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a b s t r a c t

Wear status identification including wear rate estimation and wear mechanism assessment can be
performed using wear debris information. However, although on-line monitoring methods have dis-
tinctive advantages over off-line approaches, existing on-line monitoring methods provide limited fea-
tures of wear particles and have difficulties characterising complex wear states. Most of them determine
wear status based on changes in the wear rates, and the wear mechanisms are not taken into con-
sideration. Therefore, comprehensive wear state identification is a bottleneck in real-time machine
health monitoring for condition-based maintenance. In order to further advance on-line monitoring
technology, this paper, in a case study format, presents a new approach for wear state characterisation
using comprehensive wear debris features. For this purpose, wear experiments were carried out on a
four-ball rig, and a particle imaging system was employed to capture videos of moving particles to ac-
quire dynamic features. Based on this, wear particles were firstly counted to characterise wear rate. In
this stage, a statistical clustering model was established using a mean-shift algorithm to categorise wear
debris samples. A trend of wear state evolution was thus obtained. Secondly, the size, shape and colour of
wear debris were extracted to identify particles into fatigue, sliding and oxides for wear mechanism
analysis. The analysis results of wear mechanisms were related to the trend of the wear state. Corre-
spondingly, a changing chart that contains the wear degree and wear mechanisms was drawn. Therefore,
an on-line system has been developed to capture comprehensive particle information to assess the wear
severity and mechanisms for in-depth wear analysis and full-life machine condition monitoring.

& 2017 Elsevier B.V. All rights reserved.
1. Introduction

Improvement of equipment reliability to prolong the lifespan of
a machine is an important research topic. For tribo-systems (e.g.
gearboxes and engines), wear caused by relative movements of
frication parts is one of the main reasons of faults and failures [1].
Therefore, condition-based maintenance is used for fault prediction
and failure prevention [2,3]. In particular, on-line wear condition
monitoring has been developed and wear state identification has
been used in engineering applications [4].

Visual inspection and oil analysis are two main methods for
wear condition monitoring while vibration, acoustic emission, and
electrostatic sensing techniques are mainly used for fault detection
and diagnosis [5–7]. In particular, wear particles, which are di-
rectly produced from tribo-pairs, contain valuable wear
information and are analysed for machine condition monitoring
[8–10]. With the development of sensor technology and the de-
mand of timely and comprehensive machine condition informa-
tion, more and more researchers focus on real time wear state
monitoring. An on-line visual ferrograph (OLVF) was employed to
estimate wear conditions of a gasoline engine using wear debris
concentration [11]. The OLVF is also effective to recognise the wear
status of diesel engines [4]. Wu et al. combined particle con-
centration and dimension of equivalent circle size together to
identify dynamic full-life wear states [12]. These above mentioned
methods attempt to identity wear state using particle concentra-
tion and dimension. However, the extracted particle features can
only reflect wear rate and wear severity. Wear mechanism analysis
is challenging or impossible to be performed because, caused by
magnetic forces of the OLVF, individual wear debris is difficult to
be extracted from the particle chains [13].

In order to identify particle types in real time, our previous
research [14] developed a dynamic particle imaging system. By
utilizing this development, multi-view morphological features of
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individual particles can be extracted for in-depth wear analysis
[15]. Meanwhile, on-line oxidation wear monitoring has been
realised [16]. Based on this, our previous work of wear state
identification in [12] is extended to comprehensively characterise
wear states including wear rates and wear mechanisms using the
dynamic features of on-line wear debris.

In the current work, further development is presented by
analysing wear particles generated using a four-ball rig as a case
study to demonstrate its capabilities. The methodology on how
this approach is developed is described in Section 2. Wear tests are
carried out and detailed in the same section. The dynamic particle
imaging system is used to capture videos of moving wear debris
generated from the tribo-balls. In Section 3, wear debris features,
including quantity, size, shape and colour, are extracted from a
series of image sequences for wear rate and wear mechanism
analysis. Section 4 discusses the advantages of the proposed
method in comparison to the existing techniques, followed by the
main conclusions in Section 5.
2. Method and experiments

Wear particle characteristics, including quantity, size, shape,
colour, are widely used to reveal wear conditions [17]. In parti-
cular, the amount and/or concentration of wear particles are used
to determine wear rate and wear severity. The size and shape
features contain the information of wear severity and wear me-
chanisms. The colour can indicate the wear sources, as well as
oxidation wear [18]. In this work, the particles are sampled in
moving conditions to image individual particles, and they are
counted by utilizing video streaming for wear rate analysis. The
particle quantity is as input of a mean-shift algorithm. Different
wear processes are thus identified based on the clustering results.
By doing this, a full-life evolution of wear states is obtained.

