Elements of Information Theory

Lecture 2 Entropy and Mutual Information

Instructor: Yichen Wang

Ph.D./Professor

School of Information and Communications Engineering
Division of Electronics and Information Engineering
Xi'an Jiaotong University

Outlines

- > Entropy, Joint Entropy, and Conditional Entropy
- > Relative Entropy and Mutual Information
- Convexity Analysis for Entropy and Mutual Information
- Entropy and Mutual Information in Communications Systems

Entropy —— 熵

Entropy in *Thermodynamics* (热力学)

- > It was first developed in the early 1850s by Rudolf Clausius (French Physicist).
- > System is composed of a very large number of constituents (atoms, molecule...).
- > It is a measure of the number of the microscopic configurations that corresponds to a thermodynamic system in a state specified by certain macroscopic variables.
- > It can be understood as a measure of molecular disorder within a macroscopic system.

Entropy in Statistical Mechanics (统计力学)

- > The statistical definition was developed by *Ludwig Boltzmann* in the 1870s by analyzing the statistical behavior of the microscopic components of the system.
- Boltzmann showed that this definition of entropy was equivalent to the thermodynamic entropy to within a constant number which has since been known as Boltzmann's constant.
- > Entropy is associated with the number of the microstates of a system.

How to define ENTROPY in information theory?

Definition

The entropy H(X) of a <u>discrete random variable</u> X is defined by

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

p(x) is the probability mass function (概率质量函数) which can be written as

$$p(x) = \Pr\{X = x\}, \ x \in \mathcal{X}$$

- \rightarrow The base of the logarithm is $\frac{2}{2}$ and the unit is $\frac{bits}{2}$.
- If the base of the logarithm is \underline{e} , then the unit is \underline{nats} .

Remark 1

What does the entropy measure?

---- It is a measure of the uncertainty of a random variable.

Remark 2

Must random variables with different sample spaces have different entropy?

---- It is only related with the <u>distribution</u> of the random variable. It does not depend on the actual values taken by the random variable, but only on the probabilities.

Remark 3

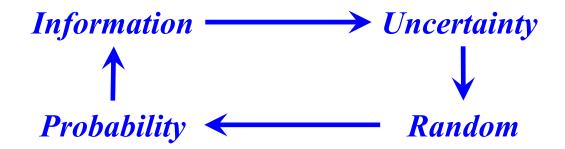
If the base of the logarithm is b, we denote the entropy as $H_b(X)$. Moreover, we have

$$H_b(X) = (\log_b a) H_a(X)$$

Another Explanation of Entropy

Question: How to define information?

In information theory, information is associate with the uncertainty.



We use <u>probabilistic model</u> to describe information

- High probability not so surprise less information
- Low probability great surprise more information

Another Explanation of Entropy

Example

- > 32 teams are in the FIFA World Cup 2002
- > Brazil, England, France, Germany, ..., China
- > Brazil is the champion > not so surprise > less information
- > China wins the champion > great surprise > more information
- 1. Probability reflects the prior knowledge
- 2. Information is defined as a function of probability

Another Explanation of Entropy

We can define the <u>Self-Information Function</u>, which should satisfy the following requirements:

- 1. It should be the function of the probability that the event happens.
- 2. It should be the decreasing function of probability that the event happens.
- 3. If the event happens with probability <u>ONE</u>, the self-information should equal to <u>ZERO</u>.
- 4. If the probability that the event happens is **ZERO**, the self-information should be **INFINITE**.
- 5. The joint information of two independent events should be the <u>SUM</u> of the information of each event.

The <u>Self-Information</u> of the event X = x can be written as

$$I(x) = \log\left(\frac{1}{\Pr\{X = x\}}\right)$$

- \rightarrow If the base of the logarithm is 2, the unit is <u>bits</u>.
- > If the base of the logarithm is \underline{e} , the unit is \underline{nats} .

What does Self-Information imply?

- 1. Before the event occurs The uncertainty of the event occurring;
- 2. After the event occurs The amount of information provided by the event.

Relationship Between Entropy and Self-Information

$$\begin{split} H(X) &= -\sum_{x \in \mathcal{X}} p(x) \log p(x) &= \sum_{x \in \mathcal{X}} p(x) \Big(-\log p(x) \Big) \\ &= \sum_{x \in \mathcal{X}} p(x) \log \left(\frac{1}{p(x)} \right) &\stackrel{p(x) = \Pr\{X = x\}}{=} \sum_{x \in \mathcal{X}} p(x) I(x) = \mathbb{E} \Big\{ I(X) \Big\} \end{split}$$

The above relationship tells us:

- 1. From the mathematical view The entropy of random variable X is the expected value of the random variable $\log\left(1/p(X)\right)$;
- 2. From the information theory's view The entropy of random variable X is the average self-information of X.

Example:

Let the random variable X equals 1 with probability p and equals 0 with probability 1-p, i.e.,

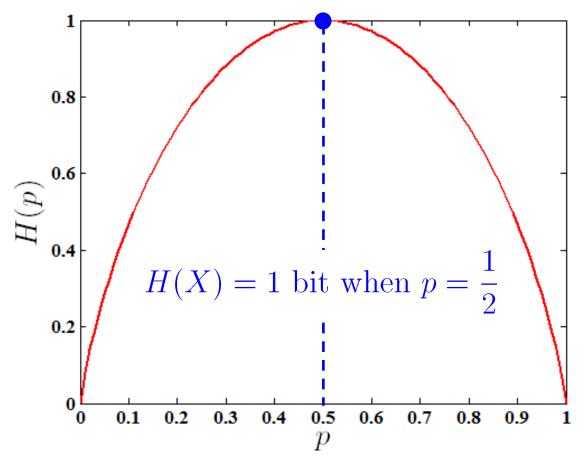
$$X = \begin{cases} 1 & \text{with probability } p, \\ 0 & \text{with probability } (1-p). \end{cases}$$

Please calculate the entropy H(X).

$$H(X) = -p \cdot \log(p) - (1-p) \cdot \log(1-p) \triangleq H(p)$$

It's easy. However, what can we obtain from this simple example?

$$H(X) = -p \cdot \log(p) - (1-p) \cdot \log(1-p) \triangleq H(p)$$



- 1. The entropy is a concave function.
- 2. Why does the entropy equal to zero when the value of p is 0 or 1?
- 3. When does the entropy achieve its maximum?

Example:

Let the random variable X takes the value according to the following policy

$$X = \begin{cases} a & \text{with probability } \frac{1}{2}, \\ b & \text{with probability } \frac{1}{4}, \\ c & \text{with probability } \frac{1}{8}, \\ d & \text{with probability } \frac{1}{8}. \end{cases}$$

Please calculate the entropy H(X).

