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Entropy
F LI sssss————————————————————Cr

Entropy — %3
Entropy in Thermodynamics (# 7 %)

> It was first developed in the early 1850s by Rudolf Clausius
(French Physicist).

> System is composed of a very large number of constituents
(atoms, molecule...).

> Itis a measure of the number of the microscopic
configurations that corresponds to a thermodynamic system
in a state specified by certain macroscopic variables.

> It can be understood as a measure of molecular disorder
within a macroscopic system.
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Entropy

_
Entropy in Statistical Mechanics (% 717 %)

> The statistical definition was developed by Ludwig
Boltzmann in the 1870s by analyzing the statistical behavior
of the microscopic components of the system.

> Boltzmann showed that this definition of entropy was
equivalent to the thermodynamic entropy to within a
constant number which has since been known
as Boltzmann's constant.

> Entropy is associated with the number of the microstates of
a system.

How to define ENTROPY in information theory?
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Entropy

Definition
The entropy H(X) of a discrete random variable X
is defined by

H(X)= - pl(x)logp(x)

reX

> p(x) is the probability mass function (#t%£/F &% 4$) which
can be written as

ple)=Pr{X =z}, ze X

> The base of the logarithm is 2 and the unit is bits.

> If the base of the logarithm is ¢, then the unit is nats.
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Entropy

F LI sssss————————————————————Cr
Remark 1
What does the entropy measure?

----- It is a measure of the uncertainty of a random variable.

Remark 2
Must random variables with different sample spaces have
different entropy?

----- It is only related with the distribution of the random
variable. It does not depend on the actual values taken by
the random variable, but only on the probabilities.

Remark 3
If the base of the logarithm is b, we denote the entropy as H,(X).
Moreover, we have

Hy(X) = (logya) Ha(X)
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Entropy
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Another Explanation of Entropy

Question:
How to define information?

In information theory, information is associate with the uncertainty.

Information ————> Uncertainty

t !

Probability €<——— Random

We use probabilistic model to describe information

> High probability = not so surprise = less information

> Low probability = great surprise = more information
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Entropy
F LI sssss————————————————————Cr

Another Explanation of Entropy

Example
» 32 teams are in the FIFA World Cup 2002

» Brazil, England, France, Germany, ..., China

> Brazil is the champion = not so surprise =2 less
information

» China wins the champion = great surprise = more
information

1. Probability reflects the prior knowledge
2. Information is defined as a function of probability
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Entropy

F LI sssss————————————————————Cr
Another Explanation of Entropy

We can define the Self-Information Function, which
should satisfy the following requirements:

1.

It should be the function of the probability that the event
happens.

It should be the decreasing function of probability that the
event happens.

If the event happens with probability ONE, the self-
information should equal to ZERO.

If the probability that the event happens is ZERO, the self-
information should be INFINITE.

The joint information of two independent events should be
the SUM of the information of each event.
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Entropy

F LI sssss————————————————————Cr
> The Self-Information of the event X = x can be written as

[ (x) = log<Pr{X1 x})

> If the base of the logarithm is 2, the unit is bits.
> If the base of the logarithm is ¢, the unit is nats.

What does Self-Information imply?

1. Before the event occurs — The uncertainty
of the event occurring;

2. After the event occurs — The amount of
information provided by the event.

Xi’an Jiaotong University
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Entropy
F LI sssss————————————————————Cr

Relationship Between Entropy and Self-Information

== pla)logp(z) = p(x) ( logp( ))

=2 _pl 10%( >> T Y p@ie) = E{1(0 ]

The above relationship tells us:

1.

From the mathematical view — The entropy of random
variable X is the expected value of the random
variable log (1/p(X)) ;

From the information theory’s view — The entropy of
random variable X is the average self-information of X.
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Entropy
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Example:

Let the random variable X equals 1 with probability p
and equals 0 with probability 1-p, i.e.,

(1 with probability p,
X =

. 0 with probability (1 — p).
Please calculate the entropy H(X).

H(X) = —p-log(p) — (1 —p)-log(l —p) = H(p)

It’s easy. However, what can we obtain from this
simple example?
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Entropy
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—p -log(p) — (1 —p) - log(1 — p) = H(p)

¢ 1.

: 2.
H(X) = 1 bit when p =

= 1wenp—2 | 3

0
0

01 02 03 04

0.5 06 07 08 09 1

P

The entropy is a
concave function.

Why does the
entropy equal to
zero when the
value of pis 0 or 1?7

When does the
entropy achieve its
maximum?

