Elements of Information Theory

Lecture 5 Channel Capacity and Channel Coding Theorem

Instructor: Yichen Wang Ph.D./Professor

School of Information and Communications Engineering Division of Electronics and Information Xi'an Jiaotong University

> Symmetric Channel

> Decoding Rule

> Joint Typical Set and Joint AEP

> Channel Coding Theorem

<u>Definition</u>

Define a discrete channel to be a system consisting of an input alphabet χ and output alphabet γ and a probability transition matrix p(y|x) that expresses the probability of observing the output symbol y given that we send the symbol x.

The channel is said to be <u>memoryless</u> if the probability distribution of the output depends only on the input at that time and is conditionally independent of previous channel inputs or outputs.

Definition (Information Channel Capacity) We define the "information" channel capacity of a discrete memoryless channel as

 $C = \max_{p(x)} I(X;Y),$

where the maximum is taken over all possible input distributions p(x).

$$I(X;Y) = H(X) - H(X|Y)$$

How to explain "information" channel capacity?

Operational Channel Capacity The highest rate in bits per channel use at which information can be sent with arbitrarily low probability of error.

Example 1: Noiseless Binary Channel

Example 2: Noisy Channel with Nonoverlapping Outputs

Example 3: Binary Symmetric Channel (BSC)

<u>Review</u>

A function f(x) is said to be convex over an interval (a,b)if for every $x_1, x_2 \in (a,b)$ and $0 \le \lambda \le 1$, we have

 $f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$

Jensen's inequality If f is a convex function and X is a random variable, then we have

$$\mathbb{E}\Big\{f(X)\Big\} \ge f\Big(\mathbb{E}\{X\}\Big)$$

<u>Review</u>

Theorem

Let $(X,Y) \sim p(x,y)=p(x)p(y|x)$. Then, we can obtain that the mutual information I(X;Y) is a concave (cap convex) function of p(x) for fixed p(y|x).

Definition (Convex Region)

A region R is defined to be convex if for each vector $\overline{\alpha}$ in R and each vector $\overline{\beta}$ in R, the vector $\theta \overline{\alpha} + (1 - \theta)\overline{\beta}$ is in R for $0 \le \theta \le 1$.

Definition (Probability Vector)

A vector is defined to be a probability vector if its components are all nonnegative and sum to 1.

The region of probability vector is convex.

Definition

A real-valued function f of a vector is defined to be concave (cap function) over a convex region R of vector space, if for all $\overline{\alpha}$ in R, $\overline{\beta}$ in R, and θ ($0 < \theta < 1$), the function satisfies

$$\theta f(\overline{\alpha}) + (1-\theta)f(\overline{\beta}) \le f(\theta\overline{\alpha} + (1-\theta)\overline{\beta})$$

If the inequality is reversed for all such $\overline{\alpha}$, $\overline{\beta}$ and θ , f is convex (cup function). If the inequality can be replaced with strict inequality, f is strictly concave or convex.

<u>Theorem</u>

Let $f(\)$ be a concave function of $\overline{\alpha} = (\alpha_1, \cdots, \alpha_k)$ over the region R when $\overline{\alpha}$ is a probability vector. Assume that the partial derivatives, $\partial f(\overline{\alpha})/\partial \alpha_i$ are defined and continuous over the region R with the possible exception that $\lim_{\alpha_i \to 0} \partial f(\overline{\alpha})/\partial \alpha_i$ may be $+\infty$. Then, the sufficient and necessary conditions on a probability vector $\overline{\alpha}$ to maximize f over the region R are

$$\frac{\partial f(\overline{\boldsymbol{\alpha}})}{\partial \alpha_i} = \lambda; \quad \text{all } i \text{ such that } \alpha_i > 0$$

$$\frac{\partial f(\overline{\boldsymbol{\alpha}})}{\partial \alpha_i} \leq \lambda; \quad \text{all } i \text{ such that } \alpha_i = 0$$

Preliminaries on Convex Optimization

Convex optimization problem

$$\min_{x} f_{0}(x)$$
s.t. $f_{i}(x) \leq 0, i = 1, 2, \cdots, m$
 $h_{i}(x) = 0, i = 1, 2, \cdots, p$

 $\mathcal{D} = \bigcap_{i=0}^{m} \operatorname{dom} f_i \cap \bigcap_{i=1}^{p} \operatorname{dom} h_i$

- The objective function must be convex;
- The inequality constraint functions must be convex;
- The equality constraint functions must be affine.

Convex optimization: Lagrangian method

- λ_i denotes the Lagrangian multiplier associated with the *i*th inequality constraint $f_i(x) \leq 0$;
- μ_i denotes the Lagrangian multiplier associated with the *i*th equality constraint $h_i(x) = 0$.

If original problem is convex, Lagrange function is also convex.