The entropy H(X) is

$$H(X) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{4}\log\left(\frac{1}{4}\right) - \frac{1}{8}\log\left(\frac{1}{8}\right) - \frac{1}{8}\log\left(\frac{1}{8}\right) = \frac{7}{4}$$
 bits

How to determine the value of X with the minimum average number of binary questions?

- 1. First question ls X = a? -- Splitting the probability in half
- 2. Second question ls X = b?
- 3. Third question ls X = c?

The expected number of binary questions required is 1.75.

The minimum expected number of binary questions required to determine X lies between H(X) and H(X)+1

Some Discussions

- 1. Before observation
 - ---- The average uncertainty of the random variable
- 2. After observation
 - ---- The average amount of information provided by each observation
- 3. Why does larger value of entropy imply higher uncertainty?
 - ---- Entropy is associated with the number of microstates of a system.

 Larger value of entropy means more microstates.
- 4. Continuity
 - ---- Changing the values of the probabilities by a very small amount should only change the entropy by a small amount.

Joint Entropy

- > We have already defined the entropy of a single random variable
- Extend the definition to a pair of random variables
 - Joint Entropy (联合熵)

Definition

The Joint Entropy H(X,Y) of a pair of discrete random variables (X,Y) with a joint distribution p(x,y) is defined by

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

Joint Entropy

Some Discussions

- 1. In information theory, the joint entropy is a measure of the <u>UNCERTAINTY</u> associated with a set of random variables.
- 2. Similar with the single variable case, the joint entropy can also be understood as

$$H(X,Y) = -\mathbb{E}\left\{\log p(X,Y)\right\} = \mathbb{E}\left\{\log \frac{1}{p(X,Y)}\right\}$$

- 3. In this definition, we treat the two random variables (X,Y) as a <u>single vector-valued</u> random variable.
- 4. Joint entropy in more general N random variables case

$$H(X_1, \dots X_N) = -\sum_{x_1 \in \mathcal{X}_1} \dots \sum_{x_N \in \mathcal{X}_N} p(x_1, \dots, x_N) \log p(x_1, \dots, x_N)$$

- > Joint entropy is used for characterizing the uncertainty of a set of random variables.
- > Observing one thing may help us predict another thing.
- > Can we measure the uncertainty of one random variable while observing another one?
- > The answer is YES Conditional Entropy (条件熵)

Definition

The <u>Conditional Entropy</u> of a random variable given another random variable is defined as the <u>expected</u> <u>value of the entropies</u> of the conditional distributions, averaged over the conditioning random variable.

Based on the above definition, if $(X,Y) \sim p(x,y)$, conditional entropy H(Y|X) can be mathematically written as

$$H(Y|X) = \mathbb{E}_{X \sim p(x)} \Big\{ H\big(Y|X = x\big) \Big\}$$

The average of the entropy of Y given X over all possible values of X

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) = -\mathbb{E}\left\{\log p(Y|X)\right\}$$

Some Discussions

- 1. The conditional entropy H(Y|X) is a measure of what X does NOT say about Y, i.e., the amount of uncertainty remaining about Y after X is known.
- 2. The larger the value of H(Y|X) is, the less we can predict the state of Y, knowing the state of X.
- 3. Two extreme cases

<u>Case 1:</u> $H(Y|X) = 0 \iff Y$ is completely determined by X

<u>Case 2:</u> $H(Y|X) = H(Y) \iff X$ and Y are independent

4. H(Y|X) = H(X|Y)?

We have already known:

- \rightarrow H(X) the uncertainty of X
- \rightarrow H(X,Y) the uncertainty of (X,Y)
- \rightarrow H(Y|X) the uncertainty of Y while knowing X

Question: Is there any relationship among the above three items?

Theorem (Chain rule)

The entropy of a pair of random variables is the entropy of one plus the conditional entropy of the other, which can be mathematically written as

$$H(X,Y) = H(X) + H(Y|X)$$

Proof:

$$\begin{split} H(X,Y) &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x) p(y|x) \\ &= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(y|x) \\ &= H(X) + H(Y|X) \end{split}$$

Is there other way to prove this theorem?

Example

Let (X,Y) have the following joint distribution

YX	1	2	3	4
1	1/8	1/16	1/32	1/32
2	1/16	1/8	1/32	1/32
3	1/16	1/16	1/16	1/16
4	1/4	0	0	0

Please calculate H(X), H(Y), H(X|Y), H(Y|X), H(X,Y)

Based on the definition of entropy, we have

$$H(X) = -\sum_{i=1}^{4} p(X=i)\log p(X=i)$$

Thus, we need to derive the marginal distribution of X

$$p(X=i) = \sum_{j=1}^{4} p(X=i, Y=j) \implies \begin{bmatrix} X \\ p(X=i) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{8} & \frac{1}{8} \end{bmatrix}$$

Consequently, we have

$$H(X) = -\frac{1}{2}\log\left(\frac{1}{2}\right) - \frac{1}{4}\log\left(\frac{1}{4}\right) - \frac{1}{8}\log\left(\frac{1}{8}\right) - \frac{1}{8}\log\left(\frac{1}{8}\right) = \frac{7}{4} \text{ bits}$$

Similarly, we can calculate H(Y)

$$\begin{bmatrix} Y \\ p(Y=j) \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{bmatrix} \longrightarrow H(Y) = 2 \text{ bits}$$

Based on the definition of conditional entropy, we have

$$H(X|Y) = \sum_{j=1}^{4} p(Y=j)H(X|Y=j)$$

$$= -\sum_{j=1}^{4} p(Y=j) \sum_{i=1}^{4} p(X=i|Y=j)\log p(X=i|Y=j)$$

where
$$p(X = i | Y = j) = \frac{p(X = i, Y = j)}{p(Y = j)}$$

Then, we can obtain

$$H(X|Y) = \frac{1}{4}H\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{8}, \frac{1}{8}\right)$$

$$+ \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right) + \frac{1}{4}H\left(1, 0, 0, 0\right)$$

$$= \frac{1}{4} \times \frac{7}{4} + \frac{1}{4} \times \frac{7}{4} + \frac{1}{4} \times 2 + \frac{1}{4} \times 0 = \frac{11}{8} \text{ bits}$$
27

$$H(Y|X) = \sum_{i=1}^{4} p(X=i)H(Y|X=i)$$

$$= -\sum_{i=1}^{4} p(X=i) \sum_{j=1}^{4} p(Y=j|X=i) \log p(Y=j|X=i)$$
where $p(Y=j|X=i) = \frac{p(X=i,Y=j)}{p(X=i)}$

Then, we can obtain

$$H(Y|X) = \frac{1}{2}H\left(\frac{1}{4}, \frac{1}{8}, \frac{1}{2}, \frac{1}{2}\right) + \frac{1}{4}H\left(\frac{1}{4}, \frac{1}{2}, \frac{1}{4}, 0\right)$$

$$+ \frac{1}{8}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right) + \frac{1}{8}H\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}, 0\right)$$

$$= \frac{1}{2} \times \frac{7}{4} + \frac{1}{4} \times \frac{3}{2} + \frac{1}{8} \times \frac{3}{2} + \frac{1}{8} \times \frac{3}{2} = \frac{13}{8} \text{ bits}$$