Xi’an Jiaotong University
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Entropy
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Example:

Let the random variable X takes the value according to
the following policy

;

a with probability 2,

b with probability i,

¢ with probability %,

d with probability &.

\

Please calculate the entropy H(X).
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Entropy
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The entropy H(X) is

1 1 1 1 1 1 1 1 7 ..

How to determine the value of X with the minimum average
number of binary questions?

1. First question —Is X =a? -- Splitting the probability in half
2. Second question—Is X=b?
3. Third question—Is X=c?

The expected number of binary questions required is 1.75.

The minimum expected number of binary questions required
to determine X lies between H(X) and H(X)+1
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Entropy
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Some Discussions

1. Before observation

---- The average uncertainty of the random variable

2. After observation

---- The average amount of information provided by each observation

3. Why does larger value of entropy imply higher uncertainty?

---- Entropy is associated with the number of microstates of a system.
Larger value of entropy means more microstates.

4. Continuity

--—- Changing the values of the probabilities by a very small amount
should only change the entropy by a small amount.
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Joint Entropy

F LI ssss—————————————————————c
> We have already defined the entropy of a single
random variable

> Extend the definition to a pair of random variables
— Joint Entropy (E405)

Definition
The Joint Entropy H(X,Y) of a pair of discrete
random_variables (X,Y) with a joint distribution

p(x,y) is defined by
HX,Y)==> % plz,y)logp(z,y)

reX ye)
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Joint Entropy

F LI ssss—————————————————————c

Some Discussions

1. In information theory, the joint entropy is a measure of the
UNCERTAINTY associated with a set of random variables.

2. Similar with the single variable case, the joint entropy can
also be understood as

H(X,Y) = —E{log p(X, Y)} —F {logp(X{ Y)}

In this definition, we treat the two random variables (X,Y) as
a single vector-valued random variable.

3.

4. Joint entropy in more general N random variables case

.H(Xla”'XN) — Z Z plae, -, xn)logp(ay, - - ’xN>,

r1EX] TNEXN
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Conditional Entropy
‘—

> Joint entropy is used for characterizing the uncertainty of a
set of random variables.

> Observing one thing may help us predict another thing.

> Can we measure the uncertainty of one random variable
while observing another one?

> The answer is YES — Conditional Entropy (##£45)

Definition

The Conditional Entropy of a random variable given
another random variable is defined as the expected
value of the entropies of the conditional distributions,
averaged over the conditioning random variable.
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Conditional Entropy
‘—

Based on the above definition, if (X,Y) ~ p(x.y), conditional
entropy H(Y|X) can be mathematically written as

H(Y|X) = ]EXNp(x){H(Y\X - az)}

The average of the entropy of Y given X over all
possible values of X

H(Y|X)=> pla)H(Y|X = x)

rxeX

==Y p(z) Y plyle)logp(yle)

reX yey

i == > plx.y)logp(ylr) = —E{bg p(Y‘X)}

r€EX ye)y




Conditional Entropy

F I ssssa————————————————————C—oo
Some Discussions

1. The conditional entropy H(Y|X) is a measure of what X does
NOT say about Y, i.e., the amount of uncertainty remaining
about Y after X is known.

2. The larger the value of H(Y|X) is, the less we can predict the
state of 'Y, knowing the state of X.

3. Two extreme cases

Casel: H(Y|X)=0 <> Yis completely determined by X

Case2: H(Y|X)=H(Y) < XandY are independent
4. H(YIX) = H(X|Y)?
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Conditional Entropy
‘—

We have already known:

> H(X) — the uncertainty of X

> H(X,Y) — the uncertainty of (X,Y)

> H(Y|X) — the uncertainty of Y while knowing X

Question: Is there any relationship among the
above three items?

Theorem (Chain rule)

The entropy of a pair of random variables is the entropy
of one plus the conditional entropy of the other, which
can be mathematically written as

H(X,Y)=H(X)+ H(Y|X)
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Conditional Entropy
‘—

Proof:

= — Z Zp<377 y)log p(x,y)
reX ye)y

== ) pla,y)log p(x)p(y|)
rEX yey

:_Zprylogp Zprylogpy\x)
TEX yEY reX yey

:—Zp )og p(x Zprylogpy\@
reX reX ye)y

=H(X)+ H(Y|X)
Is there other way to prove this theorem?
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Conditional Entropy
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Example
Let (X,Y) have the following joint distribution

Please calculate H(X), H(Y), HX|Y) , H(Y|X), H(X,Y)

Xi’an Jiaotong University
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Conditional Entropy
‘—

Based on the definition of entropy, we have
Zp = i)log p(X =)

Thus, we need to derive the marginal distribution of X

RN R

Consequently, we have

1 1 1 1 1 1 1 1 7.