Preliminaries on Convex Optimization

Construct Lagrange dual function:

$$g(\lambda, \mu) = \min_{x \in \mathcal{D}} L(x, \lambda, \mu)$$

=
$$\min_{x \in \mathcal{D}} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x)$$

- Lagrange dual function yields lower bound on the optimal value of the original optimization problem
- No matter the convexity of the original problem, Lagrange dual function is concave (cap function) over Lagrangian multipliers

Preliminaries on Convex Optimization

Construct Lagrange dual problem:

$$\max_{\lambda,\mu} g(\lambda,\mu)$$

$$= \max_{\lambda,\mu} \left\{ \min_{x \in \mathcal{D}} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \right\}$$
s.t. $\lambda \succ 0$

• If original problem is not convex, we have $g(\lambda^{\star}, \mu^{\star}) = \max\left\{g(\lambda, \mu)\right\} \leq \min\left\{f_0(x)\right\} = f_0(x^{\star})$

• If original problem is convex, we have $g(\lambda^{\star}, \mu^{\star}) = f_0(x^{\star})$

Preliminaries on Convex Optimization

Karush-Kuhn-Tucker (K.K.T.) Conditions:

$$\begin{cases} f_i(x^*) \le 0, & i = 1, 2, \cdots, m \\ h_i(x^*) = 0, & i = 1, 2, \cdots, p \\ \lambda_i^* \ge 0, & i = 1, 2, \cdots, m \\ \lambda_i^* f_i(x^*) = 0, & i = 1, 2, \cdots, m \\ \nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \mu_i^* \nabla h_i(x^*) = 0 \end{cases}$$

• x^* denotes the optimal solution for the original problem

• $\lambda^{\star} = (\lambda_1^{\star}, \dots, \lambda_m^{\star})$ and $\mu^{\star} = (\mu_1^{\star}, \dots, \mu_p^{\star})$ denote the optimal solution for the Lagrange dual problem

Preliminaries on Convex Optimization

Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press, 2004.

Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, Wiley-Interscience, 2006.

Capacity Analysis for General DMC

Capacity Analysis for General DMC

Construct Lagrange function:

$$L\left(\{Q(x_k)\}_{k=1}^N, \lambda, \{\mu_k\}_{k=1}^N\right) = I(X;Y) - \lambda \left\{\sum_{k=1}^N Q(x_k) - 1\right\} + \sum_{k=1}^N \mu_k Q(x_k)$$
$$= \sum_{k=1}^N \sum_{j=1}^M Q(x_k) P(y_j | x_k) \log \frac{P(y_j | x_k)}{\sum_{i=1}^N Q(x_i) P(y_j | x_i)}$$
$$-\lambda \left\{\sum_{k=1}^N Q(x_k) - 1\right\} + \sum_{k=1}^N \mu_k Q(x_k)$$

Capacity Analysis for General DMC

$$\frac{\partial L\left(\left\{Q(x_k)\right\}_{k=1}^N, \lambda, \left\{\mu_k\right\}_{k=1}^N\right)}{\partial Q(x_n)}$$

$$= \frac{\partial}{\partial Q(x_n)} \left\{ \sum_{k=1}^{N} \sum_{j=1}^{M} Q(x_k) P(y_j | x_k) \log \frac{P(y_j | x_k)}{\sum_{i=1}^{N} Q(x_i) P(y_j | x_i)} \right\} - \lambda + \mu_n$$

$$= \sum_{k=1}^{N} \sum_{j=1}^{M} \frac{\partial}{\partial Q(x_n)} \left\{ Q(x_k) P(y_j | x_k) \log \frac{P(y_j | x_k)}{\sum_{i=1}^{N} Q(x_i) P(y_j | x_i)} \right\} - \lambda + \mu_n$$

$$= \sum_{j=1}^{M} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^{N} Q(x_i) P(y_j | x_i)} - \log \left[-\lambda + \mu_n \right]$$

Capacity Analysis for General DMC

K.K.T. conditions:

$$\begin{pmatrix}
Q^{\star}(x_{k}) \geq 0, & k = 1, 2, \cdots, N \\
\sum_{k=1}^{N} Q^{\star}(x_{k}) - 1 = 0, & k = 1, 2, \cdots, N \\
\mu_{k}^{\star} \geq 0, & k = 1, 2, \cdots, N \\
\mu_{k}^{\star} Q^{\star}(x_{k}) = 0, & k = 1, 2, \cdots, N \\
\frac{\partial L\left(\{Q(x_{k})\}_{k=1}^{N}, \lambda, \{\mu_{k}\}_{k=1}^{N}\right)}{\partial Q(x_{n})}\Big|_{\{Q(x_{k}) = Q^{\star}(x_{k})\}_{k=1}^{N}, \lambda = \lambda^{\star}, \{\mu_{k} = \mu_{k}^{\star}\}_{k=1}^{N} \\
& n = 1, 2, \cdots, N
\end{cases}$$

Capacity Analysis for General DMC

Based on K.K.T. conditions, we can obtain the optimal probability distribution of the source:

$$Q^{\star}(\overline{\mathbf{x}}) = \left[Q^{\star}(x_1), Q^{\star}(x_2), \cdots, Q^{\star}(x_N)\right]$$