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) = \frac{27}{8}$$
 bits

28

Example

Suppose probability distribution of random variable X are given as

X	a_1	a_2	a_3
p(x)	11/36	4/9	1/4

and the conditional probability $P(a_i|a_i)$ are given as

	a_{j}				
		a_1	a_2	a_3	
a_i	a_1	9/11	2/11	0	
	a_2	1/8	3/4	1/8	
	a_3	0	2/9	7/9	

Please calculate $H(X^2)$

Based on the definition of joint entropy, we have

$$H(X^2) = -\sum_{i=1}^{3} \sum_{j=1}^{3} p(a_i, a_j) \log p(a_i, a_j)$$

Thus, we need to calculate the joint probability $p(a_i, a_j)$

$$p(a_{1}, a_{1}) = p(a_{1})p(a_{1}|a_{1}) = \frac{11}{36} \times \frac{9}{11} = \frac{1}{4}$$

$$p(a_{1}, a_{2}) = p(a_{1})p(a_{2}|a_{1}) = \frac{11}{36} \times \frac{2}{11} = \frac{1}{18}$$

$$\vdots$$

$$p(a_{3}, a_{3}) = p(a_{3})p(a_{3}|a_{3}) = \frac{1}{4} \times \frac{7}{9} = \frac{7}{36}$$

$$H(X^{2}) = 2.412 \text{ bits}$$

Properties of Entropy, Joint Entropy, and Conditional Entropy

1. Nonnegativity of entropy

$$H(X) \ge 0$$

2. Symmetry

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ p_1 & p_2 & \cdots & p_N \end{bmatrix} \longrightarrow H(X) = H(p_1, p_2, \cdots, p_N)$$

$$H(p_1, p_2, \dots, p_N) = H(p_2, p_3, \dots, p_N, p_1) = \dots = H(p_N, p_1, \dots, p_{N-1})$$

3. Maximum

Suppose random variable X follows the following distribution

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ p(x_1) & p(x_2) & \cdots & p(x_N) \end{bmatrix}$$

Then, we have the following inequality

$$H(X) \le \log N$$

with the equality if and only if X has a uniform distribution, i.e.,

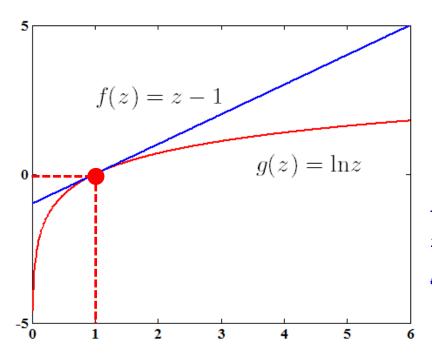
$$p(x_1) = p(x_2) = \dots = p(x_N) = \frac{1}{N}$$

Proof

To prove the "Maximum" property, we need to use the following inequality:

$$ln z \le z - 1, \ z \ge 0$$

with the equality if and only is z = 1.



$$t(z) = \ln z - (z - 1)$$

$$t'(z) = \frac{1}{z} - 1$$
 $t''(z) = -\frac{1}{z^2} \le 0$

The difference has a negative second derivative and a stationary point at z=1

We now show that $H(X) - \log N \le 0$

$$H(X) - \log N = \sum_{i=1}^{N} p(x_i) \log \frac{1}{p(x_i)} - \sum_{i=1}^{N} p(x_i) \log N$$

$$= (\log e) \sum_{i=1}^{N} p(x_i) \ln \frac{1}{p(x_i) \cdot N}$$

By applying the abovementioned inequality, we can obtain

$$H(X) - \log N \leq (\log e) \sum_{i=1}^{N} p(x_i) \left[\frac{1}{p(x_i) \cdot N} - 1 \right]$$
$$= (\log e) \left[\sum_{i=1}^{N} \frac{1}{N} - \sum_{i=1}^{N} p(x_i) \right] = 0$$

4. Adding or removing an event with probability zero does not contribute to the entropy

$$H_{N+1}(p_1, \cdots, p_N, 0) = H_N(p_1, \cdots, p_N)$$

5. Chain rule

$$H(X,Y) = H(X) + H(Y|X)$$

If X and Y are independent, we have

$$H(X,Y) = H(X) + H(Y)$$

Corollary:
$$H(X,Y|Z) = H(X|Z) + H(Y|X,Z)$$

General case:
$$(X_1, X_2, \cdots, X_N) \sim p(x_1, x_2, \cdots, x_N)$$

$$H(X_1, X_2, \cdots, X_N) = \sum_{i=1}^{N} H(X_i | X_{i-1}, \cdots, X_1)$$
 35

Another explanation for chain rule

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ p_1 & p_2 & \cdots & p_N \end{bmatrix} \qquad \begin{bmatrix} Y \\ q(y) \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & \cdots & y_M \\ q_1 & q_2 & \cdots & q_M \end{bmatrix}$$

$$Q_{mn} = \Pr\{Y = y_m | X = x_n\}, \ m = 1, \dots, M \ ; \ n = 1, \dots, N$$

$$H(p_1Q_{11}, \dots, p_1Q_{M1}, p_2Q_{12}, \dots, p_2Q_{M2}, \dots, p_NQ_{1N}, \dots, p_NQ_{MN})$$

$$= H(p_1, p_2, \dots, p_N) + \sum_{n=1}^{N} p_n H(Q_{1n}, Q_{2n}, \dots, Q_{Mn})$$

What can we obtain from the above equality?

6. Conditioning reduces entropy

$$H(X|Y) \le H(X)$$

with equality if and only if X and Y are independent.

Corollary:

$$H(X,Y) \le H(X) + H(Y)$$

$$H(X_1, X_2, \cdots, X_N) \leq \sum_{i=1}^N H(X_i)$$

Independence bound on entropy

Outlines

- Entropy, Joint Entropy, and Conditional Entropy
- > Relative Entropy and Mutual Information
- Convexity Analysis for Entropy and Mutual Information
- Entropy and Mutual Information in Communications Systems

Relative Entropy

Definition (Relative Entropy)

$$D\left(p||q\right) = \sum_{x \in \mathcal{X}} p(x) \log \frac{p(x)}{q(x)} = \mathbb{E}_p \left\{ \log \frac{p(x)}{q(x)} \right\}$$

- We use the conventions that $0 \cdot \log(0/0) = 0$, $0 \cdot \log(0/q) = 0$, and $p \cdot \log(p/0) = \infty$.
- ➤ Does symmetry hold for relative entropy, i.e. D(p||q) = D(q||p)?