Similarly, we can calculate H(Y)

Y {1 2 3 4}
|:>H ) = 2 bits

p(Y =j)
Xi’an Jiaotong University 26
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Conditional Entropy
‘—

Based on the deﬁnition of conditional entropy, we have

H(X]Y) Zp H(X]Y =)

where p(X =iy =j) =

Then, we can obtain

HXY) = 5 (
H

27



Conditional Entropy
‘4—

HY|X) = ZP(XZZ')H(Y\XZU

|
.M”;

4
= i)Y p(Y = jIX = i)log p(Y = j|X =)
J=1

where p(Y =j|X =1i) =

Then, we can obtain

HY|X) = (
H

28



Conditional Entropy
F I ssssa————————————————————C—oo

Example
Suppose probability distribution of random variable X are given as

| p(x) | 11/36 | 4/9 | 1/4 '

and the conditional probability P (a;|a;) are given as

Please calculate H(X?)
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Conditional Entropy
‘—

Based on the definition of joint entropy, we have

H(X?) =- 23: i:p(% a;j)log p(a;, a;)

i=1 j=1
Thus, we need to calculate the joint probability p(a;, a;)

11 9 1
- plar, ar) = plar)plar]ar) = 26 X114
11 2 1
p(a17a2) — p<a1>p(a2‘a1) = — X — = —
p(aivaﬂ‘) — p(ai)p(@j\@i) n 36 11 18
1 7 7
@ - plas.as) = plas)plaslas) = 7 x 5 = =

H(X?) = 2.412 bits
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Some Properties
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Properties of Entropy, Joint Entropy, and Conditional
Entropy

1. Nonnegativity of entropy

H(X) > 0
2. Symmetry
X T1 Ty - azN_
— _>H<X):H(plap27'”7p]\7)
p(x) pr P2 - PN
H<p17p27'”7pN):H(p27p37'”7pN7p1):°":H(pNap17'”7pN—1>
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Some Properties
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3. Maximum

Suppose random variable X follows the following distribution

o] = e e o st
p(z)|  |plz1) plws) -+ plax)

Then, we have the following inequality

H(X) <log N
with the equality if and only if X has a uniform distribution, i.e.,
1
p(ry) = p(a2) = - = poy) = N
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Some Properties
F I ssss-——————————————————Cc

Proof

To prove the “Maximum” property, we need to use the following
inequality:

Inz<z-1, 2>0

with the equality if and only is 7 =1.

The difference has a negative
second derivative and a stationary
point at z=1

ko o ———— —— ——
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Some Properties
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We now show that H(X) — logN <0
N N

H(X)—logN = > p(x;)log 1 — Y p(x:)logN

i=1 p(ai) i=1

al 1
(loge) ;p(a:i)lnp(xi) N

By applying the abovementioned inequality, we can obtain

H(X)—1logN < (loge) Zp(:z:z) [p(ajj ~ " 1]

= (loge) {Z = - me)} =0

Xi’an Jiaotong University
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Some Properties
F I ssss-——————————————————Cc

4. Adding or removing an event with probability zero does not
contribute to the entropy

Hpnq (pla T 7pN70) = Hy (ph Tt 7pN>

5. Chain rule
H(X,)Y)=H(X)+ HY|X)

If X and Y are independent, we have
H(X,)Y)=H(X)+ H(Y)

Corollary: H(X,Y|Z)=H(X|Z)+ HY|X,Z)

General case: (X1, X5, -+, Xn) ~p(x1, 22, -+ ,ZN)

N
H(X17X27”° 7XN):ZH(X1‘X’L—17 7X1) 35
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Some Properties
F I ssss-——————————————————Cc

Another explanation for chain rule
X 1 Ty -+ TN
P(«T ) p1 P2 -+ PN

an:Pr{Y:ym‘X:$n}7 m=1--- M;n=1--- N

Y
q(y)

H(MQM,”' , 1@, P2Q12, - - 7p2QM27"° , DNQ1N, - 7pNQMN)

— H(p17p27 7pN T an an?@Qn’ Y ’QMn)

What can we obtain from the above equality?
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Some Properties
F I ssss-——————————————————Cc

6. Conditioning reduces entropy
H(X[Y) < H(X)
with equality if and only if X and Y are independent.

Corollary:

H(X.Y)< H(X)+ H(Y)

N
H(X1, Xa, - Xn) <> H(X;)
1=1

Independence bound on entropy

Xi’an Jiaotong University
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> Relative Entropy and Mutual Information
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> Entropy and Mutual Information in
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Relative Entropy

Definition (Relative Entropy)

The Relative Entropy (#X745) or Kullback-Leibler Divergence
(K-L /) between two probability mass functions p(x) and
q(x) is defined as
\

p(x) p(x
D (pllg) = > plx) log Ep<10gﬁ

reX CE \ Q(ZC> y

'

» We use the conventions that 0-log(0/0) = 0, 0-log(0/q) = 0, and
p *log(p/0) = .