In order to reveal the complex wear status, shape and colour
features are also extracted for wear mechanism analysis. Different to
the existing method of static feature extraction [19], the current
work uses the dynamic features of wear debris extracted from dif-
ferent views to distinguish particle types, especially fatigue and
sliding particles in this paper. Furthermore, the colours of wear
debris generated from steel tribo-pairs are extracted and employed
to identify oxidation wear. The trend curve of wear rate and the
results of wear mechanism analysis are combined together based on
the sample acquisition time. As a result, the wear state identification
model is developed to reveal comprehensive wear conditions in-
cluding wear rate and mechanisms. Finally, the performance of the
developed approach is evaluated by conducting wear tests on a full-
ball rig and examining the wear tracks of the post-test balls. The
experiment details are given in the following sections.

2.1. Experimental apparatus

To demonstrate that the above developed approach is able to
obtain comprehensive wear particle information for on-line wear
condition monitoring, experiments were carried out on a four-ball
wear test rig, in which a dynamic particle imaging system was
installed, as shown in Fig. 1. Particles carried in lubricating oil were
transported into a flow path (see Fig. 1(a)). During this period, a
CMOS was adopted to capture videos of moving particles that
were sent to a computer for image processing and analysis. More
details of the experimental apparatus can be found in [15].

2.2. Experimental method

The steel balls used in the experiments are made up of carbon
chromium bearing steel (GCr15). The standards of the steel balls
are in the hardness of HRC58-63 and the surface roughness of
0.025 mm. Accelerated experiments were carried out under the
operation conditions: lubrication condition of base oil, load of
800 N and speed of 1000 revolutions per minute (rpm). To obtain a
wear trend, test #1 was carried out in 5 h to generate wear debris
in running-in, normal wear and severe wear condition. It needs to
be mentioned here that this test was run continuously. In order to
check the wear conditions of tribo-balls in different wear stages,
two other tests were implemented under the same operation
conditions but with different durations. Test #2 was run for 10 min
to generate wear particles in a running-in state, and test #3 was
operated for 2 h to reach a normal wear stage. A machine running
under normal operating conditions can last for a very long time
[20]. In order to obtain failure information, a destructive experi-
ment, test #4, was carried out to simulate that a fault occurred.
The shaft of the rig was manually adjusted to be eccentric, re-
sulting in an abnormal wear process. Test #4 was run for 10 min.
The key information of the four tests is summarized in Table 1.

As described in Section 2.1, the particle features were provided
by the on-line image acquisition system (Fig. 1) for wear state
identification. The lubrication in the oil cup was sampled and
analysed every 6 min. At the first 1 min, the pumps were in the
speed of 10 mL/min to flush the flow path. After that, the speed
was changed to 1 mL/min and the videos were sampled for 5 min.
The videos are at a rate of 50 fps (frames per second) and stored in
the WMV (Windows Media Video) format.

2.3. Results of wear particle acquisition

Figure 2 shows some typical wear debris images captured in
different wear stages, running-in, normal wear, and wear out, of
tests #1 and #4. The size and quantity of the imaged particles vary
with running time. It can be seen that wear particles spread out
and well separated in the images. To get representative informa-
tion statistical characteristics of wear debris were extracted.
Moreover, large particles (around 50 μm) with various shapes and
different colours were used to describe different wear mechan-
isms. Therefore, appropriate particle information was obtained for
wear severity and wear mechanism analysis, of which details can
be found in Section 3.
3. Comprehensive characterisation of wear status

The experimental results indicate that dynamic images of
moving wear debris contain valuable wear information, which can
be used to examine wear rate, wear severity and different wear
mechanisms. In this section, wear severity and wear mechanism
analysis are carried out based on the particle features.