How to understand relative entropy?

Definition (Mutual Information)

Consider two random variables X and Y with a joint probability mass function p(x,y) and marginal probability mass functions p(x) and p(y). The mutual information I(X;Y) is the relative entropy between the joint distribution and the product distribution p(x)p(y):

$$I(X;Y) = D\left(p(x,y)||p(x)p(y)\right)$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y)\log \frac{p(x,y)}{p(x)p(y)} = \mathbb{E}_{X,Y}\left\{\log \frac{p(X,Y)}{p(X)p(Y)}\right\}$$

What does the mutual information imply?

$$I(X;Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x|y)}{p(x)}$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x) + \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x|y)$$

$$= -\sum_{x \in \mathcal{X}} p(x) \log p(x) - \left(-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x|y)\right)$$

$$= H(X) - H(X|Y)$$

The mutual information is the <u>reduction</u> in the uncertainty of X due to the knowledge of Y.

Some Discussions

- 1. Mutual information measures the amount of uncertainty of X removed by knowing Y. In other words, this is the amount of information obtained about X by knowing Y.
- 2. Symmetry I(X;Y) = I(Y;X)
- 3. Relationship between mutual information and entropy

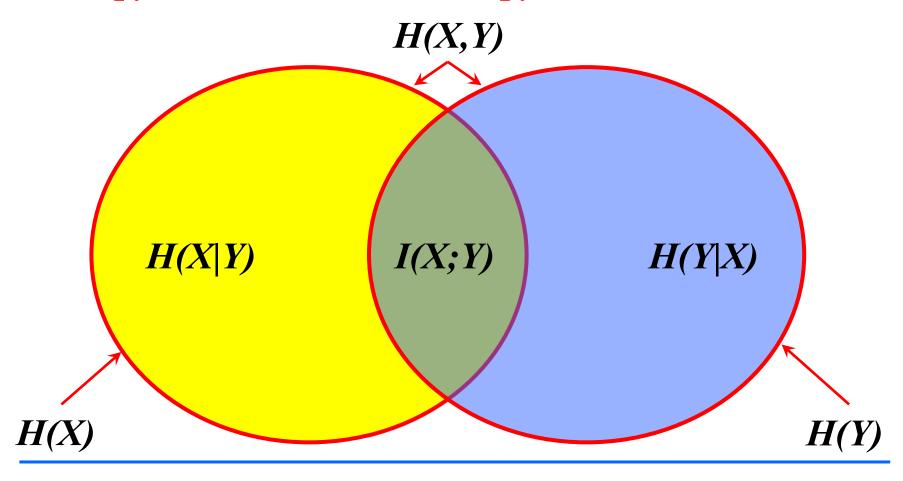
$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

 $I(X;Y) = H(X) + H(Y) - H(X,Y)$
 $I(X;X) = H(X)$

4. Chain rule for information

$$I(X_1, X_2, \dots, X_n; Y) = \sum_{i=1}^n I(X_i; Y | X_{i-1}, X_{i-2}, \dots, X_1)$$

Relationship among mutual information, entropy, joint entropy, and conditional entropy



Definition (Markov Chain)

Random variables X, Y, Z are said to form a Markov chain in that order (denoted by $X \to Y \to Z$) if the conditional distribution of Z depends only on Y and is conditionally independent of X. Specifically, X, Y, and Z form a Markov chain $X \to Y \to Z$ if the joint probability mass function can be written as

$$p(x, y, z) = p(x)p(y|x)p(z|y)$$

• $X \rightarrow Y \rightarrow Z$ implies that $Z \rightarrow Y \rightarrow X$; If Z = f(Y), then $X \rightarrow Y \rightarrow Z$.

Theorem (Data Processing Inequality)

If $X \to Y \to Z$, then $I(X; Y) \ge I(X; Z)$. In particular, if Z = g(Y), we have $I(X; Y) \ge I(X; g(Y))$.

- Suppose that we wish to estimate a random variable X with a distribution p(x).
- We observe a random variable Y that is related to X by the conditional distribution p(y|x).
- From Y, we calculate a function $g(Y) = \hat{X}$, where \hat{X} is an estimate of X and takes on values in \hat{X} .

$$X \longrightarrow Y \longrightarrow \hat{X}$$
 forms a Markov Chain

• Define the probability of error

$$P_e = \Pr\{\hat{X} \neq X\}$$

Theorem (Fano's Inequality)

For any estimator \hat{X} such that

$$X \longrightarrow Y \longrightarrow \hat{X}$$

with $P_e = \Pr{\{\hat{X} \neq X\}}$, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X}) \ge H(X|Y)$$

This inequality can be weakened to

$$1 + P_e \log |\mathcal{X}| \ge H(X|Y)$$

or

$$P_e \ge \frac{H(X|Y) - 1}{\log |\mathcal{X}|}$$

Proof

Define an error random variable

$$E = \begin{cases} 1, & \text{if } \hat{X} \neq X \\ 0, & \text{if } \hat{X} = X \end{cases}$$

Then, we have

$$H(E, X|\hat{X}) = H(X|\hat{X}) + H(E|X, \hat{X}) = \mathbf{0}$$
$$= H(E|\hat{X}) + H(X|E, \hat{X}) = \mathbf{?}$$

Conditioning reduces entropy

$$H(E|\hat{X}) \le H(E) = H(P_e)$$

Proof

Based on the definition of conditional entropy, we have

$$H(X|E,\hat{X}) = \Pr\{E=0\}H(X|\hat{X},E=0) = (1 - P_e)0$$

$$+\Pr\left\{E=1\right\}H\left(X|\hat{X},E=1\right)\leq \frac{P_e\log|\mathcal{X}|}{2}$$

Then, we have

$$H(P_e) + P_e \log |\mathcal{X}| \ge H(X|\hat{X})$$

By applying the data-processing inequality, we can obtain

$$H(X|\hat{X}) \ge H(X|Y)$$

Outlines

- Entropy, Joint Entropy, and Conditional Entropy
- > Mutual Information
- Convexity Analysis for Entropy and Mutual Information
- > Entropy and Mutual Information in Communications Systems

Convex function (Cup)

> A function f(x) is said to be <u>convex</u> over an interval (a, b) if for every $x_1, x_2 \in (a, b)$ and $0 \le \lambda \le 1$, the following inequality holds

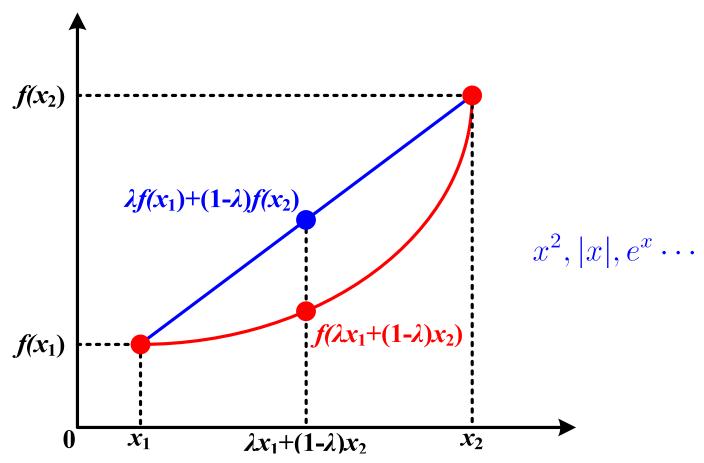
$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

A function f(x) is said to be strictly convex if the equality holds only if $\lambda = 0$ or $\lambda = 1$.