» Does symmetry hold for relative entropy, i.e. D(p||q) = D(q||p)?

How to understand relative entropy?
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Mutual Information
F I ssss-——————————————————rrrc

Definition (Mutual Information)

Consider two random variables X and Y with a joint probability
mass function p(x,y) and marginal probability mass functions p(x)
and p(y). The mutual information I (X;Y) is the relative entropy
between the joint distribution and the product distribution

P)p(y):
1(X:Y) = D(p(w,9)lp()p(y) )

_ . o p(x,y) _ o p(X,Y)
=2 2 pleylos o s EX’Y{I 5 pX)p(Y) }

xreX ye)y

What does the mutual information imply?
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Mutual Information
F I ssss-——————————————————rrrc

p(z,y
= Y pla,y)log é) ())
rEX ye)y P PLY
p(zly
= > plx.y)log (é))
reX yey P
== Y playlog p(x)+ Y > plz.y)log p(z|y)
reX ye) reX ye)
= p(x)log p(x ( > pla,y)log p(x y))
reX rEX ye)

= H(X)— H(X|Y)

The mutual information is the reduction in the uncertainty of X
due to the knowledge of Y.
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Mutual Information
F I ssss-——————————————————rrrc

Some Discussions

1.

Mutual information measures the amount of uncertainty of X
removed by knowing Y. In other words, this is the amount of
information obtained about X by knowing Y.

Symmetry [(X:;Y)=1(Y;X)

Relationship between mutual information and entropy

I(X;Y)=H(X)-HX|Y)=H(Y)- H(Y|X)
I(X;Y)=H(X)+ HY)—-H(X,Y)
[(X;X)=H(X)

Chain rule for information

[(X17X27 T 7Xn7Y) — Z]<Xi;Y’Xi—1aXi—27 T 7X1)

1=1
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Mutual Information
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Relationship among mutual information, entropy, joint
entropy, and conditional entropy

H(X,Y)
P

H(Y)
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Mutual Information

F I ssss-——————————————————rrrc

Definition (Markov Chain)

Random variables X, Y, Z are said to form a Markov chain in that
order (denoted by X — Y — Z) if the conditional distribution of Z
depends only on Y and is conditionally independent of X.
Specifically, X, Y, and Z form a Markov chain X — Y — Z if the
joint probability mass function can be written as

p(z,y,2) = p(z)pylz)p(zly)

® X Y —>Zimplies that Z —Y —>X; If Z=f(Y), then X — Y — Z.

Theorem (Data Processing Inequality)

If X > Y—> Z,then I (X; Y) 21 (X; Z). In particular, if Z = g(Y),
we have I (X; Y) =1 (X; g(Y)).
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Mutual Information

® Suppose that we wish to estimate a random variable X with a
distribution p(x).

® We observe a random variable Y that is related to X by the
conditional distribution p(y|x).

® From Y, we calculate a function g(Y) = X , where X is an
estimate of X and takes on values in X .

U4

X — Y — X forms a Markov Chain

® Define the probability of error
P = Pr{f( £ X}

Xi’an Jiaotong University 45



Mutual Information
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Theorem (Fano’s Inequality)

For any estimator X such that

X —Y —X
with P, = Pr{X # X}, we have

H(P.) + Pog|X| > H (X

X) > H(X]Y)
This inequality can be weakened to
1+ Plog|X| > H(X|Y)

o H(X[Y) -1

log|)€|

€ _

Xi’an Jiaotong University
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Mutual Information
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Proof

Define an error random variable

0, if X=X

1, if X #X
E_{ .

Then, we have

H(E XIX) = H(X|X)+H(BIX X)

- H(E|X)

+H<X|E,f<)

Conditioning reduces entropy

H(E\X) < H(E)

= H(F,)

?

