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Entropy
Entropy —— 熵
Entropy in Thermodynamics（热力学）
 It was first developed in the early 1850s by Rudolf Clausius 

(French Physicist).

 System is composed of a very large number of constituents 
(atoms, molecule…).

 It is a measure of the number of the microscopic 
configurations that corresponds to a thermodynamic system 
in a state specified by certain macroscopic variables.

 It can be understood as a measure of molecular disorder 
within a macroscopic system.
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Entropy
Entropy in Statistical Mechanics（统计力学）
 The statistical definition was developed by Ludwig 

Boltzmann in the 1870s by analyzing the statistical behavior 
of the microscopic components of the system.

 Boltzmann showed that this definition of entropy was 
equivalent to the thermodynamic entropy to within a 
constant number which has since been known 
as Boltzmann's constant.

 Entropy is associated with the number of the microstates of 
a system.
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How to define ENTROPY in information theory?



Entropy

 p(x) is the probability mass function（概率质量函数）which 
can be written as

 The base of the logarithm is 2 and the unit is bits.

 If the base of the logarithm is e, then the unit is nats.
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Definition
The entropy H(X) of a discrete random variable X
is defined by



Entropy
Remark 1
What does the entropy measure? 
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----- It is a measure of the uncertainty of a random variable.

Remark 2
Must random variables with different sample spaces have 
different entropy? 

Remark 3
If the base of the logarithm is b, we denote the entropy as Hb(X). 
Moreover, we have

----- It is only related with the distribution of the random 
variable. It does not depend on the actual values taken by 
the random variable, but only on the probabilities.



Entropy
Another Explanation of Entropy
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Question:
How to define information?

We use probabilistic model to describe information
 High probability  not so surprise  less information
 Low probability  great surprise  more information

In information theory, information is associate with the uncertainty.

Information Uncertainty

RandomProbability



Entropy
Another Explanation of Entropy
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Example
 32 teams are in the FIFA World Cup 2002
 Brazil, England, France, Germany, …, China
 Brazil is the champion  not so surprise  less 

information
 China wins the champion  great surprise  more 

information

1. Probability reflects the prior knowledge
2. Information is defined as a function of probability



Entropy
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Another Explanation of Entropy
We can define the Self-Information Function, which 
should satisfy the following requirements:
1. It should be the function of the probability that the event 

happens.
2. It should be the decreasing function of probability that the 

event happens.
3. If the event happens with probability ONE, the self-

information should equal to ZERO.
4. If the probability that the event happens is ZERO, the self-

information should be INFINITE.
5. The joint information of two independent events should be 

the SUM of the information of each event.



Entropy
 The Self-Information of the event X = x can be written as

 If the base of the logarithm is 2, the unit is bits.
 If the base of the logarithm is e, the unit is nats.
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What does Self-Information imply?
1. Before the event occurs – The uncertainty 

of the event occurring;
2. After the event occurs – The amount of 

information provided by the event.



Entropy
Relationship Between Entropy and Self-Information
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The above relationship tells us:
1. From the mathematical view – The entropy of random 

variable X is the expected value of the random 
variable                       ;

2. From the information theory’s view – The entropy of 
random variable X is the average self-information of X.



Entropy
Example:
Let the random variable X equals 1 with probability p 
and equals 0 with probability 1-p, i.e.,

Please calculate the entropy H(X).
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It’s easy. However, what can we obtain from this
simple example?



Entropy
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1. The entropy is a 
concave function.

2. Why does the 
entropy equal to 
zero when the 
value of p is 0 or 1?

3. When does the 
entropy achieve its 
maximum?



Entropy
Example:
Let the random variable X takes the value according to 
the following policy

Please calculate the entropy H(X).
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Entropy
The entropy H(X) is
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The minimum expected number of binary questions required
to determine X lies between H(X) and H(X)+1

1. First question – Is X = a?
2. Second question – Is X = b?
3. Third question – Is X = c?

-- Splitting the probability in half

The expected number of binary questions required is 1.75.

How to determine the value of X with the minimum average 
number of binary questions?



Entropy
Some Discussions
1. Before observation 

---- The average uncertainty of the random variable

2. After observation 
---- The average amount of information provided by each observation

3. Why does larger value of entropy imply higher uncertainty?
---- Entropy is associated with the number of microstates of a system. 

Larger value of entropy means more microstates.