3.1. Wear severity analysis

The quantity of wear particles and its change are used for wear
rate assessment. In general, comparing to small particles, larger
particles contain more failure information [21]. Therefore, the
particles larger than 20 μm were counted. However, in the normal
test (test #1), the quantity of large particles (LPQ) is small due to
the narrow field of view and also because the tribo-balls were in
good lubricating conditions as mentioned before. To ensure the
LPQ contains representative wear information, the total wear
particle quantity (TPQ) was also obtained using an imaging camera
to capture wear particles whose size is greater than 5 μm. The
counting results of test #1 are shown in Fig. 3.

As can be seen, the trends of TPQ and LPQ are similar. Ac-
cording to the reference [22], the tribo-pairs went through two
stages, that is, running-in and normal wear. The running-in stage



Fig. 1. Experimental set-up includes (a) principle of particle imaging sensor and (b) schematic sketch of oil cup.

Table 1
Details of the experimental process.

Test Operation conditions Test duration

#1 base oil, 800 N, 1000 rpm 5 h
#2 base oil, 800 N, 1000 rpm 10 min
#3 base oil, 800 N, 1000 rpm 2 h
#4 base oil, 800 N, 1000 rpm, eccentric shaft 10 min
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was short (ended in about 10 min), followed the normal wear
phase where the particle quantity increased slowly and steady due
to the experimental set up. In the time interval of 200–300 min the
LPQ fluctuated while the increment of the TPQ was relatively
steady, indicating that the wear condition was close to severe to-
wards the end. These results reveal that the lager particles are
more sensitive to severe wear, and thus the LPQ is used to describe
wear severity.

It also can be found that failure information was not captured
in the normal test (test #1). Therefore, a destructive test (test #4)
was carried out to obtain wear information in the abnormal wear
case. The particle counting results of test #4 is listed in Table 2.
Fig. 2. Eight thumbnail images of wear debris captured in different wear stages
Although the running time is only 10 min, both the TPQ and LPQ
are significantly larger than those generated in test #1 (Fig. 3).

3.2. Wear mechanism analysis

In general, a four-ball test rig produces sliding wear debris.
However, fatigue and pitting wear often occur when the machine
runs in the high load and speed conditions. When the steel balls
are in metal-to-metal contact, a large amount of heat is generated
and oxidation wear occurs. To reveal the wear mechanisms, the
shape and colour of individual wear debris were extracted to re-
cognise particle types.

Conventional on-line monitoring systems image particles in
two-dimension, making it difficult to distinguish fatigue and
sliding wear debris [23–25]. This issue can be solved by viewing
fatigue and sliding particles from different directions because the
height to width aspect ratio (major width to thickness ratio,
HWAR) between them is different. In general, sliding particles
have a higher HWAR value than fatigue debris [26].

To verify fatigue wear occurred during test #1, multiple images
of the same particles were captured at different views. Four typical
: (a) running-in, (b)–(d) normal wear, (e)–(f) severe wear, and (g)–(h) fault.



Table 2
Results of the TPQ and LPQ extraction of test #4.

Information Time of Video Acquisition

0 min 6 min

TPQ/number 15847 12361
LPQ/number 512 406

Fig. 4. Multi-view images of two sliding and two fatigue particles as examples.

Fig. 3. Variations in the LPQ and TPQ of test #1.
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particles were selected and five different views of each particle are
shown in Fig. 4. The HWAR was calculated. Based on the HWAR
values, it is easy to distinguish the on-line wear debris. Fatigue
particles have higher HWAR values (0.79 and 0.83) than that of
sliding particles (0.33 and 0.38). The generation of fatigue debris
indicates that fatigue wear of steel balls occurred. Two demon-
stration videos are uploaded as supplementary materials to show
the particles that are in rotational movements, in which the sliding
and fatigue particles are easily identified.

From the experimental results in Figs. 2 and 4, it also can be
found that the wear particles are in different colours. As men-
tioned before, the tribo-balls are made up of GCr15. Different
colours of the particle materials imply that oxidation wear hap-
pened (more colour images can be seen in Fig. 7) by taking re-
ference of our previous work [16]. Therefore, the dynamic features
of on-line wear debris, including shape and colour, have been
obtained and utilised to achieve a better understanding of the
wear conditions.
3.3. Wear state identification

3.3.1. Preliminary wear state identification
As described in Section 3.1, the particle quantity can be used to

characterise the changes of wear degree. In order to automatically
identify wear states, an intelligent algorithm is employed to es-
tablish a model of wear state evolution. Mean-shift is a non-
parametric approach for cluster analysis of data samples [27],
which is used to classify a series of sample data into different
categories. The principle of mean-shift based wear state identifi-
cation modelling is described below [28].

