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Abstract 

Current constitutive theories face challenges when predicting the extremely large deformation 

and fracture of hydrogels, which calls for the demands to reveal the fundamental mechanism of 

the various mechanical behaviors of hydrogels from bottom up. Proper hydrogel network model 

provides a better approach to bridge the gap between the micro-structure and the macroscopic 

mechanical responses. This work summarizes the theoretical and numerical researches on the 

hydrogel network models, aiming to provide new insights into the effect of microstructure on the 

swelling-deswelling process, hyperelasticity, viscoelasticity and fracture of hydrogels. Hydrogel 

network models are divided into full-atom network models, realistic network models and abstract 

network models. Full-atom network models have detailed atomic structure but small size. 

Realistic network models with different coarse-graining degree have large model size to explain 

the swelling-deswelling process, hyperelasticity and viscoelasticity. Abstract network models 

abstract polymer chains into analytical interactions, leading to the great leap of model size. It 

shows advantages to reproduce the crack initiation and propagation in hydrogels by simulating 

chain scission. Further research directions on the network modeling are suggested. We hope this 

work can help integrate the merits of network modeling methods and continuum mechanics to 

capture the various mechanical behaviors of hydrogels. 
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1. Introduction 

Hydrogel is a type of synthetic polymers composed of cross-linked polymer network and 

water. The compliant polymer network and extremely high water content endow the hydrogel 

with excellent large deformation properties and biocompatibility. By modifying the polymer 

network, hydrogels exhibit controllable swelling-deswelling deformation under multiple external 

stimuli, such as temperature [1-4], humidity [5-8], light intensity [9-12], ion concentration [13-16] 

and magnetic field [17-19]. The excellent properties of hydrogel attract great attention from 

biomedicine, tissue engineering, soft machine, flexible electronic devices and other areas. At 

present, hydrogels have been widely used in cutting-edge research such as drug delivery [20-23], 

cell culture [24-27] and tissue repair [28-31] because of good biocompatibility. The excellent 

large deformation properties also make hydrogels a flexible substrate connecting brittle chips and 

circuits to human tissue to develop flexible devices [32-38]. However, for the purpose of 

hydrogels being a standard platform material in the human-computer interaction area, it is 

essential to make sure that the mechanical information of hydrogels, like deformation state, can 

one-to-one map to electrical signals with high precision and resolution. This requires not only 

advanced manufacturing techniques for hydrogels to maintain the stability of mechanical 

properties, but also accurate mechanics theories to describe their complex mechanical behaviors. 

This poses a great challenge to the mechanics researches on hydrogels. 

Generally speaking, undeformed hydrogels are considered to be homogeneous and 

isotropic materials on macroscopic scale. Based on the homogeneous and isotropic assumption, 

the continuum mechanics derives the constitutive equations of hydrogels from the rigorous 
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mathematical description of deformation, which has been widely used to characterize the 

hyperelastic, viscoelastic and poroelastic large deformation of hydrogels [39-42]. These 

constitutive equations usually involve a series of material constants [43-48] which can be 

determined from elaborate standard mechanical tests. Then, the constitutive equations can be 

numerically implemented to simulate arbitrarily complex structures under different boundary 

conditions [43, 49]. However, the constitutive equations are often unable to simultaneously 

capture the stress-strain relationships under multiple loading conditions, and their accuracy is 

challenged under large deformation especially near fracture. It inspires us to investigate the 

fundamental mechanism of multiple mechanical behaviors from the underneath microstructure of 

hydrogels. Obviously, the homogeneous and isotropic assumption ignores the randomness of the 

hydrogel network structure. Constitutive equations attempt to use few material constants to 

capture the complex deformation of random polymer network, which make it hard to describe 

extremely large deformation and fracture. One example is that fracture criterion or damage factor 

is often needed as extra constraints on constitutive equations to characterize failure [50-55]. 

Fracture criterion gives an exact critical value to generate crack. Crack breaks the continuity of 

material, which makes it hard to be implemented in FEM simulations. So far, the crack 

propagation, bifurcation and intersection have not been well realized in FEM simulations. 

Damage mechanics alleviates this deficiency of the fracture criterion. By introducing a damage 

factor related to the deformation state, the mechanical properties are gradually weakened in a 

continuous manner during deformation [56]. For example, damage mechanics has been applied 

to simulate the crack growth in hydrogel implemented in phase field method [57-59]. Similar to 

the constitutive equations, parameters in fracture criterion and the relationship between 

deformation and damage factor in damage mechanics also need to be obtained from experiments 



 

2/6/2021 4 

or just hypothesis. Besides the mechanics framework, machine learning is able to directly train a 

load-deformation relationship accurately[60]. Nevertheless, it requires massive high quality 

experimental data, and the trained coefficients have no physical meaning actually. In short, 

continuum mechanics and machine learning cannot reveal the deformation and failure 

mechanism of hydrogel materials from bottom up, and thus cannot guide the hydrogel 

reinforcement and multi-functionality [61]. 

In fact, researchers have realized the importance of the microstructure of hydrogels. Since 

water in hydrogels has quite limited influence on its mechanical properties, most of the research 

works focus on the mechanical properties of the polymer network. The most fundamental models 

of hydrogel polymer network can be constructed using full-atom molecular dynamics (MD) [62-

67]. The deformation and breaking of covalent bonds are both intrinsically incorporated in the 

widely-accepted interatomic potentials in full-atom MD, so that the conformation change and the 

fracture of polymer chains can be clearly displayed in microscopic level. However, due to the 

limitation of computing power, these full-atom models are so small and usually only contain 

several cross-linked polymer chains. Despite fully capture the atomic details, they cannot reflect 

the overall randomness of the real hydrogel network [67-69]. In order to break through the 

limitations of computing resources to simulate larger models, coarse-graining (CG) method is 

adopted by discarding atomic details in exchange for larger model size [70-74]. Using CG 

method, hydrogel network models with much more polymer chains can be constructed by 

directly mimicking the real crosslinking process. These models can already show the real 

features of hydrogel network, such as branch chains, isolated chains, entanglement, etc. [73, 74] 

The prominent advantage of hydrogel CG models is that it vividly reveals the underlying 

mechanism of the viscoelasticity and fracture, but the quantitative mechanical properties often 



 

2/6/2021 5 

cannot match the experiments well. There is still a gap between CG models and the continuum 

hydrogel. Therefore, a deeper understanding on the structure of hydrogels from bottom up is still 

in urgent need. 