The optimal solution satisfies the following requirements:

$$\begin{cases} \sum_{j=1}^{M} P(y_j|x_n) \log \frac{P(y_j|x_n)}{\sum_{i=1}^{N} Q^{\star}(x_i) P(y_j|x_i)} - \log e - \lambda^{\star} = 0, & \text{if } Q^{\star}(x_n) > 0 \\ \\ \sum_{j=1}^{M} P(y_j|x_n) \log \frac{P(y_j|x_n)}{\sum_{i=1}^{N} Q^{\star}(x_i) P(y_j|x_i)} - \log e - \lambda^{\star} \le 0, & \text{if } Q^{\star}(x_n) = 0 \end{cases}$$

Capacity Analysis for General DMC

Define the following function:

$$I(x_n; Y) = \sum_{j=1}^{M} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^{N} Q(x_i) P(y_j | x_i)}$$

The mutual information for input x_n averaged over the outputs.

$$I(X;Y) = \sum_{n=1}^{N} Q(x_n)I(x_n;Y)$$

 \mathbf{N}

$$\max_{Q(x_1),\dots,Q(x_N)} I(X;Y) = \sum_{n=1}^N Q^*(x_n) I(x_n;Y) \Big|_{\{Q(x_k) = Q^*(x_k)\}_{k=1}^N}$$
$$= \sum_{n=1}^N Q^*(x_n) \Big[\log e + \lambda^* - \mu_n^*\Big]$$
$$= \log e + \lambda^* = C$$

30

Theorem

A set of necessary and sufficient conditions on an input probability vector

$$Q(\overline{\mathbf{x}}) = \left[Q(x_1), Q(x_2), \cdots, Q(x_N)\right]$$

to achieve capacity on a discrete memoryless channel with transition probabilities $P(y_j|x_n)$ is that for some number C,

 $I(x_n; Y) = C;$ all n with $Q(x_n) > 0$

 $I(x_n; Y) \le C$; all *n* with $Q(x_n) = 0$

in which $I(x_n; Y)$ is the mutual information for input x_n averaged over the outputs.

Furthermore, the number of C is the capacity of the channel.

<u>Theorem</u>

Let $f(\)$ be a concave function of $\overline{\alpha} = (\alpha_1, \cdots, \alpha_k)$ over the region R when $\overline{\alpha}$ is a probability vector. Assume that the partial derivatives, $\partial f(\overline{\alpha})/\partial \alpha_i$ are defined and continuous over the region R with the possible exception that $\lim_{\alpha_i \to 0} \partial f(\overline{\alpha})/\partial \alpha_i$ may be $+\infty$. Then, the sufficient and necessary conditions on a probability vector $\overline{\alpha}$ to maximize f over the region R are

$$\frac{\partial f(\overline{\boldsymbol{\alpha}})}{\partial \alpha_i} = \lambda; \quad \text{all } i \text{ such that } \alpha_i > 0$$

$$\frac{\partial f(\overline{\boldsymbol{\alpha}})}{\partial \alpha_i} \leq \lambda; \quad \text{all } i \text{ such that } \alpha_i = 0$$

- > Channel Capacity
- > Symmetric Channel
- > Decoding Rule
- > Joint Typical Set and Joint AEP
- > Channel Coding Theorem

In information theory, channel can be represented by the <u>channel (probability) transition matrix</u>.

Inputs as rows and outputs as columns

Symmetric Channel

Definition (Symmetric)

The channel is defined as symmetric if the rows of the channel transition matrix p(y|x) are permutations of each other and the columns are permutations of each other.

Symmetric Channel

Definition (Quasi-Symmetric)

The channel is defined as quasi-symmetric if the columns of the channel transition matrix p(y|x) can be partitioned into subsets in such a way that in each subset, the rows are permutations of each other and so are the columns (if more than 1).

Definition (Weakly Symmetric) The channel is defined as weakly symmetric if every row of the channel transition matrix p(y|x) is a permutation of every other row and the column sums $\sum_{x} p(y|x)$ are equal.

$$p(y|x) = \begin{bmatrix} 1/3 & 1/6 & 1/2 \\ & & \\ 1/3 & 1/2 & 1/6 \end{bmatrix}$$

For the channel whose channel transition matrix does not meet the requirements of symmetric, quasi-symmetric, and weakly symmetric channels, the channel is viewed as asymmetric.

Capacity Analysis for Quasi-Symmetric DMC

Theorem (Capacity of Quasi-Symmetric DMC) For a quasi-symmetric discrete memoryless channel (DMC), capacity is achieved by using the inputs with equal probability.