A set of independent variables are presented by [ … ] ∈ x x x, , , n1 2

where n is the number of variables, and are contained in a one-di-
mensional space. Define an initial spherical space Sh(x) which is
centred at x and of radius h. Suppose that there are m samples falling
in the same space. The mean distance of all samples can be expressed
by a vector Mh(x) which is calculated by
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which is so called mean-shift profile.
The research in [29] indicates that the mean-shift is suitable to

model wear state evolution. Therefore, this algorithm is used to
cluster the sample data of LPQ into different categories to identify
wear status. As Eq. (3) shows, the kernel function ( − )K x xi and
radius h are the two basic aspects of mean-shift based wear state
identification. There are several kinds of kernel functions are re-
ported, such as uniform function, Cauchy and Gaussian kernels
[30–32]. Gaussian kernel is selected to build wear state model
because it adapts well to distributed samples [33]. Meanwhile,
referring to our previous work [29], the radius is set 0.02. Based on
this, the LPQs of tests #1 and #2 are combined together as input,
and then a three-step procedure is iterated as follows.

(1) Set the first sampled data to the initial data point x1. Cal-
culate the weighted mean mh(x) using Eq. (3).

(2) Set a convergent threshold δ, if δ| ( ) − | <m x Xh , the proce-
dure is terminated, else repeat step (1).

(3) Update = ( )x m xi h .
After the iterative operation, the samples that share the same

centre point are clustered into the same group. The clustering
result of the LPQ in Fig. 3 and its corresponding wear state de-
velopment curve are displayed in Fig. 5. The samples are classified
based on their varying gradient and adjacent clusters are marked
with different colours. It can be found that the normal wear is
divided into three wear states (states 2, 3 and 4), which is con-
sistent to the above description about the material loss of tribo-
balls. Although the first two samples are classified into different
groups which are marked in red and green colours, they are re-
garded as the same state (state 1) because they are in a significant
fluctuation and very transitory. In the same way, the last three
samples in green, blue and black belong to state 5.

Figure 5 shows that an automatic wear state identification model
was successfully established using the mean-shift algorithm. This
indicates the method of particle counting under dynamic conditions
is useful to reveal the changes in the wear rate for wear state



Fig. 5. Results of wear state identification: (a) sample data clustering, and (b) development
curve of wear state.

Fig. 6. Variation trend of the wear debris size of test #1.
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characterisation. However, this model cannot explain that why the
wear particles in Fig. 2 various in shape and colours. Therefore,
further examination of wear mechanisms is necessary and dynamic
features of the wear debris are extracted for this purpose.

3.3.2. In-depth wear state identification
Aiming at in-depth understanding of the wear state evolution,

the wear mechanisms were connected with the wear rate to build
a new identification model. In this work, statistical features are
used to reflect the wear status. The maximum equivalent circle
diameter (ECDmax) of each video was extracted and is shown in
Fig. 6. Most of the sizes are in the range of [20,40] μm, and the
maximum reaches 61 μm. However, only the particles larger than
40 μm can be recognised, as shown in Fig. 6. This is because the
on-line wear debris imaging sensor is of low resolution and the
particles are in motions.

Correspondingly, the particles marked with numbers were ex-
tracted and automatically identified. The results are displayed in
Fig. 7. Although some of the particles look similar in shape, such as
the particles numbered ①, ②, ③ and ④, their types are different
and can be recognised using their multi-view images. As a result,
the wear mechanism analysis in a time domain is realised.

By combing Figs. 4 and 7, the wear state transitions of test #1
are comprehensively characterised and shown in Fig. 8. Sliding
wear is not indicated in this plot because it is a normal phenom-
enon and appears in the whole life of a four-ball test rig. From the
figure, it can be found that the wear mechanisms are independent
to the wear rates for the wear state characterisations. Oxidation
wear occurred from 139 min onwards. In the last two stages, fa-
tigue wear dominated at 177 min and 295 min but at different
wear rates.