As a typical synthetic polymer, the internal structure of hydrogel network exhibits 

distinct structural features and mechanical properties on several length scales as shown in Fig. 1. 

(i) Persistent length: The persistent length is a length of Kuhn segment [75] which can be 

regarded as a rigid segment in a polymer chain. The Kuhn segment in synthetic hydrogel 

polymer chain is generally composed of several interconnected monomer molecules with length 

scale ~1 nm. Its mechanical properties are dominated by the energy of covalent bonds inside. (ii) 

Chain length: A polymer chain in hydrogel is generally formed by dozens or hundreds of 

connected rigid segments, with the contour length scale ~100 nm and end-to-end distance ~10 

nm. Because of the effect of intermolecular forces and thermal fluctuations, chains generally curl 

up and are quite soft. Their mechanical properties are dominated by the change of 

conformational entropy. (iii) Network scale: Hydrogel network is composed of cross-linked 

polymer chains whose length distribution is quite random. The mechanical properties of the 

network are not only dominated by the conformational entropy of all chains, but also affected by 

the interaction between adjacent chains, as well as between chain and water.  
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Figure 1 The length scales in hydrogel.  

For molecules, polymer chains and network, discrete modeling methods are adopted to 

characterize their mechanical behaviors because of the significant randomness caused by heat 

fluctuations. On contrast, continuum mechanics overlooks the intrinsic discontinuity. Hydrogel 

polymer network can act as a bridge connecting the microscopic nature and the macroscopic 

mechanical responses. Thus, proper hydrogel network models are in urgent need to essentially 

describe multiple mechanical behaviors of hydrogels. Current researches on the hydrogel 

network models are scattered and fragmented. This article systematically summarizes the current 

theories and numerical simulations on hydrogel network models, and provides a discrete 

perspective to investigate the macroscopic mechanical behaviors.  

This article is organized as follows. Section 2 introduces current construction and 

analysis methods of hydrogel network models. Section 3 summarizes the applications of 

different types of hydrogel network models on multiple mechanical behaviors, including 

swelling behavior, hyperelasticity, viscoelasticity and fracture. Section 4 discusses the 
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advantages and disadvantages of current hydrogel network models, and proposes new research 

directions for the network modeling methods. Concluding remarks are given in Section 5. 

2. Hydrogel Network Model 

Continuum mechanics refines the mechanical response of materials into 

phenomenological theories, and then applies the theories to complex cases. Unlike continuum 

mechanics, discrete modeling method constructs particle-based structural models, applies the 

fundamental laws, such as Newtonian mechanics, to directly simulate the bulk mechanical 

response. However, it often requires proper simplification on models to reduce computational 

costs.  Thus, the validity of models is often the major concern about discrete modeling method. 

Building a hydrogel polymer network model is the first step to study the mechanical 

properties of hydrogels from a discrete perspective. Basically, we can divide the existing 

hydrogel network models into three categories, namely the full-atom network models, realistic 

network models and abstract network models. Figure 2 shows the three categories of network 

models and the corresponding modeling methods. Full-atom network models provide all the 

atomic details of the polymer network, such as chemical bonds, bond angles and dihedrals etc. 

They are often constructed and simulated by MD. Realistic network models simplify the atomic 

details of full-atom network models by a coarse-graining process, leading to larger model size. 

Coarse-grain molecular dynamics (CGMD) and dissipative particle dynamics (DPD) are widely 

used in constructing and analyzing realistic network models. MD, CGMD, and DPD belong to 

microscale models because the characteristic lengths of their structural models are still in the 

microscale. The self-avoiding walking (SAW) method generates realistic network models with 

detailed chain configurations, while the user-defined coarse-graining degree makes these models 
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can be microscale models or mesoscale models. Abstract network models replace the concrete 

chain configurations with simple interactions with respect to the chain end-to-end length. Ideal 

network models and stochastic topological network (STN) models are two typical types of 

abstract network models. They belong to mesoscale models because the characteristic lengths of 

these models, i.e. the chain length, are in mesoscale. In this section, we introduce the 

construction and simulation details of these three categories of hydrogel network models.  

 

Figure 2 Three categories of hydrogel network models with their construction and 

simulation methods. The left part lists three categories of network models: full-atom network 

model, realistic network model and abstraction network model. Red arrows indicate the 

increasing of the coarse-grainning degree in three categories of models. The right part lists 

commonly used construction and analysis methods.  

2.1 Full-atom network model 

The most fundamental realistic network models of hydrogels are constructed by the full-

atom MD method. The full-atom MD uses force field to define the interatomic interaction of 
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various atoms, including van der Waals interactions, electrostatic forces, chemical bonds, bond 

angles, dihedrals and impropers. Many reliable force fields have been developed for polymer 

system, such as the consistent valence force field (CVFF) [76] , optimized potentials for liquid 

simulations (OPLS) force field [77], GROMACS force field [78] and DREIDING force field [79] 

etc. The motion of the atoms is governed by Newtonian mechanics as follows 

 ,
V

m


  


F F x
x

 (1) 

where F is the force on each atom with the coordinate x, V is the interactive potential energy of 

the system calculated by interactive force field, m is the atomic mass.  

A full-atom hydrogel network model is generally constructed with the following three 

procedures. (i) The atomic structures of monomers, crosslinkers and water molecules are 

constructed as the basic components. (ii) Arrange the location of monomers, crosslinkers and 

water molecules, create bonds and form a polymer network structure. (iii) An additional 

relaxation simulation is performed to optimize the hydrogel network model in a desired density. 

The most important part is the second procedure. Many crosslinking strategies are proposed to 

accomplish the network model construction. In Deshmukh’s work [63], the polymer chain 

between two crosslinkers with pre-fixed locations is gradually grown using a self-avoiding walk 

algorithm. A cutoff parameter is adopted to control the length distribution of generated polymer 

chains. Water molecules are added in remaining vacant spot. In Ou et al.’s [65] work and Jiang et 

al.’s [66] work, monomers and crosslinkers were randomly mixed as solution, and then directly 

crosslinked into polymer network. Water molecules were added after generating the polymer 

network. However, limited by computing power, a full-atom hydrogel network model often 

contains only several polymer chains as the periodic representative volume element of hydrogel 
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network, instead of showing the full picture of the hydrogel polymer network. Hence, this type of 

models [80] is usually arranged in a periodic simple-cubic lattice. Other types of lattice 

arrangement of hydrogel models [63, 69, 80] can also be realized by tuning the coordination 

number of crosslinkers, such as the diamond lattice arrangement [63] and body-centered lattice 

arrangement [69].  