Xi'an Jiaotong University

Capacity Analysis for Quasi-Symmetric DMC

$$I(X;Y) = \sum_{n=1}^{N} Q(x_n) I(X = x_n;Y)$$

A T

 $I(X = x_n; Y) = \sum_{j=1}^{M} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^{N} Q(x_i) P(y_j | x_i)}$

Channel Transition Matrix

Capacity Analysis for Quasi-Symmetric DMC

$$I(X = x_n; Y) = \sum_{j \in \mathcal{D}_1} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^N Q(x_i) P(y_j | x_i)} + \sum_{j \in \mathcal{D}_2} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^N Q(x_i) P(y_j | x_i)} + \dots + \sum_{j \in \mathcal{D}_L} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\sum_{i=1}^N Q(x_i) P(y_j | x_i)} Q(x_1) = Q(x_2) = \dots = Q(x_N) = \frac{1}{N} \sum_{i=1}^N Q(x_i) P(y_j | x_i) = \frac{1}{N} \sum_{i=1}^N P(y_j | x_i)$$

Capacity Analysis for Quasi-Symmetric DMC

$$I(X = x_n; Y) = \sum_{j \in \mathcal{D}_1} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\frac{1}{N} \sum_{i=1}^N P(y_j | x_i)}$$
$$+ \sum_{j \in \mathcal{D}_2} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\frac{1}{N} \sum_{i=1}^N P(y_j | x_i)}$$
$$+ \dots + \sum_{j \in \mathcal{D}_L} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\frac{1}{N} \sum_{i=1}^N P(y_j | x_i)}$$

If we can obtain that $I(X=x_1;Y) = I(X=x_2;Y) = ... = I(X=x_N;Y)$, then channel capacity is achieved at $Q(x_1) = Q(x_2) = \cdots = Q(x_N) = \frac{1}{N}$

Capacity Analysis for Quasi-Symmetric DMC

$$\forall j \in \mathcal{D}_l \ (l = 1, 2, \cdots, L)$$
, we have
 $\frac{1}{N} \sum_{i=1}^N P(y_j | x_i) = \text{constant}$

$$\forall \mathcal{D}_l \ (l = 1, 2, \cdots, L) \text{, we can obtain}$$
$$\sum_{j \in \mathcal{D}_l} P(y_j | x_n) \log \frac{P(y_j | x_n)}{\frac{1}{N} \sum_{i=1}^N P(y_j | x_i)} = \text{constant for all } x_n$$

$$I(X = x_1; Y) = \cdots = I(X = x_N; Y) = \text{constant}$$

The constant is only determined by the channel matrix. Consequently, the constant is CAPACITY!

Example: Binary Erasure Channel

<u>Capacity Analysis for Symmetric DMC (Symmetric I)</u> As the symmetric DMC can be viewed as quasi-symmetric DMC, where the channel transition matrix p(y|x) is only partitioned into one set, capacity of symmetric DMC is achieved by using the inputs with equal probability.

Capacity Analysis for Weakly Symmetric DMC For a weakly symmetric channel, channel capacity is given by $C = \log |\mathcal{Y}| - H (\text{row of transition matrix})$

and it is achieved by a uniform distribution on input alphabet.

Example: Binary Asymmetric Channel (Z-Channel)

 $Q(x_1) = p \text{ and } Q(x_2) = 1-p$

Question: What is the optimal value of p such that the channel capacity can be achieved?

> Channel Capacity

> Symmetric Channel

> Decoding Rule

> Joint Typical Set and Joint AEP

> Channel Coding Theorem

Objective: Guess X based on the received Y

Decoding rule: The criteria following which X is viewed to be sent if Y is received. $\mathcal{G}: Y \longrightarrow X$ **Decoding Rule**

Minimum Error Probability Decoding Rule

> Suppose that x_i is transmitted and y_j is received.

 \succ The decoding function is denoted by $\mathcal{G} : Y \longrightarrow X$

> The conditional error probability $P(e|y_j) = 1 - P(\mathcal{G}(y_j) = x_i|y_j)$

> The average error probability

$$P_E = \mathbb{E}_Y \Big\{ P(e|y_j) \Big\} = \sum_{y_j} P(y_j) P(e|y_j)$$

Xi'an Jiaotong University

Decoding Rule

Minimum Error Probability Decoding Rule

The decoding rule is that we will decode y_j as x_i , i.e.,

 $\mathcal{G}(y_j) = x_i$

such that the average error probability P_E is minimized.

Based on our obtained posteriori probabilities, we will decode y_j as x^* , i.e., $\mathcal{G}(y_i) = x^*$, if the requirement is satisfied: $\forall x_i \neq x^*, P(x^*|y_i) > P(x_i|y_i)$

Maximum A Posteriori Probability (MAP) Rule

Example

Let the source probability and channel transition matrix are

—

$$\begin{bmatrix} X \\ P(x) \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & x_3 \\ 1/2 & 1/4 & 1/4 \end{bmatrix} \quad P(Y|X) = \begin{bmatrix} 1/2 & 1/3 & 1/6 \\ 1/6 & 1/2 & 1/3 \\ 1/3 & 1/6 & 1/2 \end{bmatrix}$$

Find the decoding scheme to minimize P_E .