Concave function (Cap)

- > f(x) is <u>concave</u> over (a, b) if for every $x_1, x_2 \in (a, b)$, we have $f(\lambda x_1 + (1 \lambda)x_2) \ge \lambda f(x_1) + (1 \lambda)f(x_2), 0 \le \lambda \le 1$
- > f(x) is strictly concave if the equality holds only if $\lambda = 0$ or $\lambda = 1$.

Illustration for Convex Function



Convex (cup): Function always lies below any chord

Illustration for Concave Function



Concave (cap): Function always lies above any chord

Is there other approach to determine the convexity of a function?

Theorem

If the function f has a second derivative that is nonnegative (positive) over an interval, the function is convex (strictly convex) over that interval. Mathematically,

- > If $d^2f(x)/dx^2 \ge 0$ holds, then f(x) is convex;
- > If $d^2f(x)/dx^2 > 0$ holds, then f(x) is strictly convex.

How can we extend the above theorem to a more general case $f(x_1, x_2, ..., x_N)$?

Theorem (Jensen's inequality)

If f is a convex function and X is a random variable, then we have

$$\mathbb{E}\Big\{f(X)\Big\} \ge f\Big(\mathbb{E}\big\{X\big\}\Big)$$

Moreover, if f is strictly convex, the above equality implies that $X = \mathbb{E}\{X\}$ with probability 1 (i.e., X is a constant).

- > Here we only consider the discrete random variable case
- We can employ <u>Mathematical Induction</u> to prove the above theorem

Proof

For a two-mass-point distribution

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \\ p_1 & p_2 \end{bmatrix}$$

the inequality becomes

$$p_1 f(x_1) + p_2 f(x_2) \ge f(p_1 x_1 + p_2 x_2)$$

The above inequality apparently holds as f is a convex function.

Suppose that the theorem is true for distributions with (k-1) mass points. Then, we prove it is true for k-mass-point distributions.

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_k \\ p_1 & p_2 & \cdots & p_k \end{bmatrix} \implies p_i' = \frac{p_i}{1 - p_k}, i = 1, \cdots, k - 1$$

Then, we have

$$\sum_{i=1}^{k} p_i f(x_i) = p_k f(x_k) + (1 - p_k) \sum_{i=1}^{k-1} p_i' f(x_i)$$

$$\geq p_k f(x_k) + (1 - p_k) f\left(\sum_{i=1}^{k-1} p_i' x_i\right)$$

$$\geq f\left(p_k x_k + (1 - p_k) \sum_{i=1}^{k-1} p_i' x_i\right) = f\left(\sum_{i=1}^{k} p_i x_i\right)$$

Question:

- 1. When does the equality hold if X is not a constant?
- 2. Why can we obtain the conclusion, i.e., the strict convexity of function f implies X is a constant?

- > The expectation of a convex function (cup) of a random variable is no smaller than the convex function (cup) of the expectation of the random variable.
- > The expectation of a concave function (cap) of a random variable is no larger than the concave function (cap) of the expectation of the random variable.

Famous Puzzle:

A man says, "I am the average height and average weight of the population. Thus, I am an average man." However, he is still considered to be a little overweight. Why?

Recalled that we have discussed the "Maximum" property of entropy. Now, Let's discuss it again.

Theorem (Uniform maximizes entropy)

 $H(X) \leq \log |\mathcal{X}|$, where $|\mathcal{X}|$ denotes the number of elements in the range of X, with equality if and only X has a uniform distribution over \mathcal{X} .

Let $u(x) = 1/|\mathcal{X}|$ be the uniform probability mass function over \mathcal{X} , and let p(x) be the probability mass function for X. Then, we have

$$H(X) - \log|\mathcal{X}| = \sum_{x \in \mathcal{X}} p(x) \log \frac{1}{p(x)} + \sum_{x \in \mathcal{X}} p(x) \log u(x) = \sum_{x \in \mathcal{X}} p(x) \log \frac{u(x)}{p(x)}$$

$$\leq \log \left(\sum_{x \in \mathcal{X}} p(x) \frac{u(x)}{p(x)} \right) = \log \left(\sum_{x \in \mathcal{X}} u(x) \right) = 0$$

We have known that the entropy is nonnegative, i.e., $H(X) \ge 0$ How about the mutual information?

Theorem (Nonnegative of mutual information)

For any two random variables X and Y, we have

$$I(X;Y) \ge 0$$

with equality if and only if X and Y are independent.

$$I(X;Y) = H(X) - H(X|Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

$$= -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x)p(y)}{p(x,y)}$$

$$= -\log \left(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \frac{p(x)p(y)}{p(x,y)} \right) = -\log \left(\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x)p(y) \right) = 0$$

Based on the theory of convex optimization, we can obtain that the sum of convex (concave) functions is also a convex (concave) function.

Theorem (Concavity of entropy)

The entropy of a random variable is a concave (cap) function.

$$\begin{bmatrix} X \\ p(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \\ p(x_1) & p(x_2) & \cdots & p(x_N) \end{bmatrix} \longrightarrow H(X) = -\sum_{i=1}^N p(x_i) \log p(x_i)$$

f(p) is concave over
$$p \leftarrow f''(p) = -\log(e)\frac{1}{p} < 0 \leftarrow f(p) = -p\log p$$

H(X) is the sum of f(p) with different values of p. Thus, H(X) is concave.

Theorem

Let $(X,Y) \sim p(x,y)=p(x)p(y|x)$. Then, we can obtain that the mutual information I(X;Y) is a concave function of p(x) for fixed p(y|x).