Xi’an Jiaotong University
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Mutual Information
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Proof

Based on the definition of conditional entropy, we have

H(X\E,X) - Pr{E — O}H(X\X, B = o) = (1-P)0

+Pe{ B =1}H(X|X, B =1) < Plog|¥|

%)

By applying the data-processing inequality, we can obtain

Then, we have

H(P.) + Plog|X| > H(X

H(X X) > H(X|Y)
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Convexity Analysis
F L sssss———————————————————c

Convex function (Cup)

> A function f(x) is said to be convex over an interval (a, b) if for
every 11,75 € (a,b) and 0 <2 <1, the following inequality
holds

FOz 4+ (1= N)za) < Mf(z1) 4+ (1= X) f(22)

> A function f(x) is said to be strictly convex if the equality holds
onlyifi=0o0r4=1.

Concave function (Cap)

> f(x) is concave over (a, b) if for every x1, x5 € (a,b), we have
> f(x) is strictly concave if the equality holds only if 2 =0 or A = 1.

Function f(x) is convex, then we have —f(x) is concave. s



Convexity Analysis
F L sssss———————————————————c

> Illustration for Convex Function

A
f(xz) -----------------------------------
Af(x)t(A-A)f(x2)
332’ |gj‘7 el ...
fir) f-ome- flaxH(1-2)x)
0 ‘x;l Ax1H( .1-/1)x2 X;z <

Convex (cup): Function always lies below any chord
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Convexity Analysis
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> Illustration for Concave Function
A

f(x3) pom=-mm-mmemmemmeeceececcaeeaos
JOx1+(1-4)x7)

loge, >0)---
Eif(xl)"'(l-l)f(xz) 5 Y \/E(x > )

Jx) fo---- '

0 x (1A% ) >

Concave (cap): Function always lies above any chord
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Convexity Analysis
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Is there other approach to determine the convexity
of a function?

Theorem

If the function f has a second derivative that is non-
negative (positive) over an interval, the function is convex
(strictly convex) over that interval. Mathematically,

» If d°f(x)/dz* > 0 holds, then f(x) is convex;
> If &°f(x)/da* > 0 holds, then f(x) is strictly convex.

How can we extend the above theorem to a more
general case f(x,, X5, ..., Xy)?
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Convexity Analysis
F L sssss———————————————————c

Theorem (Jensen’s inequality)
If f'is a convex function and X is a random variable,
then we have

s{s00} 2 (2()

Moreover, if f is strictly convex, the above equality
implies that X = E{X} with probability 1 (i.e., X is a
constant).

» Here we only consider the discrete random variable case

» We can employ Mathematical Induction to prove the above
theorem
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Convexity Analysis
F L sssss———————————————————c

Proof
For a two-mass-point distribution
L1 L2
D1 PJ
the inequality becomes
pif(x1) +paf(2) > f(pra1 + o)

The above inequality apparently holds as f'is a convex function.

Suppose that the theorem is true for distributions with (k-1) mass
points. Then, we prove it is true for k-mass-point distributions.

X r1 Ty e X ;
_ | 2 k p;: D =1 k—1
)|  |p o2 o > L =i
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Convexity Analysis
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Then, we have

sz sz pkf ij 1_pk sz 337,

1=

> pef(er) + (1 —pi)f (Z pﬂz)

Question:

1. When does the equality hold if X is not a constant?

2. Why can we obtain the conclusion, i.e., the strict
convexity of function f implies X is a constant?

Xi’an Jiaotong University
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Convexity Analysis
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> The expectation of a convex function (cup) of a random
variable is no smaller than the convex function (cup) of the
expectation of the random variable.

> The expectation of a concave function (cap) of a random
variable is no larger than the concave function (cap) of the
expectation of the random variable.

Famous Puzzle:

A man says, “I am the average height and average
weight of the population. Thus, | am an average man.”
However, he is still considered to be a little overweight.
Why?
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Convexity Analysis
F L sssss———————————————————c

Recalled that we have discussed the “Maximum” property of
entropy. Now, Let’s discuss it again.

Theorem (Uniform maximizes entropy)

H(X) <log|X|, where |X| denotes the number of elements
in the range of X, with equality if and only X has a
uniform distribution over X.

Let u(x) = 1/|X| be the uniform probability mass function over X,
and let p(x) be the probability mass function for X. Then, we have

H(X) —loglX| = Zp log——l—Zp Nogu(x Zp log

reX reX reX

log (Zp ) = log (Z u(x)) =0

Xi’an Jiaotong University 58
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Convexity Analysis
F L sssss———————————————————c

We have known that the entropy is nonnegative, i.e., H(X) >0

How about the mutual information?

Theorem (Nonnegative of mutual information)
For any two random variables X and Y, we have

I(X;Y)>0
with equality if and only if X and Y are independent.