4. Continuity
---- Changing the values of the probabilities by a very small amount 

should only change the entropy by a small amount.
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Joint Entropy
 We have already defined the entropy of a single

random variable
 Extend the definition to a pair of random variables 

– Joint Entropy（联合熵）
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Definition
The Joint Entropy H(X,Y) of a pair of discrete
random variables (X,Y) with a joint distribution
p(x,y) is defined by



Joint Entropy
Some Discussions
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1. In information theory, the joint entropy is a measure of the 
UNCERTAINTY associated with a set of random variables.

2. Similar with the single variable case, the joint entropy can 
also be understood as

3. In this definition, we treat the two random variables (X,Y) as 
a single vector-valued random variable.

4. Joint entropy in more general N random variables case



Conditional Entropy
 Joint entropy is used for characterizing the uncertainty of a 

set of random variables.
 Observing one thing may help us predict another thing.
 Can we measure the uncertainty of one random variable 

while observing another one?
 The answer is YES – Conditional Entropy（条件熵）
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Definition
The Conditional Entropy of a random variable given
another random variable is defined as the expected
value of the entropies of the conditional distributions,
averaged over the conditioning random variable.
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Conditional Entropy
Based on the above definition, if (X,Y) ~ p(x,y), conditional 
entropy H(Y|X) can be mathematically written as 

The average of the entropy of Y given X over all 
possible values of X



Conditional Entropy
Some Discussions
1. The conditional entropy H(Y|X) is a measure of what X does 

NOT say about Y, i.e., the amount of uncertainty remaining 
about Y after X is known.

2. The larger the value of H(Y|X) is, the less we can predict the 
state of Y, knowing the state of X.

3. Two extreme cases

Case 1: 

Case 2:

4. H(Y|X) = H(X|Y)?
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Y is completely determined by X

X and Y are independent



Conditional Entropy
We have already known:
 H(X) – the uncertainty of X
 H(X,Y) – the uncertainty of (X,Y)
 H(Y|X) – the uncertainty of Y while knowing X
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Question: Is there any relationship among the
above three items?

Theorem (Chain rule)
The entropy of a pair of random variables is the entropy
of one plus the conditional entropy of the other, which
can be mathematically written as



Conditional Entropy
Proof:
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Is there other way to prove this theorem?



Conditional Entropy
Example
Let (X,Y) have the following joint distribution

Please calculate H(X), H(Y), H(X|Y) , H(Y|X) , H(X,Y)
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1 2 3 4
1 1/8 1/16 1/32 1/32
2 1/16 1/8 1/32 1/32
3 1/16 1/16 1/16 1/16
4 1/4 0 0 0

XY



Conditional Entropy
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Based on the definition of entropy, we have

Thus, we need to derive the marginal distribution of X

Consequently, we have

Similarly, we can calculate H(Y)



Conditional Entropy
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Based on the definition of conditional entropy, we have

where

Then, we can obtain



Conditional Entropy
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where

Then, we can obtain



Conditional Entropy
Example
Suppose probability distribution of random variable X are given as

and the conditional probability are given as

Please calculate H(X2)
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X a1 a2 a3

p(x) 11/36 4/9 1/4

ai

aj

a1 a2 a3

a1 9/11 2/11 0
a2 1/8 3/4 1/8
a3 0 2/9 7/9



Conditional Entropy
Based on the definition of joint entropy, we have
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Thus, we need to calculate the joint probability

…



Some Properties
Properties of Entropy, Joint Entropy, and Conditional 
Entropy
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1. Nonnegativity of entropy

2. Symmetry



Some Properties
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3. Maximum

Suppose random variable X follows the following distribution

Then, we have the following inequality

with the equality if and only if X has a uniform distribution, i.e.,



Some Properties
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Proof

To prove the “Maximum” property, we need to use the following 
inequality:

with the equality if and only is z =1.

The difference has a negative 
second derivative and a stationary 
point at z=1



Some Properties
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We now show that

By applying the abovementioned inequality, we can obtain



Some Properties
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4. Adding or removing an event with probability zero does not 
contribute to the entropy

5. Chain rule

If X and Y are independent, we have

Corollary:

General case:
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Some Properties
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Another explanation for chain rule

What can we obtain from the above equality?



Some Properties
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6. Conditioning reduces entropy

with equality if and only if X and Y are independent.