Decoding Rule

$$P(X,Y) = P(X)P(Y|X) = \begin{bmatrix} 1/4 & 1/6 & 1/12 \\ 1/24 & 1/8 & 1/12 \\ 1/12 & 1/24 & 1/8 \end{bmatrix}$$

$$\begin{bmatrix} Y \\ P(y) \end{bmatrix} = \begin{bmatrix} y_1 & y_2 & y_3 \\ 3/8 & 1/3 & 7/24 \end{bmatrix}$$

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \begin{bmatrix} 2/3 & 1/2 & 2/7 \\ 1/9 & 3/8 & 2/7 \\ 2/9 & 1/8 & 3/7 \end{bmatrix}$$

Xi'an Jiaotong University

We can obtain the decoding rule:

 $y_1 \longrightarrow x_1; y_2 \longrightarrow x_1; y_3 \longrightarrow x_3$

The average error probability:

$$P_E = 1 - P_C$$

= $1 - \left[P(y_1)P(x_1|y_1) + P(y_2)P(x_1|y_2) + P(y_3)P(x_3|y_3) \right]$
= $1 - \left[P(x_1)P(y_1|x_1) + P(x_1)P(y_2|x_1) + P(y_3)P(y_3|x_3) \right] = \frac{11}{24}$ 52

Decoding Rule

Maximum Likelihood Rule

The minimum error probability rule/maximum a posterior probability rule is complex.

Based on the channel transition probability matrix, we will decode y_j as x^* , i.e., $\mathcal{G}(y_i) = x^*$, if the requirement is satisfied: $\forall x_i \neq x^*, P(y_j | x^*) > P(y_j | x_i)$

Question:

What is the relationship between minimum error probability rule and maximum likelihood rule?

<u>Example</u>

Let a BSC with $\varepsilon = 0.01$, the source is uniformly distributed.

- 1. Find minimum P_E ;
- 2. After the channel code "0" \rightarrow "000" and "1" \rightarrow "111", find minimum P_E .

Solution

1. Find minimum P_E $\epsilon = P(Y = 1 | X = 0) = P(Y = 0 | X = 1) = 0.01$ $\mathcal{G}(0) = 0 \text{ and } \mathcal{G}(1) = 1$ $P(X = 0) = P(X = 1) = \frac{1}{2}$ $P_E = \frac{1}{2} \Big[P(Y = 1 | X = 0) + P(Y = 0 | X = 1) \Big] = 10^{-2}$

Decoding Rule

2. After the channel code "0" → "000" and "1" → "111", find minimum P_E.

Channel input: $\alpha_0 = 000$ *and* $\alpha_1 = 111$

Channel output:
$$\beta_0 = 000, \quad \beta_1 = 001, \quad \beta_2 = 010, \quad \beta_3 = 100$$

 $\beta_4 = 011, \quad \beta_5 = 101, \quad \beta_6 = 110, \quad \beta_7 = 111$

Channel transition matrix:

Xi'an Jiaotong University

> Channel Capacity

> Symmetric Channel

> Decoding Rule

> Joint Typical Set and Joint AEP

> Channel Coding Theorem

Definition (Joint Typical Set)

The set $A_{\epsilon}^{(n)}$ of jointly typical sequences $\{(x^n, y^n)\}$ with respect to the distribution p(x,y) is the set of n-sequences with empirical entropies ε -close to the true entropies:

$$A_{\epsilon}^{(n)} = \left\{ \left(x^n, y^n \right) \in \mathcal{X}^n \times \mathcal{Y}^n : \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon, \right.$$
$$\left| -\frac{1}{n} \log p(y^n) - H(Y) \right| < \epsilon,$$

 $\left| -\frac{1}{n} \log p(x^n, y^n) - H(X, Y) \right| < \epsilon \right\}$

where

$$p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i).$$

 \boldsymbol{n}

Theorem (Joint AEP)

Let (X^n, Y^n) be sequences of length *n* drawn i.i.d. according to $p(x^n, y^n) = \prod_{i=1}^n p(x_i, y_i)$. Then:

 $I \cdot \Pr\left\{ \left(X^n, Y^n \right) \in A_{\epsilon}^{(n)} \right\} \to 1 \text{ as } n \to \infty$

$$2. \left| A_{\epsilon}^{(n)} \right| \leq 2^{n(H(X,Y) + \epsilon)}$$

3. If $(\tilde{X}^n, \tilde{Y}^n) \sim p(x^n)p(y^n)$ [i.e., \tilde{X}^n and \tilde{Y}^n are independent with the same marginals as $p(x^n, y^n)$], then

$$\Pr\left\{\left(\tilde{X}^n, \tilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right\} \le 2^{-n[I(X;Y)-3\epsilon]}$$

Also, for sufficiently large n,

$$\Pr\left\{\left(\tilde{X}^n, \tilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right\} \ge (1-\epsilon)2^{-n[I(X;Y)+3\epsilon]}$$

Proof for Property 1

Based on the weak law of large numbers, we have

$$\exists n_1, \text{ for all } n > n_1 \implies \Pr\left\{ \left| -\frac{1}{n} \log p(X^n) - H(X) \right| \ge \epsilon \right\} < \frac{\epsilon}{3}$$

$$\exists n_2, \text{ for all } n > n_2 \implies \Pr\left\{ \left| -\frac{1}{n} \log p(Y^n) - H(Y) \right| \ge \epsilon \right\} < \frac{\epsilon}{3}$$

$$\exists n_3, \text{ for all } n > n_3 \implies \Pr\left\{ \left| -\frac{1}{n} \log p(X^n, Y^n) - H(X, Y) \right| \ge \epsilon \right\} < \frac{\epsilon}{3}$$

For all $n > \max\{n_1, n_2, n_3\} \Longrightarrow \Pr\left\{ \left(X^n, Y^n \right) \notin A_{\epsilon}^{(n)} \right\} < \epsilon$

For sufficient large n, the probability of the set $A_{\epsilon}^{(n)}$ is greater than 1- ϵ , establishing the first part of theorem.