We constructed full-atom models of polyacrylamide (PAAm) hydrogel [62, 81] using two 

methods. The first method is to form a hydrogel network with the lattice arrangement of polymer 

chains. In this hydrogel network model, each polymer chain has 50 repeat units of acrylamide 

molecules. 2,4,6-trimethylolphenol was chosen as the chemical crosslinker to provides 6 

crosslinking sites for the polymer chains to be arranged in simple-cubic lattice. Figure 3 shows a 

2*2*2 periodic hydrogel network model. The lattice type of models usually have neat polymer 

network without side chains. In order to mimic the real polymer network, we also constructed a 

PAAm hydrogel model by simulating the crosslinking process of acrylamide (AAm) and N,N’-

methylenediacrylamide (MBAA) molecules. 333 acrylamide molecules and 22 MBAA 

molecules were packed into a block region as shown in Fig. 4(a). A crosslinking simulation was 

performed to form C-C bonds between crosslinking sites when the distance is below 5 Å. Water 

molecules were then inserted into the crosslinked hydrogel network, following with a relaxation 

simulation for structural optimization. As shown in Fig. 4(b), the constructed PAAm hydrogel 

models show the realistic structural features, including the crosslinked network, branch chains 

and unreacted units. These full-atom hydrogel network models are usually used to investigate the 

microscopic properties, such as hydrogen bond distribution, water absorption and thermal 

conductivity. It is still too small to reflect the mechanical properties in a statistical manner. 
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Figure 3 A PAAm hydrogel network model with the simple-cubic arrangement of polymer 

chains[62] 

  

(a)                                                             (b)  

Figure 4 The PAAm hydrogel network model[81] constructed by simulating the crosslinking 

reaction. (a) Initial configurations of the reaction system with AAm and MBAA molecules. (b) 

The constructed hydrogel network model. 
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2.2 Realistic network models 

Coarse-grain molecular dynamics (CGMD) is an effective method to increase the scale of 

the microscopic model of hydrogel. It follows the dynamics framework of full-atom MD in 

Equation (1). By integrating multiple atoms into a single particle in structure and interaction 

force field, coarse-graining (CG) method achieves larger model size and time scale. For instance, 

the MARTINI CG method [82] is a well-established CG method for lipid system, including the 

mapping scheme from certain atomic groups to CG particles and the well-trained force field for 

CG particles. Several heavier atoms, such as C, N and O atoms, together with the attached H 

atoms are mapped into one particle. Through structural mapping, the four-body dihedral and 

improper interactions in full-atom MD are eliminated. Zhang et al. [70] and Salahshoor et al. [71] 

constructed hydrogel network models using MARTINI CG method to investigate the transport 

properties in micro-scale. In fact, there is no generic method for CGMD simulations. Researchers 

have to determine the CG degree with the balance of the interested properties and the 

computational resources, and then conduct parameter training of CG force field. In order to 

simulate the solution system, the dissipative particle dynamics (DPD), or Brownian dynamics, 

allows several water molecules to be mapped into one particle. DPD introduces the friction force 

between CG particles and random force caused by the collision of adjacent CG particles to 

characterize the heat fluctuations in larger length scale and time scale 

 
C D R m  F F F x  (2) 

where F
C
 is the conservative force between two particles, F

D
 is the dissipative force (or friction 

force), F
R
  is the random force. The conservative force adopted in DPD is a soft repulsive force 

linearly decaying to zero with respect to distance between particles. The dissipative force and 

random force correspond to the energy dissipation and source, respectively, keeping the 
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thermodynamic equilibrium of the simulation system. DPD reduces the atomic heat fluctuations 

into slower heat fluctuations in larger length scale, which increases the time scale of the 

simulation system at the same time. 

Bead-spring model is the most widely used CG model to simulate hydrogel system. A 

polymer chain is usually mapped into a string of beads, where beads represent one or more 

monomer molecules. The harmonic bond with the potential function  
2

0V K r r   is frequently 

used, where K is the bond energy coefficient, r is the bond length between beads, the equilibrium 

length r0 is usually taken to be 0, i.e. pure attractive, in many DPD simulations [73, 83-86]. The 

finite extensible nonlinear elastic (FENE) potential [72, 87-89] with 

 
22

0 00.5 ln 1 /V KR r R   
 

 also defines a bead interaction with the maximum bead distance 

R0. Except the specific atomic configurations, the construction procedure of bead-spring models 

is similar to that of full-atom models. One method is to directly arrange beads and chains into 

lattice network structure. For instance, Chen et al. [72] used DPD to build a hypothetical tetra-

functional hydrogel network model with the diamond-lattice arrangement of straight polymer 

chains. Chains with curly conformation are more common to be arranged into diamond lattice to 

form hydrogel network models [90-94]. Another method is to simulate the crosslinking reaction 

between beads to create hydrogel network models. Wei et al. [73] generated the random hydrogel 

network model of polyvinyl alcohol/polyacrylamide hydrogel by simulating the crosslinking of 

monomer beads and crosslinker beads, then inserted water molecules later into the vacant spot. 

Crosslinking reactions don’t always generate polymer network. In order to reproduce the 

crosslinking process of PAAm hydrogel, we used DPD to simulate the crosslinking reactions of 

PAAm solution with AAm beads, MBAA beads and water beads [74]. As shown in Fig. 5(a), 
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one CG bead in our simulations represents two AAm molecules, or eight water molecules, or one 

MBAA molecules. Simulations show that sufficient mean square displacement (MSD) of beads 

and proper water content are two crucial factors to form hydrogel network. When MSD of beads 

per simulation time unit is below the mean distance of beads, it leads to local crosslinking and 

forms small polymer loops. On the contrary, when MSD is far larger than the mean distance of 

beads, it forms global polymer network as shown in Fig. 5(b). It also predicts the water content 

97% is the upper limit to form a hydrogel network, which is quite close to the swelling limit of 

PAAm hydrogel. Above simulations not only reveal the crosslinking mechanism of PAAm 

hydrogel, but also construct hydrogel network model with realistic structural features, such as the 

branch chains (grey chains in Fig. 5(b)), isolated chains (yellow chains in Fig. 5(b)) and loops 

(magenta chains in Fig. 5(b)).  

                         

(a)                                                                  (b) 

Figure 5 A realistic network model of PAAm hydrogel and the corresponding CG mapping 

method [74]. (a) One CG particle represents two AAm molecules, or eight water molecules, or 

one MBAA molecules. (b) Bead-spring models of PAAm hydrogel without displaying water 
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particles. Blue strings are polymer chains forming network. Grey strings are branch chains 

attached on network. Yellow strings are isolated chains. Magenta strings are the isolated loops. 