3.4. Worn surface examinations of tribo-balls

In order to verify the identification results of the on-line sys-
tem, the worn surfaces of the tribo-balls in different tests were
examined. The wear scars of different tested steel balls are imaged
with a microscope and shown in Fig. 9. As shown in Figs. 9(a)–(c),
the diameter of wear scar increases with the wear time. Fig. 9(d) is
an image of wear crack generated in the destructive test. Although
the running time is only 10 minutes, the scar area is larger than
that of tests #2 and #3, and the surface is rougher than the others.
Furthermore, the wear spots in Fig. 9(c) indicate that not only
sliding wear but also fatigue and pitting wear have happened. As
described above, the selected tested ball images are re-
presentatives of different status identified in one-line analysis.
Therefore, the off-line examining results implicitly support that of
on-line wear state identification.
4. Discussion

The above analysis results demonstrate that the wear rate and
wear mechanism are independent indicators for the wear char-
acterisations. The quantity, shape and colour characteristics of
dynamic wear debris are used to examine these two aspects to
comprehensively identify the wear status. Compared to our pre-
vious work [12] where particle information was used for wear rate
assessment, this study enables that more wear information is ex-
tracted for wear mechanism examination. Although in this paper
the capacity of this development is demonstrated by identifying
fatigue and sliding wear as well as oxidation, by extracting more
particle features from multi-view images, such as length-to-width
ratio and sphericity [15], more wear debris including cutting and
sphere particles can be recognised. Therefore, the proposed
method can be further developed and applied for wear condition
description of other equipment.

Furthermore, there are two aspects need to be mentioned. The
first one is that a full-life wear severity examination has not yet
performed. The failure progress of this work was simulated by
manually changing operating conditions, resulting in a large gap of
the particle quantity between tests #1 and #2. Therefore, more



Fig. 7. Identification of the wear debris marked in Fig. 6.

Fig. 8. Comprehensive characterisations of the wear state by combining the wear
rate and wear mechanisms.
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intensified experiments need to be conducted with various oper-
ating conditions to obtain the wear information of the whole
lifespan. The intelligent algorithm can be correspondingly devel-
oped to make the data clustering more reliable.

The second future area is to improve the accuracy of wear
debris recognition. The particles in the range of [20] μm are dif-
ficult to be discriminated because of the poor image quality at a
low resolution of the sensor. As can be seen in Fig. 9, the me-
chanism identification is discontinuous from 139 min to 300 min.
Fig. 9. Wear scar pictures captured from four tests with different running time, (a) 10 m
test (test #4).
For the purpose of engineering applications, future work will focus
on the optimization design of camera optical systems and the
development of image processing and feature extraction techni-
ques to improve the image quality.
5. Conclusions

This paper aims to reveal the wear status of a machine in real
time. For this purpose, the wear rate and wear mechanism were
both taken into consideration. Comprehensive statistical features
including quantity, size, shape and colour were extracted from the
dynamic images of moving debris for wear description. Further-
more, intensified and destructive experiments were carried out on
a four-ball rig to acquire sample data in different wear conditions
to build a full-life identification model. The main conclusions are
drawn as follows.

(a) Comparing to the existing on-line monitoring systems, more
wear state information was obtained and utilised in the
identification model. Wear rate reflected by the particle
quantity was used to determine different wear stages. With
the time duration, oxidation and fatigue wear occurred and
they were examined by the particle shape and colour features.

(b) Large particles ( > μ20 m contained more wear information
than smaller ones (> μ5 m). Hence, the LPQ was as the input of
wear severity identification modelling with a mean-shift al-
gorithm. The performance of the clustering method was
evaluated by examining the post-test tribo-balls.

(c) The HWAR of wear debris was extracted from multiple images
at different views. Based on this, fatigue particles were dis-
tinguished from sliding debris. Meanwhile, particle colours
in, (b) 2 h, (c) 5 h of the normal tests (tests # 2, 3, 1) and (d) 10 min of the abnormal
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were extracted to identify oxidation wear.
(d) Further studies will focus on evaluating the performance of the

development by sampling full-life health data, improving image
quality for feature extraction of small particles, and developing
the reliability of wear state identification algorithm.
Acknowledgements

This work is funded by the National Science Foundation of
China (Grant nos. 51675403 and 51275381) and the State Key La-
boratory of Mechanical Transmissions of China (Grant no. SKLMT-
KFKT-201504).
References

[1] S. Feng, B. Fan, J.H. Mao, Y.B. Xie, Prediction on wear of a spur gearbox by on-
line wear debris concentration monitoring, Wear 336–337 (2015) 1–8.