Proof

$$I(X;Y) = H(X) - H(X|Y) = \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$
$$= \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x)p(y|x) \log \left(\frac{p(y|x)}{\sum_{x \in \mathcal{X}} p(x)p(y|x)}\right)$$

The mutual information I(X;Y) is the function of $p(x) \longrightarrow I(X;Y) \triangleq I\{p(x)\}$

$$I\{\lambda p_1(x) + (1-\lambda)p_2(x)\} \ge \lambda I\{p_1(x)\} + (1-\lambda)I\{p_2(x)\}?$$

For different distributions $p_1(x)$ and $p_2(x)$, we have

$$p_1(x,y) = p_1(x)p(y|x)$$

$$p_2(x,y) = p_2(x)p(y|x)$$

$$p_1(y) = \sum_{x \in \mathcal{X}} p_1(x,y) = \sum_{x \in \mathcal{X}} p_1(x)p(y|x)$$

$$p_2(y) = \sum_{x \in \mathcal{X}} p_2(x,y) = \sum_{x \in \mathcal{X}} p_2(x)p(y|x)$$

If we denote $p(x) = \lambda_1 p_1(x) + \lambda_2 p_2(x)$, where $\lambda_1 + \lambda_2 = 1$, we can obtain

$$p(x,y) = p(x)p(y|x) = \left[\lambda_1 p_1(x) + \lambda_2 p_2(x)\right] p(y|x) = \lambda_1 p_1(x,y) + \lambda_2 p_2(x,y)$$

$$I\{p(x)\} - \lambda_1 I\{p_1(x)\} - \lambda_2 I\{p_2(x)\}$$

$$= \sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)} - \sum_{x,y} \lambda_1 p_1(x,y) \log \frac{p_1(x,y)}{p_1(x)p_1(y)} - \sum_{x,y} \lambda_2 p_2(x,y) \log \frac{p_2(x,y)}{p_2(x)p_2(y)}$$

$$= \sum_{x,y} \left[\lambda_1 p_1(x,y) + \lambda_2 p_2(x,y) \right] \log \frac{p(y|x)}{p(y)}$$

$$-\sum_{x,y} \lambda_1 p_1(x,y) \log \frac{p(y|x)}{p_1(y)} - \sum_{x,y} \lambda_2 p_2(x,y) \log \frac{p(y|x)}{p_2(y)}$$

$$= \sum_{x,y} \lambda_1 p_1(x,y) \log \frac{p_1(y)}{p(y)} + \sum_{x,y} \lambda_2 p_2(x,y) \log \frac{p_2(y)}{p(y)}$$

$$= -\sum_{y} \lambda_1 p_1(y) \log \frac{p(y)}{p_1(y)} - \sum_{y} \lambda_2 p_2(y) \log \frac{p(y)}{p_2(y)}$$

$$\geq -\lambda_1 \log \left(\sum_{y} p_1(y) \frac{p(y)}{p_1(y)} \right) - \lambda_2 \log \left(\sum_{y} p_2(y) \frac{p(y)}{p_2(y)} \right) = 0$$

Using definition for proving is sometimes quite complicated. Thus, we here provide another simple way.

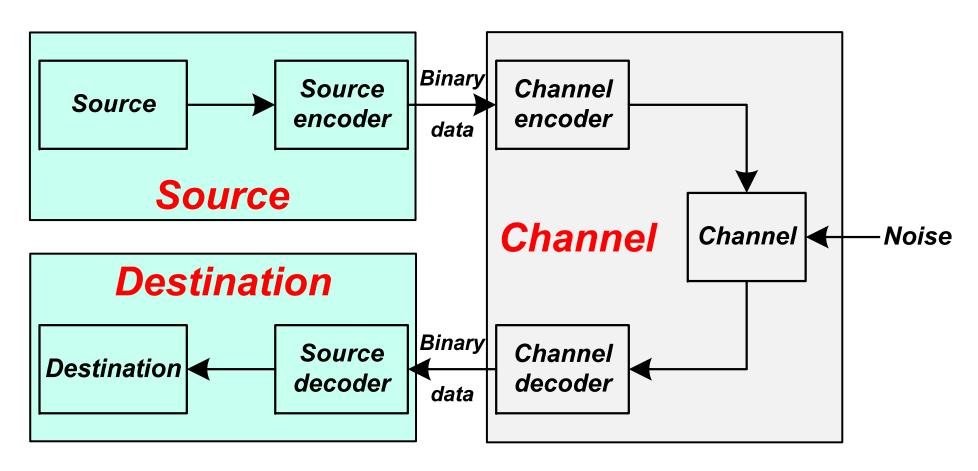
$$I(X;Y) = H(Y) - H(Y|X) = H(Y) - \sum_{x \in \mathcal{X}} p(x)H(Y|X = x)$$

- \triangleright As p(y|x) is fixed, p(y) is a linear function of p(x)
- \triangleright H(Y) is the concave function of p(y). Thus, it is also the concave function of p(x)
- \triangleright H(Y|X) is a linear function of p(x)
- \triangleright Consequently, I(X;Y) is the concave function of p(x)

Outlines

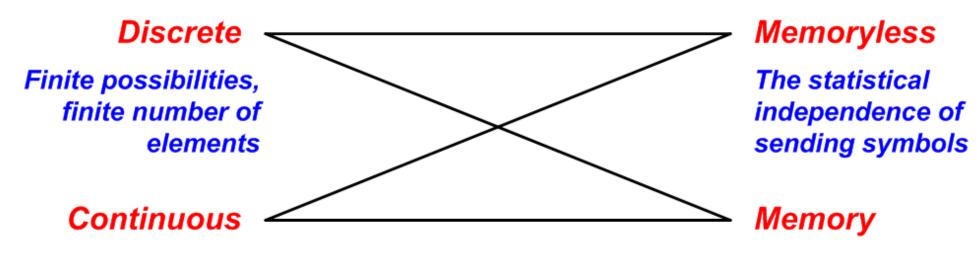
- Entropy, Joint Entropy, and Conditional Entropy
- > Mutual Information
- Convexity Analysis for Entropy and Mutual Information
- Entropy and Mutual Information in Communications Systems

Block Diagram of Communication System



Source

- > The **Source** is the source of information.
- How to categorize "Source"?
 - Discrete Source (The output is a sequence of symbols from a known discrete alphabet, e.g., English letters, Chinese characters.) and Continuous Source (Analog Waveform Source, the output is an analog real waveform, i.e., speech, image, video)
 - > <u>Memoryless</u> (The outputs of source are statistically independent.) and <u>Memory</u> (The outputs are dependent.)



Source

- The Source is the source of information.
- How to categorize "Source"?
 - Discrete Source (The output is a sequence of symbols from a known discrete alphabet, e.g., English letters, Chinese characters.) and Continuous Source (Analog Waveform Source, the output is an analog real waveform, i.e., speech, image, video)
 - > <u>Memoryless</u> (The outputs of source are statistically independent.) and <u>Memory</u> (The outputs are dependent.)

Example

- 10 black balls and 10 white balls in a bag
- √ Take a ball and put it back -- Memoryless
- ✓ Take a ball, but do not put it back -- Memory

Source

<u>K-order memory</u>: If the currently transmitted symbol correlates with previously transmitted K symbols, the source is K-order discrete memory source.