Red beads are crosslinker beads. 

Besides the particle-based dynamics description of polymer network, we also adopted 

self-avoiding walking (SAW) algorithm to reproduce the complex conformation of the hydrogel 

polymer network. A SAW trajectory is a sequence of distinct points that does not superpose in an 

arbitrary dimensional lattice. As shown in Fig. 6(a), we developed a SAW algorithm and 

generated a series of SAW trajectories to represent polymer chains. [95, 96] Despite these 

trajectories are limited in square 2-D lattice and simple-cubic 3-D lattice, they reflect the curl and 

fractal properties of long polymer chains with considering self-repulsion. This SAW algorithm 

was further upgraded to generate periodic hydrogel network models by introducing the split of 

the walking trajectory as shown in Fig. 6(b). By controlling the split probability in each step, 

polymer network with random chain lengths can be generated as shown in Fig. 6(c). This 

modeling method can be further improved by replacing each trajectory nodes with monomer (or 

crosslinker) molecules or CG particles to generate particle-based models. 

 

(a)                                        (b)                                                     (c) 
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Figure 6 Construct network model using SAW algorithm [95]. (a) A 2-D SAW trajectory 

represent a polymer chain. (b) Schematics of generating the network model. The red dots 

represent the crosslinkers. SAW trajectory splits from each crosslinker into three branches. (c) A 

3-D polymer network model with the polymer fraction 20%. 

2.3 Abstract network model 

Generally, hydrogels with high water content have long and soft polymer chains relying 

on the short persistent length. The persistent length of hydrogel polymer chains is generally 

considered less than 1 nm, while the contour length of polymer chains in hydrogels is generally 

far greater than 1 nm. This indicates that the bending stiffness of polymer chains in hydrogels 

can be ignored. Therefore, the free energy of a hydrogel polymer chain is considered to be only 

determined by the conformation entropy related to the end-to-end distance. For example, a 

quadratic configurational entropy WGaussian is derived based on the Gaussian chain hypothesis [97] 

 

2

0

3
1

2
Gaussian

kT r
W

r

 
  

 
 (3) 

where kT is the energy unit in thermodynamics, r is the chain end-to-end distance, r0 is the initial 

end-to-end distance. When a curly polymer chain is stretched to straight, its free energy 

transitions from entropy-dominated to bond energy-dominated, corresponding to the dramatically 

increase of the tensile force. In order to describe this so-called non-extensibility, Langevin-type 

chain model [75] and worm-like chain (WLC) model [98] are proposed as the following force-

elongation relation  
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 (4) 

where L
-1

 is the inverse Langevin function with    coth 1/L x x x  , nb is the chain contour 

length with the length of Kuhn segment b and number of Kuhn segment n. Further, polymer 

chains are considered to be constrained in a tube-like region by adjacent polymer chains [99-101]. 

A tube model [101] considering the constraint effect is proposed with the free energy form  

 

2

0
tube

r
W kT

d


 
  

 
 (5) 

where α is a shape factor of the cross section of polymer chain, d is the effective diameter of the 

tube region. Above four chain models have been used to quantitatively describe the tension-

contraction response of polymer chains. It facilitates researchers to neglect the concrete chain 

conformation and replace it with simple analytical interactions instead. Hydrogel network 

models constructed in this way are abstract network models. Abstract network models can be 

regarded as the CG model of realistic network models. It not only shows the bulk mechanical 

behaviors of the entire polymer network, but also captures the tension-contraction behavior of 

every polymer chain. Here we introduce several typical abstract network models. 

Ideal network model is the simplest abstract network model. It assumes that all polymer 

chains in network have equal contour length and end-to-end distance. Figure 7 shows two types 

of ideal network models. Ideal network assumption is the basic assumption for many constitutive 

theories in continuum mechanics because of the following two merits. First, the summation of 

the free energy of all chains can be simplified as a concise analytical form. One example is the 
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Neo-Hookean constitutive model  1 3
2

nkT
W I  . Based on the assumption of equal chain 

length and the uniformly distributed orientation of polymer chains, the Neo-Hookean model 

integrates the complex deformation of all chains as a simple scalar, i.e. the first invariant I1 of the 

bulk deformation gradient. Second, the ideal network assumption implies the affine deformation 

of the entire ideal network, which exactly conforms to the basic assumption of continuum 

mechanics. For instance, Arruda et al. [102] proposed an ideal eight-chain network model (Fig. 

7(b)) with the assumption of affine deformation, and also linked the individual chain stretch to I1 

with  

  2 2 2

1 2 3 1/ 3 / 3chain I        (6) 

The well-known Arruda-Boyce model has been successfully applied to characterize the 

hyperelasticity of rubber. One step further, it is reasonable to consider that all constitutive 

theories with respect to I1 imply the ideal network assumption. We also proposed a series of 

constitutive models of hydrogels based on ideal network assumption. Some other researchers 

used tube model to consider the non-affine deformation of polymer network and proposed so-

called non-affine constitutive models [100, 101]. However, these models still hold the ideal 

network assumption when integrating all the chain stretch [103].  
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       (a)                                                 (b) 

Figure 7 Two types of ideal network model. (a) A 2-D square ideal network model. (b) A 3-D 

eight-chain ideal network model. 

Real hydrogel polymer network is far more complicated than ideal network models. The 

current gelation techniques of hydrogels determine the random polymer network with a large 

number of entanglements and the wide distribution of chain contour length and end-to-end 

distance. Consequently, the assumption of affine deformation also fails [104, 105]. In order to 

consider the structural randomness and the non-affine deformation of hydrogel network model, 

abstract network models with random chain length are constructed. These models are composed 

of crosslinkers with random locations and their connections representing polymer chains.  We 

name these models as stochastic topological network (STN) models and give the governing 

equations of deformation. The total free energy W of a STN model is the summation of the free 

energy of every chains with respect to the location of all crosslinkers x  

   i

i

W Wx  (7) 

Then, the governing equation of the dynamics of the STN model can be generalized as  

 , 0j j j j j

j

W
c m


    


F F x x

x
 (8) 

where Fj is the resultant force on crosslinker j, c is the damping coefficient, mj is the effective 

mass of crosslinker j. The deformation of STN model can be realized by developing algorithms 

to solve Equation (9) [106, 107] under boundary conditions. Alame et al. [108] built 2-D STN 

models to investigate the elasticity of the tetra-arm PEG hydrogels. They adopted the Langevin 

chain model and investigated the coordination number effect of crosslinkers. Kothari et al. [109] 
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also built a 2-D STN models using the WLC model to investigate the fracture behaviors of 

hydrogel network. The numerical implementation of STN model is quite similar to finite element 

method, since both methods lead to the equation set of  K x F , where K is the stiffness matrix, 

x is the coordinate vector of all nodes and F is the force vector on all nodes. This similarity 

makes it possible to unite the simulations of continuum elements and STN models, as long as the 

free energy forms in continuum mechanics and STN models are compatible. 