I[(X:Y) = HX)-HX|Y)=) > pla,y)log i)

(2)p(y) If X and Y are independent
= — 1 J
>3 e los T € e have plxy)=p(0n(y)

) (g
rEX yey x’y) reX yey

1\

g
N
[
[
@

E%
<



Convexity Analysis

F L sssss———————————————————c
Based on the theory of convex optimization, we can obtain that

the sum of convex (concave) functions is also a convex (concave)
function.

Theorem (Concavity of entropy)

The entropy of a random variable is a concave (cap)
function.
p(z1) plzs) - play) (X) ZP( )ogp(x;)

[pfi)] ) i=1 l,

. y 1
f(p) is concave over p «<— f"(p) = —log(e)]—) <0 €— f(p) = —plogp

|

H(X) is the sum of f(p) with different values of p. Thus, H(X) is concave.

‘/’Ul x2 o o xN N
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Convexity Analysis
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Theorem

Let (X,Y) ~ p(x,y)=p(x)p(y|x). Then, we can obtain that
the mutual information I(X;Y) is a concave function of

p(x) for fixed p(y|x).

Proof
o o p(z,y)
I(X;Y) = H(X) - H(X[Y) = ;{%p y)log p(x)p(y)
=) ) plx)p(yla)log <er»« Séf))p(ym)

The mutual information 1(X;Y) is the function of p(x) —> [(X;Y) = I{p(x)}
{1 (z) + (L= Npa(z) } > MA{p1(2) |} + (1= NI {p2(x)}?
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Convexity Analysis
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For different distributions p ,(x) and p,(x), we have

pi(x,y) = p1(x)p(y|z)
pa(x,y) = pa(x)p(y|z)

pi(y) = 2. pilx,y) = > pi(x)p(yl)

reX rEX

p2(y) = 2 p2(z,y) = > p2(x)p(yl)

reX rEX

If we denote p(x) = \p1(x) + Aopa(x) , where A\ + Mo =1,
we can obtain

p(z,y) = plx)p(y|r)
= | Awp1(w) + Aapa () | p(y|x) = Aip1(x, ) + Aapa(z,y)

Xi’an Jiaotong University
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Convexity Analysis
F L sssss———————————————————c

Hp(x)} — MI{pi(z)} — NI {p2(2)}

- ZP(%y)logp](?Sz,?@) = > ipi(,y)log pilrd) — > Aepa(z,y)log pelr.y)

pi(x)pi(y) 4 p2(x)p2(y)

= ; Mpi(x,y) + Azpa(a, y)]log ]()?5)

B N loe PYIT) o oe PWIT)
S Nipi (2, y)log B2 o (0) — " Napa(a, y)log I oo 0)

T,y T,y

—Z)\p (z,y)log <() +Z)\p (x,y)log ((yy))

==Y Mpi(y)log £(y) =) Nopa(y Jlog ~ 2ly)

p1(y) p2(y)
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Convexity Analysis
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Using definition for proving is sometimes quite complicated. Thus, we
here provide another simple way.

I(X;Y)=HY)-HY|X) = =) pl)HY|X =)

» As p(y|x) is fixed, p(y) is a linear function of p(x)

» H(Y) is the concave function of p(y). Thus, it is also the concave
function of p(x)

» H(Y|X) is a linear function of p(x)

» Consequently, I(X;Y) is the concave function of p(x)
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Outlines
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> Entropy, Joint Entropy, and Conditional
Entropy

> Mutual Information

> Convexity Analysis for Entropy and Mutual
Information

> Entropy and Mutual Information in
Communications Systems
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Explanation in Communications
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Block Diagram of Communication System

Source

)

Source
encoder

Binary

Source

Destination

Destination

<

Source
decoder

>

data

Channel

encoder

Channel

Binary

data

Channel

\ 4

Channel

decoder

—— Noise
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Explanation in Communications
F L sssss——————————————————Cc

Source

> The Source is the source of information.

> How to categorize “Source”?

> Discrete Source (The output is a sequence of symbols from a
known discrete alphabet, e.g., English letters, Chinese characters.)
and Continuous Source (Analog Waveform Source, the output is
an analog real waveform, i.e., speech, image, video)

> Memoryless (The outputs of source are statistically independent.)
and Memory (The outputs are dependent.)

Discrete Memoryless

Finite possibilities, The statistical
finite number of independence of
elements sending symbols

Continuous Memory



Explanation in Communications
F L sssss——————————————————Cc

Source

> The Source is the source of information.

> How to categorize “Source”?