[2] J.Z. Sun, H.F. Zuo, W.B. Wang, M.G. Pecht, Application of a state space modeling
technique to system prognostics based on a health index for condition-based
maintenance, Mech. Syst. Signal Process. 28 (2012) 585–596.

[3] R. Ahmad, S. Kamaruddin, An overview of time-based and condition-based
maintenance in industrial application, Comput. Ind. Eng. 63 (2012) 135–149.

[4] W. Cao, G.N. Dong, W. Chen, J.Y. Wu, Y.B. Xie, Multisensor information in-
tegration for online wear condition monitoring of diesel engines, Tribol. Int. 82
(2015) 68–77.

[5] T.H. Wu, H.K. Wu, Y. Du, Z. Peng, Progress and trend of sensor technology for
on-line oil monitoring, Sci. Chin. Technol. Sci. 56 (2013) 2914–2926.

[6] Y.Z. Qu, D. He, J. Yoon, B.V. Hecke, E. Bechhoefer, J.D. Zhu, Gearbox tooth cut
fault diagnostics using acoustic emission and vibration sensors – a compara-
tive study, Sensors 14 (2014) 1372–1393.

[7] R.C. Liu, H.F. Zuo, J.Z. Sun, L. Wang, Electrostatic monitoring of wind turbine
gearbox on oil-lubricated system, Proc. IMechE Part C: J Mech. Eng. Sci. 0
(2016) 1–16.

[8] M. Henneberg, R.L. Eriksen, B. Jørgensen, J. Fich, A quasi-stationary approach
to particle concentration and distribution in gear oil for wear mode estima-
tion, Wear 324–325 (2015) 140–146.

[9] P.J. Dempsey, A.A. Afjeh, Integrating oil debris and vibration gear damage
detection technologies using fuzzy logic, J. Am. Helicopter Soc. 49 (2004)
109–116 (8).

[10] M. Kumar, P.S. Mukherjee, N.M. Misra, Advancement and current status of
wear debris analysis for machine condition monitoring: a review, Ind. Lubr.
Tribology 65 (2013) 3–11.

[11] J.Y. Wu, J.H. Mao, W. Cao, Y.B. Xie, Characterization of wear-debris group in on-
line visual ferrographic images, Proc. IMechE Part J: J Eng. Tribology 228 (2014)
1298–1307.
[12] T.H. Wu, Y.P. Peng, H.K. Wu, X.G. Zhang, J.Q. Wang, Full-life dynamic identifi-
cation of wear state based on on-line wear debris image features, Mech. Syst.
Signal Process. 42 (2014) 404–414.

[13] T.H. Wu, H.K. Wu, Y. Du, N.M. Kwok, Z. Peng, Imaged wear debris separation
for on-line monitoring using gray level and integrated morphological features,
Wear 316 (2014) 19–29.

[14] Y.P. Peng, T.H. Wu, S. Wang, N.M. Kwok, Z. Peng, Motion-blurred particle image
restoration for on-line wear monitoring, Sensors 15 (2015) 8173–8191.

[15] T.H. Wu, Y.P. Peng, S. Wang, F. Chen, N.M. Kwok, Z. Peng, Morphological feature
extraction based on multiview images for wear debris analysis in on-line fluid
monitoring, Tribol. T. (2017) , http://dx.doi.org/10.1080/10402004.2016.
1174325.

[16] Y.P. Peng, T.H. Wu, S. Wang, Z. Peng, Oxidation wear monitoring based on the
color extraction of on-line wear debris, Wear 332–333 (2015) 1151–1157.

[17] S. Raadnui, Wear particle analysis-utilization of quantitative computer image
analysis: a review, Tribol. Int. 38 (2005) 871–878.

[18] N.K. Myshkin, H. Kong, A.Y. Grigoriev, E.S. Yoon, The use of color in wear debris
analysis, Wear 251 (2001) 1218–1226.

[19] J.Q. Wang, L. Zhang, F.X. Lu, X.L. Wang, The segmentation of wear particles in
ferrograph images based on an improved ant colony algorithm, Wear 311
(2014) 123–129.

[20] G.P. Stachowiaka, P. Podsiadloa, G.W. Stachowiaka, Shape and texture features
in the automated classification of adhesive and abrasive wear particles, Tribol.
Lett. 24 (2006) 15–26.