3. Mechanical Behaviors of Hydrogel 

In this section, we show some applications of network models on the mechanical 

problems of hydrogels, including swelling behavior, hyperelasticity, viscoelasticity and fracture. 

For swelling properties, network models are able to (i) determine the upper limit of water content 

and (ii) calculate the effect of water content on the elastic modulus of hydrogels. For 

hyperelasticity of hydrogels, network models can (i) directly calculate the stress-strain curve 

without constitutive equations, and (ii) demonstrate the rationality of ideal network assumption 

within finite deformation. For viscoelasticity of hydrogels, network models reveal two origins of 

viscoelasticity. One is caused by the accumulated fracture of chains and the other one comes 

from the friction between chains. For fracture behaviors of hydrogels, network models can (i) 

calculate the evolution process from initial deformation to total fracture and (ii) monitor the 

fractured state of each chain within a network. Figure 8 lists the applicability of three categories 

of network models on the mechanical behaviors of hydrogels. 
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Figure 8 The application of three categories of network models on the mechanical behaviors of 

hydrogels. All network models can be used in the investigation of swelling and fracture 

behaviors. Hyperelasticity and viscoelasticity commonly require larger-scale network models, i.e. 

realistic network and abstract network.  

3.1 Swelling-deswelling behaviors 

The hydrophilic polymer chains in hydrogels can absorb large amount of water molecules, 

leading to the extremely high water content of hydrogels. It is thought that the main driving force 

of hydrogel swelling is the energy reduction caused by hydrogen bonds between chains and 

water. The swelling process to equilibrium can be considered to reach a compromise between 

hydrogen bond formation and chains stretching. From a continuum mechanics perspective, when 

a hydrogel reaches the swelling equilibrium, it can establish an equilibrium equation between 

internal and external chemical potential in ext  . The problem is that chemical potential cannot 

be measured in experiments. Current constitutive theories suggest chemical potential value can 

be obtained by free boundary conditions as follows 
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where W is the free energy of hydrogels with respect to the swelling deformation gradient Fs and 

chemical potential μ. Above equation subtly determines the chemical potential as the stretching 

force of hydrogel network during swelling. However, this doesn’t provide any insight on the 

microscopic nature of chemical potential. On contrast, the swelling theories established from a 

microscopic view reveal the mechanism of swelling. Katchalsky’s work [110] on the swelling of 

polyelectrolyte gels laid the foundation of the microscopic theory of swelling. Katchalsky et al. 

thought that the swelling equilibrium of hydrogels is determined by the balance between the 

internal stress of polymer chains and the osmotic pressure on chains from solvent environment, 

i.e. in extP P . The internal stress of polymer chains can be obtained as the differential of the free 

energy of polymer chains with respect to the gel volume in

F
P

V


 


. Here the total free energy of 

polymer chains was composed of three parts, i.e. the stretch part because of the stretch of 

polymer chains during swelling Fstr, the electrostatic part because of the electrostatic interactions 

between polymer chain and solvent Fel, and the mix part because of the mixing of polymer 

chains and solvent Fmix. These free energy terms were explicitly related to the gel volume, 

leading to the swelling equilibrium equation  
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where i

strF , i

elF  and i

mixF  is the three free energy parts of chain i, respectively. Detailed 

expressions can be found in references [110]. Before solving the swelling equilibrium equation, a 

specific hydrogel network model is necessary for the summation of the chain force. In order to 
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obtain a concise expression of total internal force, ideal diamond-lattice network models are 

adopted to derive the mean-field bulk swelling theories [88, 111], and CG models in diamond 

lattice are constructed and simulated to verify these swelling theories [88, 93, 111-114]. With 

these swelling theories, the swelling ratio and the mechanical behavior can be predicted. 

Unfortunately, few swelling theories from a microscopic view compare their results with 

experiments, just because of their hydrogel network models differ a lot from real hydrogel 

network [93, 111]. 

We provide two ways to investigate the swelling behaviors of PAAm hydrogel. To 

measure the chemical potential of water in hydrogel is a fundamental way to reveal the swelling 

mechanism in microscale. The full-atom PAAm hydrogel model [62] was constructed as shown 

in Fig. 3. By inserting water molecules into PAAm hydrogel model, the chemical potential of 

water μwater can be obtained by calculating the system energy change 

 water

water

W

N






 (11) 

where Nwater is the number of water molecules. Our results demonstrate that the chemical 

potential of water in PAAm hydrogel gradually increases to that in pure water, when the water 

content in PAAm hydrogel increases to about 90% during the swelling process. Thus, the water 

content of about 90% is the swelling limit of PAAm hydrogel. Another indirect way to predict 

the swelling limit is to obtain the upper limit of water content for forming polymer network. Our 

investigations [74] on the crosslinking process of PAAm hydrogel show that the water content 

97% is the upper limit to form a polymer network. This water content 97% is quite close to the 

swelling limit of PAAm hydrogels in experiments [52].  
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Another interesting phenomenon during the swelling-deswelling of hydrogels is the 

relationship between the elastic modulus and the water content. Experiments found elastic 

modulus of PAAm hydrogel surges with several orders of magnitude during dehydration. [52, 95, 

115, 116] Current constitutive equations [43-45, 48, 117] for hydrogels have given a generic 

power-law relationship of shear modulus G to the polymer fraction ϕ (or the water content 1- ϕ), 

i.e., 
1
3G  . However, this relationship diverges far from our experimental results which show 

E~ϕ
0.6

 in PAAm hydrogels during swelling and E~ϕ
2.3

 during dehydration [118]. We adopted the 

SAW network models [118] to explain this abnormal relationship between elastic modulus and 

water content from a novel perspective. Analogous to the relationship between Young’s modulus 

and elastic wave velocity in solids, we considered that the elastic modulus of the polymer 

network was proportional to the square of energy transferring velocity through the polymer 

network E~V
2
. The hydrogel network models were constructed with different water contents as 

shown in Fig. 9. By simulating the energy transmission process along polymer chains from one 

lattice point to adjacent lattice points step by step, the energy transferring velocity could be 

obtained by the passed lattice points divided by the time. Then the relationship between the 

energy transferring velocity V and the polymer fraction ϕ could be obtained to be V~ϕ
1.16

 as 

shown in Fig. 8, leading to E~ϕ
2.32

. It gives an impressive explanation of the abnormal 

relationship between elastic constant and water content. However, although this model achieves 

success to explain the abnormal power-law exponent 2.3 in PAAm hydrogels with lower water 

content, it fails to explain the exponent 0.6 in PAAm hydrogels with higher water content.  
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Figure 9 The energy transfer process in hydrogel network model. Reproduced from Ref. [118] 

with the permission from Li and Liu. 