Proof for Property 2

$$1 = \sum p(x^n, y^n) \ge \sum_{A_{\epsilon}^{(n)}} p(x^n, y^n) \ge \left| A_{\epsilon}^{(n)} \right| 2^{-n[H(X,Y)+\epsilon]} \to \left| A_{\epsilon}^{(n)} \right| \le 2^{n[H(X,Y)+\epsilon]}$$

Proof for Property 3

$$\Pr\left\{\left(\tilde{X}^n, \tilde{Y}^n\right) \in A_{\epsilon}^{(n)}\right\} = \sum_{(x^n, y^n) \in A_{\epsilon}^{(n)}} p(x^n) p(y^n)$$

 $\leq 2^{n[H(X,Y)+\epsilon]} 2^{-n[H(X)-\epsilon]} 2^{-n[H(Y)-\epsilon]} = 2^{-n[I(X;Y)-3\epsilon]}$

For sufficient large n, we have $Pr\{A_{\epsilon}^{(n)}\} \ge 1 - \epsilon$, and thereore

$$1 - \epsilon \leq \sum_{(x^n, y^n) \in A_{\epsilon}^{(n)}} p(x^n, y^n) \leq \left| A_{\epsilon}^{(n)} \right| 2^{-n[H(X,Y) - \epsilon]} \rightarrow \left| A_{\epsilon}^{(n)} \right| \geq (1 - \epsilon) 2^{n[H(X,Y) - \epsilon]}$$
$$\Pr\left\{ \left(\tilde{X}^n, \tilde{Y}^n \right) \in A_{\epsilon}^{(n)} \right\} = \sum_{(x^n, y^n) \in A_{\epsilon}^{(n)}} p(x^n) p(y^n)$$

 $\geq (1-\epsilon)2^{n[H(X,Y)-\epsilon]}2^{-n[H(X)+\epsilon]}2^{-n[H(Y)+\epsilon]} = (1-\epsilon)2^{-n[I(X;Y)+3\epsilon]}$

> Channel Capacity

> Symmetric Channel

> Decoding Rule

> Joint Typical Set and Joint AEP

> Channel Coding Theorem

Message W drawn from the index set {1, 2, ..., W} results in signal Xⁿ(W);

> Signal $X^n(W)$ is received as a random sequence $Y^n \sim p(y^n | x^n)$;

> Receiver guesses W by the decoding rule $\hat{W} = g(Y^n)$;

> If the guessed message is not equal to W, an error occurs.

Definition (Discrete Channel)

A discrete channel, denoted by $(\mathcal{X}, p(y|x), \mathcal{Y})$, consists of two finite sets \mathcal{X} and \mathcal{Y} and a collection of probability mass functions p(y|x), one for each $x \in \mathcal{X}$, such that for every xand y, p(y|x)>0, and for every x, $\sum_{y} p(y|x) = 1$, with the interpretation that X is the input and Y is the output of the channel.

Definition (Extention)

The n-th extension of discrete memoryless channel (DMC) is the channel ($\mathcal{X}^n, p(y^n | x^n), \mathcal{Y}^n$), where

 $p(y_k|x^k, y^{k-1}) = p(y_k|x_k), \quad k = 1, 2, \cdots, n$

<u>Definition</u>

An (M, n) code for the channel $(\mathcal{X}, p(y|x), \mathcal{Y})$ consists of the following:

- 1. An index set {1, 2, ..., M}.
- 2. An encoding function $X^n : \{1, 2, \dots, M\} \to \mathcal{X}^n$, yielding codewords $x^n(1), x^n(2), \dots, x^n(M)$. The set of codewords is called the codebook.
- 3. A decoding function

 $g: \mathcal{Y}^n \to \{1, 2, \cdots, M\},\$

which is a deterministic rule that assigns a guess to each possible received vector.

Definition (Conditional Probability of Error) The conditional probability of error given that index i was sent is given by

$$\lambda_i = \Pr\left\{g(Y^n) \neq i \middle| X^n = x^n(i)\right\} = \sum_{y^n} p(y^n \middle| x^n(i)) I(g(y^n) \neq i)$$

where $I(\cdot)$ is the indicator function.

Definition (Maximal Probability of Error) The maximal probability of error for an (M, n) code is defined as

$$\lambda^{(n)} = \max_{i \in \{1, 2, \cdots, M\}} \lambda_i$$

Definition (Average Probability of Error) The (arithmetic) average probability of error $P_e^{(n)}$ for an

(*M*, *n*) code is defined as

$$P_e^{(n)} = \frac{1}{M} \sum_{i=1}^M \lambda_i$$

- -

Definition (Rate)The rate R of an (M, n) code is $R = \frac{\log M}{n}$ bits per transmission.