Corollary:

Independence bound on entropy
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Relative Entropy

Definition (Relative Entropy)
The Relative Entropy（相对熵）or Kullback-Leibler Divergence
（K-L散度）between two probability mass functions p(x) and
q(x) is defined as

 We use the conventions that  0∙log(0/0) = 0, 0∙log(0/q) = 0, and 
p ∙ log(p/0) = ∞.

 Does symmetry hold for relative entropy, i.e. D(p||q) = D(q||p)?

How to understand relative entropy?
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Mutual Information
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Definition (Mutual Information)
Consider two random variables X and Y with a joint probability
mass function p(x,y) and marginal probability mass functions p(x)
and p(y). The mutual information I (X;Y) is the relative entropy
between the joint distribution and the product distribution
p(x)p(y):

What does the mutual information imply?



Mutual Information
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The mutual information is the reduction in the uncertainty of X
due to the knowledge of Y.



Mutual Information
Some Discussions
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1. Mutual information measures the amount of uncertainty of X
removed by knowing Y. In other words, this is the amount of
information obtained about X by knowing Y.

2. Symmetry

3. Relationship between mutual information and entropy

4. Chain rule for information



Mutual Information
Relationship among mutual information, entropy, joint 
entropy, and conditional entropy
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H(X) H(Y)

H(X|Y) H(Y|X)I(X;Y)

H(X,Y)



Mutual Information
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Definition (Markov Chain)
Random variables X, Y, Z are said to form a Markov chain in that
order (denoted by X → Y → Z) if the conditional distribution of Z
depends only on Y and is conditionally independent of X.
Specifically, X, Y, and Z form a Markov chain X → Y → Z if the
joint probability mass function can be written as

Theorem (Data Processing Inequality)
If X → Y → Z, then I (X; Y) ≥ I (X; Z). In particular, if Z = g(Y),
we have I (X; Y) ≥ I (X; g(Y)).

 X →Y →Z implies that Z →Y →X; If Z = f (Y), then X → Y → Z.



Mutual Information
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 Suppose that we wish to estimate a random variable X with a
distribution p(x).

 We observe a random variable Y that is related to X by the
conditional distribution p(y|x).

 From Y, we calculate a function                   , where      is an 
estimate of X and takes on values in      .

forms a Markov Chain

 Define the probability of error



Mutual Information
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Theorem (Fano’s Inequality)
For any estimator     such that                            

with                              , we have 

This inequality can be weakened to

or
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Proof
Define an error random variable

Then, we have

Mutual Information

= 0

Conditioning reduces entropy 

= ?
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Proof
Based on the definition of conditional entropy, we have

Then, we have

Mutual Information

By applying the data-processing inequality, we can obtain
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Convexity Analysis
Convex function (Cup)
 A function f(x) is said to be convex over an interval (a, b) if for 

every                           and 0 ≤ λ ≤ 1, the following inequality 
holds

 A function f(x) is said to be strictly convex if the equality holds
only if λ = 0 or λ = 1.

Concave function (Cap)
 f(x) is concave over (a, b) if for every                         , we have

 f(x) is strictly concave if the equality holds only if λ = 0 or λ = 1.
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Convexity Analysis
 Illustration for Convex Function
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Convex (cup): Function always lies below any chord



Convexity Analysis
 Illustration for Concave Function
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Concave (cap): Function always lies above any chord



Convexity Analysis
Is there other approach to determine the convexity 
of a function?
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Theorem
If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex
(strictly convex) over that interval. Mathematically,
 If holds, then f(x) is convex;
 If holds, then f(x) is strictly convex.

How can we extend the above theorem to a more 
general case f(x1, x2, …, xN )?



Convexity Analysis
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Theorem (Jensen’s inequality)
If f is a convex function and X is a random variable,
then we have

Moreover, if f is strictly convex, the above equality
implies that with probability 1 (i.e., X is a
constant).

 Here we only consider the discrete random variable case

 We can employ Mathematical Induction to prove the above
theorem



Convexity Analysis
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Proof

Suppose that the theorem is true for distributions with (k-1) mass 
points. Then, we prove it is true for k-mass-point distributions.

For a two-mass-point distribution

The above inequality apparently holds as f is a convex function.

the inequality becomes



Convexity Analysis
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Then, we have

Question:
1. When does the equality hold if X is not a constant?
2. Why can we obtain the conclusion, i.e., the strict

convexity of function f implies X is a constant?