The swelling process of hydrogels includes the stretching of hydrogel network and the 

interaction between chains and water. Both two parts highly depend on the comprehensive 

structural properties of hydrogel network. This calls for better hydrogel network models. 

3.2 Hyperelasticity 

In order to investigate the hyperelastic behavior of hydrogels from a network perspective, 

the effect of the network randomness is necessary. Alame et al. [108] constructed 2-D STN 

models with different crosslinker densities and coordination number of crosslinkers. Uniaxial 

tension simulations were conducted on these STN models. The stress-stretch curves of 

simulations are compared with constitutive theories using ideal network assumption. It is found 

that the stress-stretch curves of STN models are quite smooth and agrees well with constitutive 
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theories based on ideal network assumption. Kothari et al. [109] also constructed similar 2-D 

STN models to simulate the large deformation and fracture behaviors of hydrogels. The force-

stretch curves for independent STN models show almost the same trend until stretched near 

fracture. We also simulated the large deformation behavior of the PAAm hydrogel models [74]. 

The nominal stress-stretch curves in Fig. 10 also show the hyperelasticity although the chain 

lengths in network models are quite random. Above simulation results indicate that the elastic 

response of hydrogel network is not sensitive to the non-affine deformation of random network 

models. This is why the constitutive theories based on ideal network assumption describe the 

hyperelastic response of hydrogels quite well within moderate deformation.  

 

Figure 10 The nominal stress-stretch curves of three independent models in three loading rates. 

Reproduced from Ref. [74] with the permission from Lei et al. 

Above realistic network models and abstract network models do not show advantage to 

describe the hyperelastic behavior of hydrogels. In order to develop more accurate hydrogel 

network models for further applications, reproducing the hyperelasticity of hydrogels is always a 

crucial step for model validation. 
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3.3 Viscoelasticity 

Viscoelasticity is a common mechanical behavior of elastomers. The viscoelasticity 

experimentally found in hydrogels has two categories, i.e. the loading-history-dependent stress-

train behavior and the reversible stress-strain hysteresis. The loading-history-dependent 

viscoelasticity mainly occurs in multi-network hydrogels. It often shows significant energy 

dissipation because it mainly caused by the plastic deformation and even chain scission. Many 

constitutive models [40, 119-121] have been proposed to describe this loading-history-dependent 

viscoelasticity by assuming the free energy form with respect to both the deformation rate and 

plastic deformation. However, the fundamental mechanism of viscoelasticity is still ambiguous 

since current experimental techniques cannot present the network structure. Realistic network 

models provide intuitive access to the change of chain conformation during viscoelastic 

deformation. Li et al. [103, 122] constructed CG models of polymer network to measure the 

structural properties of polymer chains, and used these properties to modify their viscoelastic 

constitutive equations. However, every chain in their polymer network model was set to have the 

same monomers, which could no doubt result into exactly the same contour length and quite 

consistent end-to-end distance. They adopted the equal-chain-length assumption to build network 

models, and then measured the mean chain length to support the constitutive equations based on 

the same assumption. This circular argument is a misuse of realistic network models. However, 

the tube length and the entanglement measured in the polymer network model could be reliable 

since the randomness of chain conformation is considered. Yin et al. [89] constructed larger CG 

multi-network models to investigate the viscoelasticity of elastomer network. Figure 11 shows 

their stress-strain curves of the consecutive loading–unloading cycles. It can be seen that the 

single network model and double network model are almost pure elastic, while only the triple 
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network model shows significant load-history-dependent stress-strain hysteresis. This hysteresis 

agrees quite well with experimental results [123]. Further analysis reveals the energy dissipation 

in triple network model is caused by irreversible bond breaking which leads to the accumulated 

damage in each cycle. Loading test along another direction was also simulated on triple network 

model with pre-exist accumulated damage. It is surprise that the stress-strain curve is not 

affected by the accumulated damage from another loading direction. Yin et al.’s work [89] 

indicates that the loading-history-dependent viscoelasticity results from the accumulated damage 

and shows anisotropy.  

 

Figure 11 (a) Snapshots of the tripe-network elastomer configuration before and after 

deformation. (b) Stress–strain curves during loading–unloading cycles with increasing maximum 

strain. (Inset) Similar stress-strain responses observed in experiments [123]. Reproduced from 

Ref. [89] with the permission from Elsevier. 

The reversible stress-strain hysteresis happens in both single-network hydrogels [51, 115] 

and double-network hydrogels [54, 124, 125]. Experimental researchers explained that the 

dissipated energy in this stress-strain hysteresis is caused by the breaking and recovery of 

sacrificial bonds in hydrogels, such as ionic bonds. However, they cannot explain the stress-
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strain hysteresis in single-network neutral hydrogels without sacrificial bonds. We give an 

interpretation that the stress-strain hysteresis comes from the friction between polymer chains 

[115]. The friction force acting on a polymer chain relates to the relative slippery velocity with 

adjacent chains. Since the relative slippery velocity is naturally related to the deformation rate, it 

connects the friction force with the deformation rate and turns out to be the viscoelastic behavior 

during macroscopic deformation. This rate-dependent stress-strain hysteresis has been described 

by many constitutive models [121, 126]. Another finding to support the friction explanation is 

the increasingly significant viscoelasticity in PAAm hydrogels with decreasing water content. As 

Fig. 12 shows, water played a role of lubricant in the friction between polymer chains, but the 

lubrication was always insufficient because the water layer between polymer chains was too thin. 

