

In Part a), the corner point coordinates in the checkerboard
images were extracted. From Eq. (5), the radial distortion
coefficients were obtained with application of the least square
method as; k1 ¼ �7:73 and k2 ¼ �0:15. In addition, the MIIs of
wear particles were corrected by the radial distortion coefficients
as illustrated in Fig. 4 (b). For comparison with the original images,
the corrected pixel images are made to become smaller towards
the center of the image such that the closer the distances between
the edges of the pixels and the images, the larger the scale of the
reduction.



Fig. 3. Plane checkerboard images: (a) checkerboard captured at Position 1; (b) checkerboard captured at Position 2; (c) checkerboard captured at Position 3;
(d) checkerboard captured at Position 4; (e) checkerboard captured at Position 5; (f) checkerboard captured at Position 6; (g) checkerboard captured at Position 7;
(h) checkerboard captured at Position 8.

Fig. 4. Wear particle image rectification on Fig. 2 (a): (a) original wear particle image; (b) corrected wear particle images.

354 S. Wang et al. /Measurement 133 (2019) 350–360
2.2. Wear particle extraction

The numerical increase in MIIs makes reconstruction precision
more ideal, and this will lead to a multiplicity of computational
intensity. This problem would require the extraction of wear parti-
cles from the background region in order to improve the efficiency
of the reconstruction method. Therefore, an adaptive extraction
method is developed in this part that consists of two steps; (1)
the mask image acquisition by OTSU, and (2) the wear particle
extraction by the difference method, respectively.
2.2.1. Mask image acquisition by OTSU
There are very distinct differences between the wear particles

and the background of the full-illumination image. The wear parti-
cles may be separable from the background with an appropriate
threshold. Based on the gray-level properties of the wear particle
images, OTSU provides a self-adaptive threshold for segmentation
of the image into two categories. Should the result of the probabil-
ity of the segmentation error be least indicates that the variance in
the two categories is very large [25]. This result enables the adop-
tion of the OTSU method whose basic principle is described as
follows.

For a gray image, it can be assumed that the number of pixels in
the image is N, the gray level changes from 0 to l � 1, and the pixel
number of the i-th gray level is ni. By selecting an initial threshold k
from the gray level, the wear particle image may be segmented
into two categories; foreground C0 and background C1, where
C0 = :{0, 1, 2, . . ., k}, and C1 = :{k + 1, . . ., l � 1}. Furthermore, the
proportion of the foreground (x0), the average gray level of fore-
grounds (l0), the proportion of the background (x1) and the aver-
age gray level of background (l1) may be calculated as in Eq. (6).
And the class variance between C0 and C1 may be defined as in
Eq. (7) as,

x0 ¼ Pk
i¼0

ni
N l0 ¼ Pk

i¼0
i�ni
x0�N

x1 ¼ Pl�1
i¼kþ1

ni
N l1 ¼ Pl�1

i¼kþ1
i�ni
x1�N

8<
: ð6Þ
r2 kð Þ ¼ x0x1 l0 � l1

� �2 ð7Þ
Variance reflects the range scope of data, thus, the greater the

variance, the greater the difference between the two classes. By
changing the threshold k from 0 to l � 1, the optimal threshold k�

may be determined when r2 kð Þ is the largest quantity. Based on
the obtained threshold k�, the full-illumination image is segmented
into binary images in which the wear particles are white areas and
the black areas depict the background as in Fig. 5 (c). However,
there appears the existence of several holes in the segmentation
results due to the inhomogeneity of gray level on WPSs. In order
to eliminate the noise, advantage is taken of the expansion and cor-
rosion algorithm to fill these holes and, hence, the final segmenta-
tion results are shown as in Fig. 5 (d).



Fig. 5. The OTSU-based mask image acquisition method: (a) original image; (b) gray image; (c) segmentation results; (d) wear particle image with noise elimination.
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To verify the performance of the OTSU-based mask image
acquisition method, a set of experiments were performed by com-
paring the segmentation results with the results of the ITM [29]
and the MESM [30,31]. The segmentation results are illustrated
in Fig. 6. As may be observed, the particle images appear to exhibit
some level of over-segmentation through the ITM, and there is
much noise on the segmented image by virtue of the MESM. This
leads to a failure towards obtaining complete wear particles. How-
ever, the OTSU-based mask image acquisition method is able to
effectively extract wear particles and eliminate noises through a
combination of the expansion and corrosion algorithms.