> Discrete Source (The output is a sequence of symbols from a

known discrete alphabet, e.g., English letters, Chinese characters.)
and Continuous Source (Analog Waveform Source, the output is
an analog real waveform, i.e., speech, image, video)

> Memoryless (The outputs of source are statistically independent.)

and Memory (The outputs are dependent.)

Example

10 black balls and 10 white balls in a bag

v Take a ball and put it back -- Memoryless

v’ Take a ball, but do not put it back -- Memory




Explanation in Communications
F L sssss——————————————————Cc

Source

K-order memory: If the currently transmitted symbol
correlates with previously transmitted K symbols, the
source is K-order discrete memory source.

1-order memory: Currently transmitted symbol only
correlates with previously transmitted one symbol.

Question:

What will the memory result?
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Explanation in Communications
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Example
Suppose probability distribution of random variable X are given as

| p(x) | 11/36 | 4/9 | 1/4 '

and the conditional probability P (a;|a;) are given as

Please calculate H(X?)
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Explanation in Communications
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3 3

H(X2 = Z Zp az,aj)log p(az,ag) = 2.412 bits
1=1 =1
3
Zp log p = 1.542 bits
303
(X]X Z Zp az,aj)log p(az\aj) = 0.870 bits

1=1 =1

<

H(X?)=H(X)+ H(X|X) <2H(X)

Memory will reduce the amount of information of the source
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Explanation in Communications

In realistic communication system, memory source can
be transformed to memoryless source by scrambling.

D »(P

AR > D
'Y

M sequence

DeMeoM=Do(MoM)=Do&0=D
P(X:l):P(D:O,M:1)+P(D:1,M:O):%P(D:O)—|—%P(D:1)

P(X=0)=P(D=0,M=0)+P(D=1,M=1) :%P(D:O)—|—%P(D:1)
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Source Encoder -- Source Coding

> Why should we use Source Coding?

> Represent the source output by a sequence of binary digits

> Data compression or bit-rate reduction

> Examples

> Text— ASCII (128 symbols, 7 bits), GB2312 (6763 characters, at
least 13 bits, actually 14 bits)

> Voice — CD, MP3
> Image — JEPG
> Video — MPEG-1, MPEG-2, MPEG-4, RMVB
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Communication Channel

> Channel is viewed as the part of the communication system
between source and destination that is given and not under
the control of designer.

> The Channel can be specified in terms of the set of inputs
available at the input terminal, the set of outputs available at
the output terminal, and for each input the probability
measure on the output events conditional on that input

> Discrete memoryless channel
> Continuous amplitude, discrete-time memoryless channel

> Continuous time channel in which the input and output are
waveforms

> Discrete channel with memory
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Discrete Memoryless Channel (DMC)

Input Output

0 > Input alphabet X

1 consists of K integers
0,1,..,K-1

2
» Output alphabet Y

consists of J integers
0,1,...,J1

J-1

The channel is specified by transition probability P(jlk):
The probability of receiving integers j given that integer k
is the channel input.
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Discrete Memoryless Channel (DMC)

Input OUtplg > A sequence of N input:

X:(x17'°°7xn7'”7x]\7>

1

» The sequence of output:
y=(y1. " Yoo YN)

2

N
Py (y]x) = RS P (4

More formally, a channel is memoryless if there is a
transition probability assignment, P(jlk), such that the
above equality is satisfied for all N, all y = (y,, ... , y5) and
all x = (x4, ... , Xp).




Explanation in Communications
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Example 1:
Binary Discrete Memoryless Channel (BDMC)

=
o

<
f—

=
N

)

N N N N’

P(b,|ay)
P(bzlﬂl)

P(b] |ﬂ'z)
P(bzlﬂz)

a, @

: The probabiliry of receiving by on the condition of sending a4
: The probabiliry of receiving b, on the condition of sending a
: The probabiliry of receiving by on the condition of sending as

: The probabiliry of receiving b, on the condition of sending as
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P(b -
a (bi1]ay) by @ 1-¢ b,
P(b,|a,) P(bylar) = P(balaz) =1 —¢ &
é
P(bg|a1) = P(b1|a2) =N .
b b
a @ P(bylas) 2 a @ 1-¢ 2

Binary Symmetric Channel (BSC)

» When € = 1/2, the input is independent with
the output — Completely-noisy-channel (CNC)
— cannot transmit information

> When & = 0, we have the noiseless channel
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Explanation in Communications
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Example 2: Binary Erasure Channel (BEC)

The Binary Erasure Channel can transmit only one of two
symbols (usually called 0 and 1).

The channel is not perfect and sometimes the bit gets “erased” --
the receiver has no idea what the bit was.