Many elaborate experiments have shown that when water is confined in narrow space below 

nanometer size, its viscosity surges for many orders of magnitude, and it even undergoes a 

liquid-to-solid transformation. The water layer between polymer chains in hydrogels was 

calculated to be just confined in such a narrow space. A simple MD model as shown in the insets 

in Fig. 13 was constructed to validate the lubrication effect of water on the friction force. It 

simulated the sliding of upper boundary particles and counted the shear force acting on upper 

boundary particles as shown in Fig. 13. It is clear that the friction force between two boundaries 

becomes much higher with lower water layer thickness. Since the water layer thickness is 

directly related to the water content of hydrogels, this qualitative modeling proves that hydrogels 

with lower water content have more significant viscoelasticity. This reversible viscoelasticity 

caused by the friction between polymer chains widely exists in all polymeric systems.  
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Figure 12 Water plays a role of lubricant for the interaction between polymer chains 

 

Figure 13 The force-time curves of the sliding simulations. Insets show two CG models. Water 

layers in two models are confined within different thickness. Yellow particles form the lower and 
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upper boundaries in two models. Lower boundary is fixed, while upper boundary is sliding. 

Reproduced from Ref. [115] with the permission from Lei et al. 

3.4 Fracture 

Compared to the studies on the mechanical behaviors mentioned above, fracture of 

hydrogels is more suitable to be investigated by network models. It is because the crack initiation 

and propagation in hydrogels is no longer a bulk behavior which can be statistically summarized 

into a mean-field theory. Instead, the local structure of the hydrogel network affects the fracture 

behaviors.  

The fracture of a hydrogel network originates from chain scission. For a network model, 

a fracture criterion for polymer chain is necessary. The simplest fracture criterion is to set a 

certain ultimate stretch as the fracture criterion for all chains. It is usually adopted in ideal 

network models to derive the fracture criterion of the entire network. Considering the random 

chain length distribution in a hydrogel network, every polymer chain may have different fracture 

stretch. As shown in Fig. 14(a), one reasonable hypothesis is that chain scission occurs when the 

chain is stretched to straight [61]. Kothari et al. [109] also proposed a fracture criterion for 

polymer chain with respect to the chain stretch using a transition-state approach. Further, the 

more fundamental reason for chain scission is that one of the covalent bonds in chain breaks. As 

shown in Fig. 14(b), two fracture criterions of polymer chain are derived from the stretch 

criterion of one covalent bond as follows. First, a new free energy form for a single polymer 

chain is proposed to describe the chain extensibility [50, 57, 74]. This free energy form includes 

the conformational entropy and the bond stretching energy 
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where b is the mean bond stretch when a polymer chain is stretched to chain , the subscript b 

means bond, /chain b   is the effective stretch contributing to the conformational entropy. We 

take the harmonic bond energy and the Langevin-type conformational entropy 
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where bE is the bond energy coefficient, N is the bond number in a chain, n is the number of 

Kuhn segments in a chain, L  is the ratio of the contour length to the initial end-to-end distance 

nb/r0. Then, it leads to the force balance equation with  

   11 chain
b b b

L b L

nkT
NE L
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 
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 
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This equation gives the relationship between chain stretch to the mean bond stretch. Its physical 

meaning is that the force acting on this chain results into not only conformational entropy change 

but also bond stretching. Compared to the restriction of chain stretch chain L   in Langevin free 

energy form, the new free energy allows an arbitrary chain stretch. The stretch of one individual 

bond b  is not necessary to be the mean bond stretch b  because of the heat fluctuations. Mao et 

al. [50] neglected the heat fluctuation effect and considered that all bonds were equally stretched 

during chain deformation, i.e. b b   as shown in Fig. 14(b). They used the stretch criterion of 

one C-C bond 1.4f

b  , obtained the fracture criterion of a single polymer chain 1.41f

chain L  , 

which means that fracture occurs when chain is stretched to 1.41 times of the contour length. The 
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superscript f means fracture. However, because of the intrinsic heat fluctuations, this criterion 

overestimates the chain fracture stretch, which could be an upper limit of chain fracture stretch. 

Figure 15(a) shows a schematic of the fracture energy of a polymer chain. The energy difference 

between before and after chain scission is just the energy of one bond. Yet it is not the energy 

criterion for chain scission. Instead, the energy barrier for chain scission is the energy criterion. 

We proposed another chain stretch criterion. [74] Since the time scale of the heat fluctuations in 

polymer chains is far lower than experimental time scale, the energy barrier of the chain scission 

was totally smoothed out by heat fluctuations. Thus, the fracture energy of a single chain could 

be just the fracture energy of one bond, leading to the chain stretch criterion  
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where f

b  is the fracture stretch of one bond, f

b  is the criterion of mean bond stretch in a 

polymer chain. The fracture stretch of one bond can be obtained by full-atom MD simulations. 

Figure 15(b) shows the energy-strain curves of the AAm chain with four C-C bonds. Substituting 

the N=4 and 1.225f

b   into the second equation in Equation (15), the fracture stretch of one 

bond is obtained as 1.45f

b  . Thus the fracture stretch of a polymer chain can also be obtained 

by the first equation in Equation (15). Our fracture criterion of chain could be a lower limit since 

the heat fluctuation effect must be overestimated.  
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(a)                                                                          (b) 

Figure 14 Schematics of different stretch criterion of a polymer chain. (a) A polymer chain 

breaks when it is stretched to straight. (b) A polymer chain breaks when one bond in chain 

breaks. There are two hypotheses to determine the criterion of mean bond stretch f

b . One 

considers that chain scission occurs when all bonds are stretched to break, leading to the upper 

limit of chain fracture stretch. Another one considers that the chain fracture energy is equal to the 

fracture energy of one bond, leading to the lower limit of the chain fracture stretch. 
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(a)                                                                         (b) 

Figure 15 The fracture energy of a polymer chain. (a) Schematics of the fracture energy of a 

polymer chain. (b) Fracture energy of one C-C bonds in AAm polymer chain from full-atom MD 

simulations, reproduced from Ref. [74] with the permission from Lei et al. 

Using the fracture criterion shown in Fig. 14(a), we investigate the fracture stretch of 

hydrogel network model generated by SAW algorithm. [96] SAW network models are converted 

to logical network as shown in Fig. 16. All chains in hydrogel network are abstracted as a point 

in logical network. The percolation theory is used to evaluate the connectivity of the logical 

network. Then, a fraction of rupture chains can be obtained from Fig. 17(a) when the 

connectivity of logical network reduces to 0, and corresponds to the ultimate stretch 27.79 of 

hydrogel network as shown in Fig. 17(b).  