2.2.2. Wear particle extraction by differencing
After the acquisition of the mask images, the difference method,

described in Eq. (8), is applied onto MIIs in order to extract wear
particles from the background, as depicted in Fig. 7.

Diðx; yÞ ¼
f iðx; yÞ

0

�
f 0ðx; yÞ > 0
f 0ðx; yÞ ¼ 0

ð8Þ

where Diðx; yÞ represents the image handled by the difference
method, f iðx; yÞ represents the image of the i-th IS, and f 0ðx; yÞ rep-
resents the mask image.
Fig. 6. Comparison of wear particles segmentation results: (a) particle image #1; (b) ima
#1 segmentation by the OTSU-based method; (e) particle image #2; (f) image #2 seg
segmentation by the OTSU-based method; (i) particle image #3; (j) image #3 segmentati
by the OTSU-based method.
2.3. 3D reconstruction of WPS

The brightness of MIIs contains rich 3D information such as the
relative height. Based on the extracted wear particle images, 3D
surfaces of wear particle are reconstructed by PS [26,27]. The
height of WPSs may be recovered by calculating the surface normal
vectors from the multiple illumination image sources. Generally,
there are two steps involved in this PS procedure; (1) the surface
normal vector calculation, and (2) the surface height restoration,
respectively. The first step is presented in Section 2.3.1 and the
height solution process will be given in Section 2.3.2.
2.3.1. Surface normal vector calculation
The theory of optics suggests that when incidence illuminations

strike on the object surface, they are reflected and transmitted
based on the optical properties of the surface. However, part of this
incidence illumination may be absorbed by the surface and
converted into heat. The color of the object surface may only be
estimated through the reflected illumination when the object is
not transparent. With many protrusions on the surface, wear par-
ticle may reflect the illumination in all directions. Thus, it may be
considered that the reflection on WPS is caused by the scattered
ge #1 segmentation by the ITM; (c) image #1 segmentation by the MESM; (d) image
mentation by the ITM; (g) image #2 segmentation by the MESM; (h) image #2
on by the ITM; (k) image #3 segmentation by the MESM; (l) image #3 segmentation



Fig. 7. Wear particles extraction: (a) wear particles extracted from L1 image; (b) wear particles extracted from L2 image; (c) wear particles extracted from L3 image; (d) wear
particles extracted from L4 image; (e) wear particles extracted from L5 image; (f) wear particles extracted from L6 image; (g) wear particles extracted from L7 image; (h) wear
particles extracted from L8 image.
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illumination, which may be regarded as the Lambertian reflection
model [19]. According to this model, the brightness I0 on the image
is expressed as:

I0 ¼ qN0 � L0 ð9Þ

where q is the reflection coefficient of the object surface, N0 repre-

sents the unit normal vector on theWPS,N0 ¼ Nx;Ny;Nz
� �T , L0 repre-

sents the IS direction, L0 ¼ Lx; Ly; Lz
� �T .

It may be observed that Eq. (9) is a linear equation about each
component of N. If the number of the equations is above three,
the normal vector N could be determined. That is, the surface nor-
mal vector N may be computed with three or more captured
images under different illumination conditions. Furthermore, eight
wear particle images are acquired under different LEDs. Thus, Eq.
(9) is extended as:

I1 ¼ q Nx � L1x þ Ny � L1y þ Nz � L1z
� �

I2 ¼ q Nx � L2x þ Ny � L2y þ Nz � L2z
� �

I3 ¼ q Nx � L3x þ Ny � L3y þ Nz � L3z
� �

� � �
I8 ¼ q Nx � L8x þ Ny � L8y þ Nz � L8z

� �

8>>>>>><
>>>>>>:

ð10Þ

These equations may be solved by the least-square algorithm,
and the normal vector of a pixel point may be calculated by turning
the normal vector into a unit vector. Furthermore, all normal vec-
tors on the WPSs may be computed by stepping through each pixel
using the same method. The resulting surface normal vectors are
shown in Fig. 8 (b), where Fig. 8(a) depicts the original image of
the wear particle.
Fig. 8. Normal vector calculation: (a) original wear
2.3.2. Surface reconstruction
According to the tangent plane theory, the normal vector is per-

pendicular to its corresponding tangent plane, therefore, it is per-
pendicular to each line on the tangent plane. As shown in Fig. 9,
if P(x,y,z(x,y)) and its adjacent point P(x + 1,y,z(x+1,y)) are assumed
on the tangent plane, a tangent vector V1 through P(x,y,z(x,y)) may
be obtained, and defined as:

V1 ¼ xþ 1; y; z xþ1;yð Þ
� �� xþ 1; y; z x;yð Þ

� � ¼ 1;0; z xþ1;yð Þ � z x;yð Þ
� �

ð11Þ
From the analysis above, the surface normal vector is perpen-

dicular to the tangent vector V1, namely, N � V1 ¼ 0, and the con-
straint equation in the horizontal direction may be calculated as:

Nx þ Nz � z xþ1;yð Þ � z x;yð Þ
� � ¼ 0 ð12Þ

In the same way, the constraint equation in the vertical direc-
tion may be obtained as:

Ny þ Nz � z x;yð Þ � z xþ1;yð Þ
� � ¼ 0 ð13Þ

Considering these pixels with boundary conditions and some
unreasonable surface normal vectors, equations (12) and (13)
may be revised as follows:

�Nx þ Nz � z x�1;yð Þ � z x;yð Þ
� � ¼ 0 ð14Þ
�Ny þ Nz � z x;y�1ð Þ � z x;yð Þ
� � ¼ 0 ð15Þ

Therefore, there always exists two constraint equations for a
pixel point (x, y) and the height calculation may be divided into
the following four conditions:
particle image; (b) 3D surface normal vectors.



Fig. 9. Schematic diagram of the tangent plane determination.
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1. The point (x, y) has valid pixels on both its right and bottom

Nx þ Nz � z xþ1;yð Þ � z x;yð Þ
� � ¼ 0

Ny þ Nz � z x;yþ1ð Þ � z x;yð Þ
� � ¼ 0

(
ð16Þ

2. The point (x, y) has no valid pixel on its right and bottom

�Nx þ Nz � z x�1;yð Þ � z x;yð Þ
� � ¼ 0

�Ny þ Nz � z x;y�1ð Þ � z x;yð Þ
� � ¼ 0

(
ð17Þ

3. The point (x, y) has valid pixels on its right and no valid pixel on
its bottom

Nx þ Nz � z xþ1;yð Þ � z x;yð Þ
� � ¼ 0

�Ny þ Nz � z x;y�1ð Þ � z x;yð Þ
� � ¼ 0

(
ð18Þ
Fig. 10. Flowchart of a WPS
4. The point (x, y) has no valid pixel on its right and has valid pix-
els on its bottom
�Nx þ Nz � z x�1;yð Þ � z x;yð Þ
� � ¼ 0

Ny þ Nz � z x;yþ1ð Þ � z x;yð Þ
� � ¼ 0

(
ð19Þ

Thus, for an image withm � n pixels, the surface heights may be
calculated by Eq. (20) which consists of a sparse matrix M and a
(2 �m � n) � 1 vector V.

Z ¼ M�1V ð20Þ

where M is made up of Nz and V is composed of Nx and Ny.
Fig. 10 depicts a sketch of RWPSs based on the above-

mentioned procedures, the surface topographies of wear particles
are recovered and reconstructed 3D surfaces are illustrated in
Fig. 11. The reconstruction accuracy may be further verified by
comparing with the reconstructed surface of the LSCM.
3. Verification of the method

In this section, a set of experiments were performed to verify
the performance of the proposedmethod. First, the MIIs of real par-
ticles are collected by the image acquisition system in Section 2,
and the 3D surfaces of the wear particles are reconstructed by
the proposed method. It further follows that the same wear parti-
cles are reconstructed by the LSCM. The reconstruction results
from the two methods are shown in Fig. 12. As may be observed,
the recovered surfaces by the proposed method exhibit a high sim-
ilarity with the results by the LSCM. Even though the LSCM is able
to reconstruct more fine features than the proposed method, its
price is of the magnitude of tens of times as opposed to the tradi-
tional confocal microscope. This confocal microscope has always
been a great financial burden for general enterprises. Remarkably,
this proposed methodology may be able to reconstruct WPSs by
optical microscope for reducing the uncertainty of wear particle
identification in WDA [28].
reconstruction process.