Input X Output Y
P(0)0) ®0

P(E|0)

P(E|)

P(11) ol
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Input X -- Random Variable

{

Channel is also
random.

Source

—

Source
encoder

Binary,

data

Source

Channel

encoder

Destination

Destination

47

Source
decoder

Channel

Binary

data

Channel
decoder

l

Channel

—— Noise

Output Y -- Random Variable

)

Noise is also
random.
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Entropy H(X)

The average uncertainty of the source X

Conditional Entropy H(X]Y)

The average remaining uncertainty of the source X after the
observation of the output Y

Mutual Information 1(X;Y)

The average amount of uncertainty in the source X resolved by
the observation of the output Y.

Let’s further discuss how to explain mutual
information in communications systems
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Explanation in Communications
F L sssss——————————————————Cc

> Let the channel input (source) X is
X € {a17a27°” ,CLK}

> Let the channel output Y is
Y € {blab27”° abJ}

> We denote the joint probability as P(a;,b;) , then
we have the following results:

- Input: P(a;) = Y7, Plag,b;)

» Output: P(b;) = >, P(ay, b))

> Forward transition: P(b;|a,) = P(ay, b;)/P(ay)
> Backward transition: P(ay|b;) = P(ay,b;)/P(b;)

Xi’an Jiaotong University
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Recall the self-information, then we have

> If the channel input is 4, , the information before the
transmission is

1
P(CLk)

I(ay) = log

> If the channel output is b;, the information after the
transmission about a, is

1
I(ak|bj) = IOgP(ak]b-)
J

> The transmission changes the probability of = = a;

P(ay) — P(ax|b;)
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Explanation in Communications

The information about the event x = a, provided by
the occurrence of the event y = b, is
P(ak|b;)

P(a,k)

[(ar;b;) = I(ar) — I(ak|b;) = log

)

The mutual information between events x=a, and y=b;

Questions:
1. The relationship between [(a;;b;) and 1(b;;ay)

2. The mutual information I(a,;b,) is random or
deterministic?
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Explanation in Communications
F L sssss——————————————————Cc

The mutual information between input X and output Y
can be written as

K

b.
E E P(a,b;)log jiak| )
k=1 =1 (ak)

In abbreviated notation, this is

_ - Moe 1Y)
—;%:P( ,y)log ()

Similar approach can also be employed for analyzing the
entropy, joint entropy, and conditional entropy
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Example

Consider a binary symmetric channel (BSC). Denote the
probabilities of sending a, and a, as P and 1-P, respectively.

X P(yx) Y
a, 1-¢ b,
g
g
a, . 1-8 bg
(1) H(X) and H(X|Y)
(2) I(ai;bj) wherei=1,2andj=1, 2

3) 1(X;Y)
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H(X) = —P(a)logP(a1) — P(az)logP(as)
= —PlogP — (1 — P)log(1 — P)

If we denote Q(z) = —zlogz — (1 — 2)log(1 — 2), then H(X) = Q(P)

H(X|Y) = Q(P) + Q(e) — Q(P + ¢ — 2P¢)

1 —¢ 1l —¢
I(as:b5) =1
P4+ e—2P¢ (&2’ 2) Ogl—P—€—|—2P€
9 9
I(a-:b1) =1
1— P —ec+2P¢ (a2: b1) OgP+€—2P5—:

I(X;Y)=Q(P+¢e—2Pe)—Qe)

[(&1; bl) = log

]((11; bz) — log

What can we obtain from this example?
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Some Discussions

1. When does the source uncertainty achieves its maximum?

2. How does the value of parameter € impact the channel?
» When €= 0, what can we obtain?

------ Noiseless Channel
» When &= %, what can we obtain?
------ Completely Noisy Channel

3. The mutual information of two events can be negative, but
the mutual information of two random variables cannot.
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Summary
F L ssss-——————————————————cc

> Entropy
— > p(x)logp(x

rEX

> Joint entropy

— > > pla,y)logp(x,y)

xeX ye)y
> Conditional entropy

H(Y|X) = —E{log p(Y]X) } =Y ) plx,y)logp(ylx)
reX yey

> Chain rule
H(X,Y)=H(X)+ H(Y|X)
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Summary
F L ssss-——————————————————cc

> Mutual information

1Y) =33 Pla,y)log PP(ECB)

> Important inequalities and properties

~ Jensen’s inequality

B{f(X)} > F(B{X})
~ Uniform maximizes entropy
H(X) < log|Y|

~ Nonnegativity of entropy and mutual information

~ Convexity of entropy and mutual information
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