Convexity Analysis
 The expectation of a convex function (cup) of a random 

variable is no smaller than the convex function (cup) of the 
expectation of the random variable.

 The expectation of a concave function (cap) of a random 
variable is no larger than the concave function (cap) of the 
expectation of the random variable.
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Famous Puzzle:
A man says, “I am the average height and average
weight of the population. Thus, I am an average man.”
However, he is still considered to be a little overweight.
Why?



Convexity Analysis
Recalled that we have discussed the “Maximum” property of 
entropy. Now, Let’s discuss it again.
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Theorem (Uniform maximizes entropy)
, where denotes the number of elements

in the range of X, with equality if and only X has a
uniform distribution over .
Let                            be the uniform probability mass function over      , 
and let p(x) be the probability mass function for X. Then, we have



Convexity Analysis
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We have known that the entropy is nonnegative, i.e., 
How about the mutual information?

Theorem (Nonnegative of mutual information)
For any two random variables X and Y, we have

with equality if and only if X and Y are independent.

If X and Y are independent, 
we have p(x,y)=p(x)p(y)



Convexity Analysis
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Based on the theory of convex optimization, we can obtain that
the sum of convex (concave) functions is also a convex (concave)
function.

Theorem (Concavity of entropy)
The entropy of a random variable is a concave (cap)
function.

f(p) is concave over p

H(X) is the sum of f(p) with different values of p. Thus, H(X) is concave.



Convexity Analysis
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Theorem
Let (X,Y) ~ p(x,y)=p(x)p(y|x). Then, we can obtain that
the mutual information I(X;Y) is a concave function of
p(x) for fixed p(y|x).
Proof

The mutual information I(X;Y) is the function of p(x)



Convexity Analysis
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For different distributions p1(x) and p2(x), we have

If we denote                                           , where                     , 
we can obtain  



Convexity Analysis
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Convexity Analysis
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Using definition for proving is sometimes quite complicated. Thus, we 
here provide another simple way.

 As p(y|x) is fixed, p(y) is a linear function of p(x)

 H(Y) is the concave function of p(y). Thus, it is also the concave 
function of p(x)

 H(Y|X) is a linear function of p(x)

 Consequently, I(X;Y) is the concave function of p(x)
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Channel
Destination

Source

Explanation in Communications
Block Diagram of Communication System
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Explanation in Communications
Source
 The Source is the source of information.
 How to categorize “Source”?

 Discrete Source (The output is a sequence of symbols from a 
known discrete alphabet, e.g., English letters, Chinese characters.) 
and Continuous Source (Analog Waveform Source, the output is 
an analog real waveform, i.e., speech, image, video)

 Memoryless (The outputs of source are statistically independent.) 
and Memory (The outputs are dependent.)
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Explanation in Communications
Source
 The Source is the source of information.
 How to categorize “Source”?

 Discrete Source (The output is a sequence of symbols from a 
known discrete alphabet, e.g., English letters, Chinese characters.) 
and Continuous Source (Analog Waveform Source, the output is 
an analog real waveform, i.e., speech, image, video)

 Memoryless (The outputs of source are statistically independent.) 
and Memory (The outputs are dependent.)
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Example
10 black balls and 10 white balls in a bag
 Take a ball and put it back -- Memoryless
 Take a ball, but do not put it back -- Memory



Explanation in Communications
Source
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K-order memory: If the currently transmitted symbol 
correlates with previously transmitted K symbols, the 
source is K-order discrete memory source.

1-order memory: Currently transmitted symbol only 
correlates with previously transmitted one symbol.

Question:
What will the memory result?



Example
Suppose probability distribution of random variable X are given as

and the conditional probability are given as

Please calculate H(X2)

70Xi’an Jiaotong University

X a1 a2 a3

p(x) 11/36 4/9 1/4

ai

aj

a1 a2 a3

a1 9/11 2/11 0
a2 1/8 3/4 1/8
a3 0 2/9 7/9

Explanation in Communications
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Memory will reduce the amount of information of the source

Explanation in Communications
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In realistic communication system, memory source can 
be transformed to memoryless source by scrambling.

Channel

M sequence

D D

M M

X X

Explanation in Communications



Explanation in Communications
Source Encoder -- Source Coding
 Why should we use Source Coding?