Fig. 11. Wear particle 3D surfaces reconstructed by PS: (a) multi-source particle image acquisition system; (b) amplification of the reconstruction result; (c) reconstruction
results of different wear particles.

Fig. 12. Comparison of reconstructed WPS: (a) the wear particle 2D image; (b) the reconstructed surface of the wear particle in (a) by the LSCM; (c) the reconstructed surface
of the wear particle in (a) by PS; (d) the wear particles 2D image; (e) the reconstructed surface of the wear particle in (d) by the LSCM; (f) the reconstructed surfaces of the
wear particle in (b) by PS.
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Table 3
The surface parameters extracted from the reconstructed surfaces in Fig. 11 (b) and
(c).

Parameter PS LSCM

Ssk 1.18 1.11
Sku 1.47 1.26
Sbi 0.48 0.58
Svi 1.26 � 10�5 7.14 � 10�5
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In order to evaluate the reconstructed surfaces comprehen-
sively, the parameters of reconstructed surfaces are extracted to
make a contrast. According to surface properties, surface parame-
ters may be divided into four categories; the amplitude parameter,
the space parameter, the comprehensive parameter, and the func-
tion parameter, respectively [11]. Amongst them, the amplitude
parameter is able to reflect surface morphology, and the function
parameter represents some special performance indicator. There-
fore, some typical parameters are selected from the amplitude
and from the function parameters, these include the surface skew-
ness (Ssk), the surface kurtosis (Sku), the surface bearing index
(Sbi), and the valley fluid retention index (Svi), respectively. These
parameters were extracted from the reconstructed surfaces in
Fig. 11 (b) and (c), shown in Table 3.

As may be observed, the four parameters are approximately the
same which is a good reflection of the similarity of reconstructed
results on the surface morphology. Overall, the wear particle
reconstruction based on the PS has a high similarity to the results
exhibited by the LSCM.

4. Discussion

Through the design of an image acquisition device with a micro-
scope and eight LEDs, MIIs are captured from a fixed view, and
WPSs are reconstructed by the PS method. The above experiments
clearly confirm that the developed photometric-stereo based
method is able to reconstruct the 3D surface of wear particles with
a good accuracy. In comparison to the traditional ferrography
described in the introduction section, this developed method
may provide the 3D surface morphologies. With an optical micro-
scope, the surface of the wear particle is reconstructed at a very
low-cost means than the LSCM approaches. When compared with
the multi-view image capturing system reported in the reference
[18], the current work provides surface features rather than spatial
features, such as valley fluid retention index (Svi). More signifi-
cantly, this proposed method makes the extracted 3D surface
information more reliable for the identification of the wear debris.

It may be mentioned here that the wear debris images must be
captured from a fixed view. When collecting MIIs, the movement of
wear particles will lead to the misplacement of pixel points in col-
lected images, affecting the calculation of the surface normal vec-
tors. Thus, the deposition of the wear particles is one of the key
points to obtain these MIIs. Therefore, the proposed method could
be combined with ferrography to enhance the attraction of wear
debris on a plane surface by its magnetic force. The further devel-
opment of this work has extended the traditional ferrography tech-
nology into 3D WDA by reconstructing the wear particle 3D
surfaces.

5. Conclusions

The authors have presented a photometric-stereo based system
for 3D RWPSs from 2D MIIs. The main objective of this method was
to improve the performance of the ferrography technology by
offering 3D surface information on wear particles. The main system
features are: (1) the corrected MII collection with the designed
device, (2) the wear particle extraction for efficiency improvement,
and (3) the 3D s RWPSs from MIIs based on photometric stereo.
From the comparison of the results, it may be observed that the
reconstructed surfaces of the proposed method have a high simi-
larity with the results of the LSCM and the effectiveness of the pro-
posed method has been verified.
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