Definition (Achievable)

The rate R is said to be achievable if there exists a sequence of $(\lceil 2^{nR} \rceil, n)$ codes such that the maximal probability of error $\lambda^{(n)}$ tends to 0 as $n \to \infty$.

The capacity of a channel is the supremum of all achievable rates.

Rates less than the capacity yield arbitrarily small probability of error for sufficiently large block lengths.

Theorem (Channel Coding Theorem)

For a discrete memoryless channel, all rates below capacity C are achievable. Specifically, for every rate R < C, there exists a sequence of $(2^{nR}, n)$ codes with maximum probability of error $\lambda^n \to 0$.

Conversely, any sequence of $(2^{nR}, n)$ codes with $\lambda^n \to 0$ must have $R \leq C$.

Channel Coding Theorem For the given p(x), we can generate a $(2^{nR}, n)$ code at random

according to the distribution p(x):

$$p(x^n) = \prod_{i=1}^n p(x_i)$$

Codeword matrix (codebook):

$$C = \begin{bmatrix} x_1(1) & x_2(1) & \cdots & x_n(1) \\ x_1(2) & x_2(2) & \cdots & x_n(2) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(2^{nR}) & x_2(2^{nR}) & \cdots & x_n(2^{nR}) \end{bmatrix} \Pr\{C\} = \prod_{w=1}^{2^{nR}} \prod_{i=1}^n p(x_i(w))$$

Xi'an Jiaotong University

- **1.** A random code C is generated according to p(x).
- 2. The codebook is revealed to both sender and receiver. Both sender and receiver know channel transition matrix p(y|x).
- 3. A message W is chosen according to a uniform distribution:

$$\Pr\{W = w\} = 2^{-nR}, \ w = 1, 2, \cdots, 2^{nR}$$

- 4. The wth codeword $X^n(w)$ is sent over the channel.
- 5. Receiver gets a sequence Y^n according to the distribution: $P(y^n | x^n(w)) = \prod_{i=1}^n p(y_i | x_i(w))$

6. Jointly typical decoding

The receiver declares that the index \hat{W} was sent if the following conditions are satisfied:

- > If $(X^n(\hat{W}), Y^n)$ is jointly typical.
- ➤ There is no other index $W' \neq \hat{W}$ such that $\left(X^n(W'), Y^n\right) \in A_{\epsilon}^{(n)}$

If no such \hat{W} exists or if there is more than one such, an error is declared.

7. There is a decoding error if $\hat{W} \neq W$. Let \mathcal{E} be the event $\{\hat{W} \neq W\}$. Analysis of the probability of error

Channel Coding Theorem

Average probability of error:

$$\Pr\{\mathcal{E}\} = \sum_{\mathcal{C}} \Pr\{\mathcal{C}\} P_{e}^{(n)}(\mathcal{C}) \qquad \begin{array}{l} \text{Error caused by} \\ \text{jointly typical} \\ \text{decoding} \end{array}$$
$$= \sum_{\mathcal{C}} \Pr\{\mathcal{C}\} \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \lambda_{w}(\mathcal{C})$$
$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{w=1}^{2^{nR}} \Pr\{\mathcal{C}\} \lambda_{w}(\mathcal{C})$$

What does it mean?

Xi'an Jiaotong University

Analysis of the probability of error

Channel Coding Theorem

We assume that the message W=1 was sent. Then, we have

$$\Pr\{\mathcal{E}\} = \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} \Pr\{\mathcal{C}\}\lambda_w(\mathcal{C})$$
$$= \sum_{\mathcal{C}} \Pr\{\mathcal{C}\}\lambda_1(\mathcal{C}) = \Pr\{\mathcal{E}|W=1\}$$

Define the following events: $E_i = \left\{ \left(X^n(i), Y^n \right) \text{ is in } A_{\epsilon}^{(n)} \right\}, \quad i \in \left\{ 1, 2, \cdots, 2^{nR} \right\}$
Analysis of the probability of error

Channel Coding Theorem

The average probability of error becomes:

$$\Pr\{\mathcal{E}\} = \Pr\{\mathcal{E}|W=1\}$$
$$= \Pr\{E_1^c \cup E_2 \cup E_3 \cup \cdots \cup E_{2^{nR}}|W=1\}$$

$$\leq \Pr\left\{E_1^c | W = 1\right\} + \sum_{i=2}^{2^{nR}} \Pr\left\{E_i | W = 1\right\}$$

Analysis of the probability of error

Channel Coding Theorem

For sufficiently large n and $R < I(X;Y) - 3\varepsilon$, we have

 $\Pr\{\mathcal{E}\} = \Pr\{\mathcal{E}|W=1\}$ $\leq \Pr\{E_1^c|W=1\} + \sum_{i=2}^{2^{nR}} \Pr\{E_i|W=1\}$

$$\leq \epsilon + \sum_{i=2}^{2^{nR}} 2^{-n[I(X;Y)-3\epsilon]}$$

= $\epsilon + (2^{nR} - 1) 2^{-n[I(X;Y)-3\epsilon]}$

$$\leq \epsilon + 2^{3n\epsilon} 2^{-n[I(X;Y)-R]} = \epsilon + 2^{-n[I(X;Y)-3\epsilon-R]} \le 2\epsilon$$