[21] L. Du, J. Zhe, Parallel sensing of metallic wear debris in lubricants using un-
dersampling data processing, Tribol. Int. 53 (2012) 28–34.

[22] M. Ben-Daya, S.O. Duffuaa, A. Raouf, J. Knezevic, D. Ait-Kadi, Handbook of
Maintenance Management and Engineering, Springer London (2009).

[23] G.W. Stachowiak, P. Podsiadlo, Towards the development of an automated
wear particle classification system, Tribol. Int. 39 (2006) 1615–1623.

[24] C.Q. Yuan, Z. Peng, X.P. Yan, X.C. Zhou, Surface roughness evolutions in sliding
wear process, Wear 265 (2008) 341–348.

[25] T.H. Wu, Y.P. Peng, C.X. Shen, J.Y. Wu, Intelligent identification of wear me-
chanism via on-line ferrograph images, Chin. J. Mech. Eng. 27 (2014) 411–417.

[26] Z. Peng, An integrated intelligence system for wear debris analysis, Wear 252
(2002) 730–743.

[27] V. Miranda, A.R.G. Castro, S. Lima, Diagnosing faults in power transformers
with autoassociative neural networks and mean shift, IEEE Trans. Power Deliv.
27 (2012) 1350–1357.

[28] S. Wang, T.H. Wu, H.K. Wu, N.M. Kwok, Modelling wear state evolution using
real time wear debris features, Tribol. T. (2017) , http://dx.doi.org/10.1080/
10402004.2016.1243746.

[29] Y.A. Ghassabeh, On the convergence of the mean shift algorithm in the one-
dimensional space, Pattern Recognit. Lett. 34 (2013) 1423–1427.

[30] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space
analysis, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 603–619.

[31] K.L. Wu, M.S. Yang, Mean shift-based clustering, Pattern Recognit. 40 (2007)
3035–3052.

[32] Y.A. Ghassabeh, A sufficient condition for the convergence of the mean shift
algorithm with Gaussian kernel, J. Multivar. Anal. 135 (2015) 1–10.

[33] S.M. Guo, L.C. Chen, J.S.H. Tsai, A boundary method for outlier detection based
on support vector domain description, Pattern Recognit. 42 (2009) 77–83.

http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref1
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref1
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref1
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref2
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref2
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref2
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref2
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref3
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref3
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref3
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref4
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref4
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref4
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref4
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref5
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref5
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref5
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref6
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref6
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref6
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref6
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref7
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref7
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref7
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref7
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref8
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref8
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref8
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref8
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref9
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref9
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref9
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref9
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref10
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref10
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref10
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref10
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref11
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref11
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref11
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref11
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref12
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref12
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref12
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref12
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref13
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref13
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref13
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref13
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref14
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref14
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref14
http://dx.doi.org/10.1080/10402004.2016.1174325
http://dx.doi.org/10.1080/10402004.2016.1174325
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref15
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref15
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref15
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref16
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref16
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref16
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref17
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref17
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref17
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref18
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref18
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref18
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref18
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref19
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref19
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref19
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref19
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref20
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref20
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref20
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref21
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref21
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref21
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref22
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref22
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref22
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref23
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref23
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref23
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref24
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref24
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref24
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref25
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref25
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref25
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref25
http://dx.doi.org/10.1080/10402004.2016.1243746
http://dx.doi.org/10.1080/10402004.2016.1243746
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref26
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref26
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref26
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref27
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref27
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref27
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref28
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref28
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref28
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref29
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref29
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref29
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref30
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref30
http://refhub.elsevier.com/S0043-1648(17)30067-4/sbref30

	Wear state identification using dynamic features of wear debris for on-line purpose
	Introduction
	Method and experiments
	Experimental apparatus
	Experimental method
	Results of wear particle acquisition

	Comprehensive characterisation of wear status
	Wear severity analysis
	Wear mechanism analysis
	Wear state identification
	Preliminary wear state identification
	In-depth wear state identification

	Worn surface examinations of tribo-balls

	Discussion
	Conclusions
	Acknowledgements
	References