<u>1-order memory</u>: Currently transmitted symbol only correlates with previously transmitted one symbol.

Question:

What will the memory result?

Example

Suppose probability distribution of random variable X are given as

X	a_1	a_2	a_3
p(x)	11/36	4/9	1/4

and the conditional probability $P(a_j|a_i)$ are given as

	a_{j}				
		a_1	a_2	a_3	
a_i	a_1	9/11	2/11	0	
	a_2	1/8	3/4	1/8	
	a_3	0	2/9	7/9	

Please calculate $H(X^2)$

$$H(X^2) = -\sum_{i=1}^{3} \sum_{j=1}^{3} p(a_i, a_j) \log p(a_i, a_j) = 2.412 \text{ bits}$$

$$H(X) = -\sum_{i=1}^{3} p(a_i) \log p(a_i) = 1.542 \text{ bits}$$

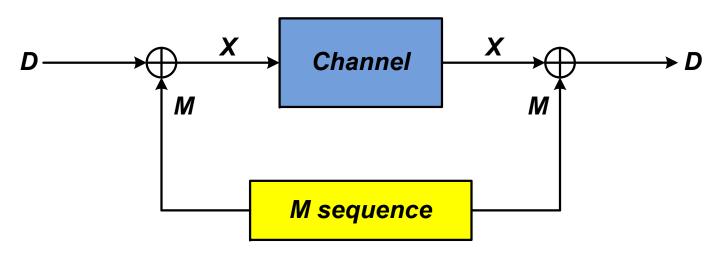
$$H(X|X) = -\sum_{i=1}^{3} \sum_{j=1}^{3} p(a_i, a_j) \log p(a_i|a_j) = 0.870 \text{ bits}$$

$$\sqrt{ }$$

$$H(X^2) = H(X) + H(X|X) < 2H(X)$$

Memory will reduce the amount of information of the source

In realistic communication system, memory source can be transformed to memoryless source by <u>scrambling</u>.



$$D \oplus M \oplus M = D \oplus (M \oplus M) = D \oplus 0 = D$$

$$P(X = 1) = P(D = 0, M = 1) + P(D = 1, M = 0) = \frac{1}{2}P(D = 0) + \frac{1}{2}P(D = 1) = \frac{1}{2}$$
$$P(X = 0) = P(D = 0, M = 0) + P(D = 1, M = 1) = \frac{1}{2}P(D = 0) + \frac{1}{2}P(D = 1) = \frac{1}{2}$$

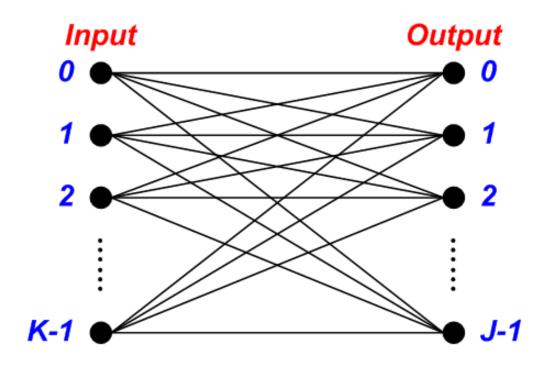
Source Encoder -- Source Coding

- > Why should we use **Source Coding**?
 - > Represent the source output by a sequence of binary digits
 - > Data compression or bit-rate reduction
- Examples
 - > Text ASCII (128 symbols, 7 bits), GB2312 (6763 characters, at least 13 bits, actually 14 bits)
 - *▶ Voice CD, MP3*
 - > Image JEPG
 - ➤ Video MPEG-1, MPEG-2, MPEG-4, RMVB

Communication Channel

- > <u>Channel</u> is viewed as the part of the communication system between source and destination that is given and not under the control of designer.
- > The <u>Channel</u> can be specified in terms of the set of <u>inputs</u> available at the input terminal, the set of <u>outputs</u> available at the output terminal, and for each input the <u>probability</u> <u>measure</u> on the output events conditional on that input
 - > Discrete memoryless channel
 - > Continuous amplitude, discrete-time memoryless channel
 - > Continuous time channel in which the input and output are waveforms
 - > Discrete channel with memory

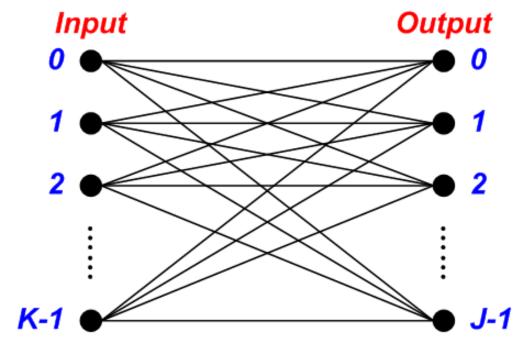
Discrete Memoryless Channel (DMC)



- Input alphabet X consists of K integers 0, 1, ..., K-1
- Output alphabet Y consists of J integers 0, 1, ..., J-1

The channel is specified by transition probability P(j|k): The probability of receiving integers j given that integer k is the channel input.

Discrete Memoryless Channel (DMC)



> A sequence of N input:

$$\mathbf{x} = (x_1, \cdots, x_n, \cdots, x_N)$$

> The sequence of output:

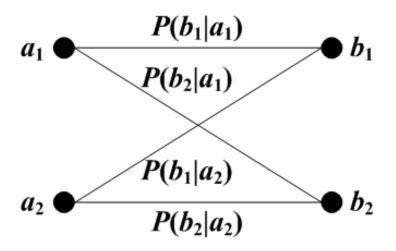
$$\mathbf{y} = (y_1, \cdots, y_n, \cdots, y_N)$$

$$P_N(\mathbf{y}|\mathbf{x}) = \prod_{n=1}^N P(y_n|x_n)$$

More formally, a channel is memoryless if there is a transition probability assignment, P(j|k), such that the above equality is satisfied for all N, all $y = (y_1, ..., y_N)$ and all $x = (x_1, ..., x_N)$.