The average probability of error goes to zero. 75

1. Choose p(x) to be $p^*(x)$ that achieves capacity, then we have $R < I(X;Y) \Longrightarrow R < C$

2. There must exist one codebook C^* such that $Pr\{\mathcal{E}|\mathcal{C}^*\} \leq 2\epsilon$

$$\Pr\{\mathcal{E}|\mathcal{C}^*\} = \frac{1}{2^{nR}} \sum_{i=1}^{2^{nR}} \lambda_i(\mathcal{C}^*)$$

Analysis of the probability of error

Channel Coding Theorem

3. At least half the indices i and their associated codewords $X^{n}(i)$ have conditional probability of error λ_{i} less than 4 ε .

The best half of the codewords have a maximal probability of error less than 4ε .

Throw away the worst half of the codewords, we have 2^{nR-1} codes. Then, the rate changes from R to R-1/n.

The maximal probability of error $\lambda^{(n)} \leq 4\varepsilon$ for large n. The achievability of any rate below capacity is proved. **Channel Coding Theorem**

The converse to the coding theorem

The index W is uniformly distributed on the set $W \in \{1, 2..., 2^{nR}\}$ and the sequence Y^n is related probabilistically to W.

From Y^n , we estimate the index W that was sent. For a fixed encoding rule $X^n(\cdot)$ and a fixed decoding rule $\hat{W} = g(Y^n)$, we have $W \longrightarrow X^n(W) \longrightarrow Y^n \longrightarrow \hat{W}$.

Lemma (Fano's inequality) For a DMC with a codebook C and the input message W uniformly distributed over 2^{nR} , we have $H(W|\hat{W}) \leq 1 + P_e^{(n)}nR$ **Channel Coding Theorem**

The converse to the coding theorem

<u>Lemma</u>

Let Y^n be the result of passing X^n through a DMC of capacity C. Then

 $I(X^n;Y^n) \le C$ for all $p(x^n)$

$$nR = H(W)$$

$$= H(W|\hat{W}) + I(W;\hat{W})$$

$$\leq 1 + P_e^{(n)}nR + I(W;\hat{W})$$

$$\leq 1 + P_e^{(n)}nR + I(X^n;Y^n)$$

$$\leq 1 + P_e^{(n)}nR + nC$$

$$R \leq C$$

1. Channel Capacity

Definition (Information Channel Capacity) We define the "information" channel capacity of a discrete memoryless channel as

 $C = \max_{p(x)} I(X;Y),$

Where the maximum is taken over all possible input distributions p(x).

Channel Coding Theorem

Operational Channel Capacity

The highest rate in bits per channel use at which information can be sent with arbitrarily low probability of error.

2. Capacity of General DMC

Xi'an Jiaotong University

Review

Theorem

A set of necessary and sufficient conditions on an input probability vector

$$Q(\overline{\mathbf{x}}) = \left[Q(x_1), Q(x_2), \cdots, Q(x_N)\right]$$

to achieve capacity on a discrete memoryless channel with transition probabilities $P(y_j|x_n)$ is that for some number C,

 $I(x_n; Y) = C;$ all n with $Q(x_n) > 0$

 $I(x_n; Y) \le C$; all *n* with $Q(x_n) = 0$

in which $I(x_n; Y)$ is the mutual information for input x_n averaged over the outputs.

Furthermore, the number of C is the capacity of the channel.

3. Capacity of Symmetric DMC

Definition (Symmetric)

The channel is defined as symmetric if the rows of the channel transition matrix p(y|x) are permutations of each other and the columns are permutations of each other.

Definition (Quasi-Symmetric)

The channel is defined as quasi-symmetric if the columns of the channel transition matrix p(y|x) can be partitioned into subsets in such a way that in each subset, the rows are permutations of each other and so are the columns (if more than 1).

Definition (Weakly Symmetric)

The channel is defined as weakly symmetric if every row of the channel transition matrix p(y|x) is a permutation of every other row and the column sums $\sum_{x} p(y|x)$ are equal.

Capacity of Quasi-Symmetric DMC

For a quasi-symmetric discrete memoryless channel (DMC), capacity is achieved by using the inputs with equal probability.

Capacity of Symmetric DMC

As the symmetric DMC can be viewed as quasi-symmetric DMC, where the channel transition matrix p(y|x) is only partitioned into one set, capacity of symmetric DMC is achieved by using the inputs with equal probability.

Capacity of Weakly Symmetric DMC

For a weakly symmetric channel, channel capacity is given by

 $C = \log |\mathcal{Y}| - H (\text{row of transition matrix})$

and it is achieved by a uniform distribution on input alphabet.

Review

4. Decoding Rule

Minimum Error Probability Decoding Rule/Maximum A Posteriori Probability (MAP) Rule

> Maximum Likelihood Rule

5. Joint Typical Set

6. Channel Coding Theorem