 

Figure 16 Convert the hydrogel network to a logical network. The left network is the 

physical network of a hydrogel. The serpentine curves are polymer chains, and there are four 

chains marked as green, blue, orange, and purple, respectively. Black and red points are 

interaction points, where black points are physical entanglement points, and red points are 
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chemical covalent crosslink points, and they are marked with serial numbers. The right-side 

network is a logical network transformed from the left-side, which shows the interaction 

relationship of these four polymer chains. Reproduced from Ref. [96] with the permission from 

Li and Liu. 

 

(a)                                                                  (b) 

Figure 17 (a) The relationship between rupture fraction p and the connectivity of logical network. 

(b) The relationship between rupture fraction p and the ultimate stretch of hydrogel network 

model. Reproduced from Ref. [96] with the permission from Li and Liu. 

With fracture criterion of a polymer chain, STN models are used to simulate the crack 

initiation and propagation in hydrogel network. [61, 109] Simulations show that the initial 

fracture sites (chain scission) are dependent on specific network structure. The following fracture 

sites tend to develop near the initial fracture sites, and eventually grow to bulk fracture of 

network. However, the free energy of current STN models always leads to unreal deformation. 

According to three free energy forms of polymer chain in Equation (3) and (4), the equilibrium 

length of every polymer chain is 0. Thus, current STN models are actually propped open by 



 

2/6/2021 37 

additional boundary conditions, which is of course not physical. More proper free energy of STN 

models is still in searching. 

4. Discussions and Outlook 

We have extensively discussed different hydrogel network models and their application 

to investigate the mechanical properties as shown in Fig. 18. It is necessary to clarify the 

advantages and disadvantages of these hydrogel network models, and offer a clear orientation to 

the applications. Full-atom network models provide most detailed atomic structure of polymer 

network. It is quite useful to investigate the polymer-water interactions, crosslinking mechanism 

and structural properties of several polymer chains. It is expected to apply full-atom MD to 

explore functional hydrogels by the modification of monomer (or crosslinker) molecules. 

However, full-atom network models require huge computational resources, leading to too small 

model to reflect the statistical properties of hydrogel network. Realistic network models depict 

the chain conformation with much less atomic details. From realistic network models it is 

convenient to extract the end-to-end distance distribution, the contour length distribution, mean 

chain length and chain density. These fundamental structural properties cannot be obtained from 

experiments. Meanwhile, realistic network models are also suitable to reveal the fundamental 

mechanism of chain tension/contraction, entanglement and scission, which directly lead to the 

hyperelasticity, viscoelasticity and fracture of hydrogels. Thus, it is practical to apply realistic 

network models to design the network structure features, such as branch chains and entanglement,  

to control the energy dissipation of hydrogels. This can provide guidance on the hydrogel 

reinforcement and hydrogel adhesion. However, current realistic network models are still too 

small to capture the bulk mechanical response of hydrogels. STN models focus on the depiction 

of the random hydrogel network. With much larger model size compared to realistic network 
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models, it has been applied to investigate the non-affine large deformation of hydrogels with the 

structural randomness. Furthermore, compared to continuum mechanics and finite element 

methods, STN models show great advantages on describing fracture of hydrogels because of its 

intrinsic discontinuity. Fracture behaviors that cannot be observed in experiments, such as the 

damage accumulation during deformation, the crack initiation and propagation, can be observed 

from the fracture simulations of STN models. However, current STN models are still too simple 

to correctly describe the large deformation of hydrogel network. Developing more accurate STN 

models is a practical way to realize the fracture simulation of hydrogels. 

 

Figure 18 A comprehensive table on the theories, numerical methods, structures, applications 

and outlook of three types of polymer network models. 

Among all these network models, STN models show capability to bridge the microscopic 

nature and macroscopic mechanical response because of its proper model size. Development of 
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STN models is still in urgent need in the following directions. First, proper free energy is the 

basic requirement for further applications of STN models. Introducing the free energy 

contribution from volumetric deformation may lead to more realistic deformation description of 

STN models. Second, more precise chain fracture criterion is needed for the bulk fracture 

description of hydrogels. Statistically considering the heat fluctuation effect may result in 

accurate chain fracture criterion. Third, STN models are applicable to integrate with finite 

element methods to develop hybrid simulation methods with both continuous and discrete 

elements. The numerical implementation of STN model is quite similar to implicit finite element 

method, since both methods lead to the equation set of  K x F , where K is the stiffness matrix, 

x is the coordinate vector of all nodes and F is the force vector on all nodes. This similarity 

makes it possible to unite the simulations of continuous finite elements and discrete STN model, 

as long as the free energy of two types of models are compatible. At last, the intrinsic non-affine 

deformation of hydrogels inspires us to rethink the deformation description in continuum 

mechanics. Besides the widely used deformation gradient, more complete deformation 

description need to be rigorously established to describe the non-affine deformation in a 

continuous manner. It is expected to promote the development of continuum mechanics. 

5. Conclusions 

Advanced applications of hydrogels call for demands to precisely describe the 

mechanical behaviors, while current constitutive theories face challenges when predicting the 

extremely large deformation and fracture of hydrogels. Since the hydrogel polymer network 

dominates the mechanical responses, it is necessary to investigate the fundamental mechanism of 

these mechanical responses from a network perspective. This work aims to summarize the 

researches on the theories, structural models and mechanical simulations of hydrogel network, 
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and provide insights in bridging the gap between microstructure and the macroscopic mechanical 

behaviors. Hydrogel network possesses complex structures in different length scale, including 

monomer and crosslinker molecules, Kuhn segments, polymer chains and the random 

crosslinked network. Hydrogel network models in current researches are divided into three 

categories, i.e. full-atom network models, realistic network models and abstract network models. 

Realistic network models can be constructed using full-atom MD, CGMD and DPD methods. 

The detailed chain conformation makes realistic network models suitable to investigate the 

swelling-deswelling process, hyperelasticity and viscoelasticity of hydrogels. However, 

simulating realistic network models with the detailed chain conformation costs too much 

computational resource, leading to the limited model size. Abstract network models simplify 

polymer chains into analytical interactions between crosslinking sites. It shows the randomness 

of the hydrogel network structures and describes the non-affine deformation. Combining with 

proper fracture criterion of polymer chains, abstract network models show great advantages to 

simulate the fracture initiation and propagation of hydrogels because of its intrinsic discontinuity. 

The discrete hydrogel network models are expected to integrate with continuum mechanics to 

capture the various mechanical behaviors of hydrogels. 
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