Example 1:

Binary Discrete Memoryless Channel (BDMC)

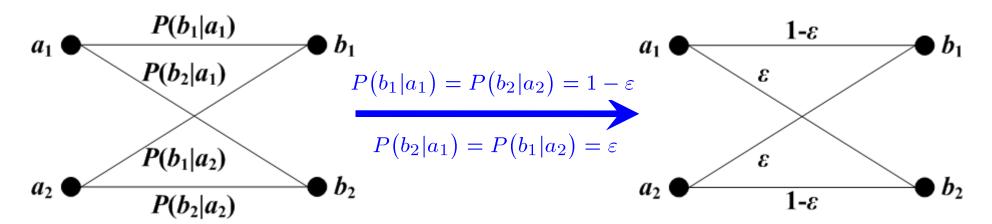


 $P(b_1|a_1)$: The probability of receiving b_1 on the condition of sending a_1

 $P(b_2|a_1)$: The probability of receiving b_2 on the condition of sending a_1

 $P(b_1|a_2)$: The probability of receiving b_1 on the condition of sending a_2

 $P(b_2|a_2)$: The probability of receiving b_2 on the condition of sending a_2



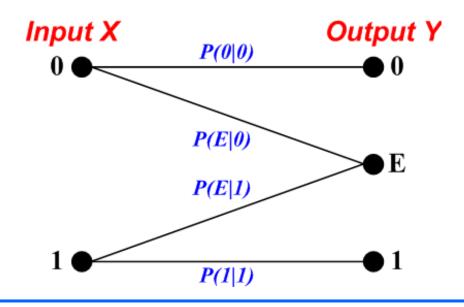
Binary Symmetric Channel (BSC)

- When ε = 1/2, the input is independent with the output – <u>Completely-noisy-channel (CNC)</u>
 - cannot transmit information
- \succ When ε = 0, we have the <u>noiseless channel</u>

Example 2: Binary Erasure Channel (BEC)

The <u>Binary Erasure Channel</u> can transmit only one of two symbols (usually called 0 and 1).

The channel is not perfect and sometimes the bit gets "erased" -- the receiver has no idea what the bit was.



Input X -- Random Variable Channel is also random. Binary Channel Source Source encoder encoder data Source Channel Channel | Noise **Destination** Binary Source Channel **Destination ◄** decoder decoder data Noise is also Output Y -- Random Variable random.

Entropy H(X)

The average uncertainty of the source X

Conditional Entropy H(X|Y)

The average remaining uncertainty of the source X after the observation of the output Y

Mutual Information I(X; Y)

The average amount of uncertainty in the source X resolved by the observation of the output Y.

Let's further discuss how to explain mutual information in communications systems

Let the channel input (source) X is

$$X \in \{a_1, a_2, \cdots, a_K\}$$

 \triangleright Let the channel output Y is

$$Y \in \{b_1, b_2, \cdots, b_J\}$$

- We denote the joint probability as $P(a_k,b_j)$, then we have the following results:
 - > Input: $P(a_k) = \sum_{j=1}^{J} P(a_k, b_j)$
 - > **Output:** $P(b_j) = \sum_{k=1}^{K} P(a_k, b_j)$
 - > Forward transition: $P(b_j|a_k) = P(a_k,b_j)/P(a_k)$
 - > Backward transition: $P(a_k|b_j) = P(a_k,b_j)/P(b_j)$

Recall the *self-information*, then we have

> If the channel input is a_k , the information before the transmission is

$$I(a_k) = \log \frac{1}{P(a_k)}$$

> If the channel output is b_j , the information after the transmission about a_k is

$$I(a_k|b_j) = \log \frac{1}{P(a_k|b_j)}$$

> The transmission changes the probability of $x = a_k$

$$P(a_k) \longrightarrow P(a_k|b_j)$$

The information about the event $x = a_k$ provided by the occurrence of the event $y = b_i$ is

$$I(a_k; b_j) = I(a_k) - I(a_k|b_j) = \log \frac{P(a_k|b_j)}{P(a_k)}$$

The mutual information between events $x=a_k$ and $y=b_j$

Questions:

- 1. The relationship between $I(a_k; b_j)$ and $I(b_j; a_k)$
- **2.** The mutual information $I(a_k; b_j)$ is random or deterministic?

The mutual information between input X and output Y can be written as

$$I(X;Y) = \sum_{k=1}^{K} \sum_{j=1}^{J} P(a_k, b_j) \log \frac{P(a_k|b_j)}{P(a_k)}$$

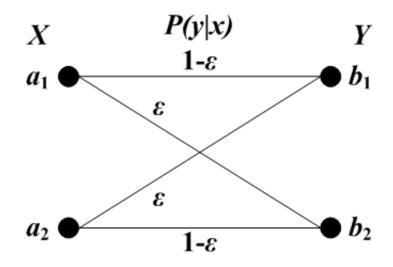
In abbreviated notation, this is

$$I(X;Y) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x|y)}{P(x)}$$

Similar approach can also be employed for analyzing the entropy, joint entropy, and conditional entropy

Example

Consider a binary symmetric channel (BSC). Denote the probabilities of sending a_1 and a_2 as P and 1-P, respectively.



- (1) H(X) and H(X|Y)
- (2) $I(a_i;b_i)$ where i = 1, 2 and j = 1, 2
- (3) I(X;Y)

$$H(X) = -P(a_1)\log P(a_1) - P(a_2)\log P(a_2)$$

= -P\log P - (1 - P)\log (1 - P)

If we denote $\Omega(z) = -z \log z - (1-z) \log (1-z)$, then $H(X) = \Omega(P)$

$$H(X|Y) = \Omega(P) + \Omega(\varepsilon) - \Omega(P + \varepsilon - 2P\varepsilon)$$

$$I(a_1; b_1) = \log \frac{1 - \varepsilon}{P + \varepsilon - 2P\varepsilon} \qquad I(a_2; b_2) = \log \frac{1 - \varepsilon}{1 - P - \varepsilon + 2P\varepsilon}$$

$$I(a_1; b_2) = \log \frac{\varepsilon}{1 - P - \varepsilon + 2P\varepsilon}$$
 $I(a_2; b_1) = \log \frac{\varepsilon}{P + \varepsilon - 2P\varepsilon}$

$$I(X;Y) = \Omega(P + \varepsilon - 2P\varepsilon) - \Omega(\varepsilon)$$

What can we obtain from this example?

Some Discussions

- 1. When does the source uncertainty achieves its maximum?
- 2. How does the value of parameter ε impact the channel?
 - \triangleright When $\varepsilon = 0$, what can we obtain?
 - ---- Noiseless Channel
 - ► When $\varepsilon = \frac{1}{2}$, what can we obtain?
 - ---- Completely Noisy Channel
- 3. The mutual information of two events can be negative, but the mutual information of two random variables cannot.

Summary

> Entropy

$$H(X) = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

Joint entropy

$$H(X,Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x,y) \log p(x,y)$$

Conditional entropy

$$H(Y|X) = -\mathbb{E}\left\{\log p(Y|X)\right\} = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x)$$

Chain rule

$$H(X,Y) = H(X) + H(Y|X)$$

Summary

> Mutual information

$$I(X;Y) = \sum_{x} \sum_{y} P(x,y) \log \frac{P(x|y)}{P(x)}$$

- Important inequalities and properties
 - Jensen's inequality

$$\mathbb{E}\Big\{f(X)\Big\} \ge f\Big(\mathbb{E}\big\{X\big\}\Big)$$

Uniform maximizes entropy

$$H(X) \le \log |\mathcal{X}|$$

- Nonnegativity of entropy and mutual information
- Convexity of entropy and mutual information