 Represent the source output by a sequence of binary digits

 Data compression or bit-rate reduction

 Examples
 Text – ASCII (128 symbols, 7 bits), GB2312 (6763 characters, at 

least 13 bits, actually 14 bits)

 Voice – CD, MP3

 Image – JEPG

 Video – MPEG-1, MPEG-2, MPEG-4, RMVB
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Explanation in Communications
Communication Channel
 Channel is viewed as the part of the communication system 

between source and destination that is given and not under 
the control of designer.

 The Channel can be specified in terms of the set of inputs
available at the input terminal, the set of outputs available at 
the output terminal, and for each input the probability 
measure on the output events conditional on that input
 Discrete memoryless channel
 Continuous amplitude, discrete-time memoryless channel
 Continuous time channel in which the input and output are 

waveforms
 Discrete channel with memory
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Explanation in Communications
Discrete Memoryless Channel (DMC)
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 Input alphabet X 
consists of K integers 
0, 1, … , K-1

 Output alphabet Y 
consists of J integers 
0 , 1, … , J-1 

The channel is specified by transition probability P(j|k):
The probability of receiving integers j given that integer k 
is the channel input.



Explanation in Communications
Discrete Memoryless Channel (DMC)
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 A sequence of N input:

 The sequence of output:

More formally, a channel is memoryless if there is a
transition probability assignment, P(j|k), such that the
above equality is satisfied for all N, all y = (y1, … , yN) and
all x = (x1, … , xN).



Explanation in Communications
Example 1: 
Binary Discrete Memoryless Channel (BDMC)
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Explanation in Communications
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Binary Symmetric Channel (BSC)

When ε = 1/2, the input is independent with 
the output – Completely-noisy-channel (CNC)
– cannot transmit information

When ε = 0, we have the noiseless channel



Example 2: Binary Erasure Channel (BEC)

Explanation in Communications
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The Binary Erasure Channel can transmit only one of two 
symbols (usually called 0 and 1).

The channel is not perfect and sometimes the bit gets “erased” --
the receiver has no idea what the bit was. 



Explanation in Communications
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Channel
Destination

Source

Input X -- Random Variable

Output Y -- Random Variable

Channel is also 
random.

Noise is also 
random.



Explanation in Communications
Entropy H(X)
The average uncertainty of the source X

Conditional Entropy H(X|Y)
The average remaining uncertainty of the source X after the 
observation of the output Y

Mutual Information I(X;Y)
The average amount of uncertainty in the source X resolved by 
the observation of the output Y.
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Let’s further discuss how to explain mutual 
information in communications systems



Explanation in Communications
 Let the channel input (source) X is
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 Let the channel output Y is

 We denote the joint probability as                 , then 
we have the following results:
 Input:

 Output:

 Forward transition:

 Backward transition:



Explanation in Communications
Recall the self-information, then we have
 If the channel input is ak , the information before the 

transmission is

 If the channel output is bj , the information after the 
transmission about ak is

 The transmission changes the probability of 
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Explanation in Communications
The information about the event x = ak provided by 
the occurrence of the event y = bj is
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The mutual information between events x=ak and y=bj

Questions:
1. The relationship between             and
2. The mutual information            is random or 

deterministic?



Explanation in Communications
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The mutual information between input X and output Y 
can be written as

In abbreviated notation, this is

Similar approach can also be employed for analyzing the 
entropy, joint entropy, and conditional entropy



Explanation in Communications
Example
Consider a binary symmetric channel (BSC). Denote the 
probabilities of sending a1 and a2 as P and 1-P, respectively.

(1) H(X) and H(X|Y)
(2) I(ai;bj) where i = 1, 2 and j = 1, 2
(3) I(X;Y)
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Explanation in Communications
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If we denote                                                            , then

What can we obtain from this example?



Explanation in Communications
Some Discussions
1. When does the source uncertainty achieves its maximum?

2. How does the value of parameter ε impact the channel?
When ε = 0, what can we obtain?

------ Noiseless Channel

When ε = ½, what can we obtain?

------ Completely Noisy Channel

3. The mutual information of two events can be negative, but 
the mutual information of two random variables cannot.
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Summary
 Entropy

 Joint entropy

 Conditional entropy

 Chain rule
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Summary
 Mutual information

 Important inequalities and properties
 Jensen’s inequality

 Uniform maximizes entropy

 Nonnegativity of entropy and mutual information

 Convexity of entropy and mutual information
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