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Outline
 Instruction level parallel
 Pipeline
 Data hazards
 Control hazards
 Structure hazards

 Out-of-Order Execution
 Dataflow

 Optimization based on ILP 
 Case study
 Throughput bound
 Latency bound
 Performance Optimization
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Why so many? What differentiates these 
processors?

CPU GPU FPGA ASIC Etc.

Many kinds of processors
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Each processor is designed for different kinds of programs

 CPUs
 “Sequential” code – i.e., single / few threads

GPUs
 Programs with lots of independent work 

“Embarrassingly parallel”

Many others: Deep neural networks, Digital signal 
processing, Etc.

Why so many kinds of processors?
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Parallelism pervades architecture

 Speeding up programs is all about parallelism
 Find independent work
 Execute it in parallel
 Profit

 Key questions:
 Where is the parallelism?
 Whose job is it to find parallelism?
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Where is the parallelism?

Different processors take radically different 
approaches
 CPUs: Instruction-level parallelism (ILP)
 Implicit
 Fine-grain

GPUs: Thread- & data-level parallelism (TLP, DLP)
 Explicit
 Coarse-grain

6

Pengju Ren@XJTU 2023



Whose job to find parallelism?

Different processors take radically different approaches
 CPUs: Hardware dynamically schedules instructions
 Expensive, complex hardware  Few cores (tens)
 (Relatively) Easy to write fast software

GPUs: Software makes parallelism explicit
 Simple, cheap hardware Many cores (thousands)
 (Often) Hard to write fast software
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Visualizing these differences

 Pentium 4 “Northwood” 
(2002)
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Visualizing these differences

 Pentium 4 “Northwood” 
(2002)

 Highlighted areas 
actually execute 
instructions

Most area spent on 
Caches and Scheduling
(not on executing the 
program)
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Visualizing these differences

 AMD Fiji 
(GPU@2015)
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Visualizing these differences

 AMD Fiji (GPU@2015)

 Highlighted areas 
actually execute 
instructions

Most area spent 
executing the program
 (Rest is mostly I/O & 

memory, not 
scheduling)
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Today you will review (or learn) …

How CPUs exploit ILP to speed up sequential code
 Key ideas:
 Pipelining & Superscalar: Work on multiple instructions at 

once
 Out-of-order execution: Dynamically schedule instructions 

whenever they are “ready”
 Speculation: Guess what the program will do next to discover 

more independent work, “rolling back” incorrect guesses
 CPUs must do all of this while preserving the illusion that 

instructions execute in-order, one-at-a-time
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In other words… Today is about:
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Example: Polynomial evaluation

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

𝒋

𝒕𝒆𝒓𝒎𝒔

𝒋ୀ𝟎
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Example: Polynomial evaluation

 Compiling on ARM
int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

poly:
cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0

.L3:
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

.L4:
movs r0, #0
bx      lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[0]
r4: power
r5: coef[j]

𝒋

𝒕𝒆𝒓𝒎𝒔

𝒋ୀ𝟎
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Compilers Manage Memory and Registers

Compilers for languages like C/C++:
Check that program is legal
Translate into assembly code
Optimizes the generated code

Compiler performs “register allocation” to decide when 
to load/store and when to reuse
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Example: Polynomial evaluation

 Compiling on ARM

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

poly:
cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0

.L3:
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

.L4:
movs r0, #0
bx      lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

Pr
ea

m
b

le
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ra
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n
Fi

ni
sh
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 Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

.L3:
ldr r5, [r3], #4 // r5 <- coef[j]; j++ (two operations)
cmp r1, r3 // compare: j < terms?
mla     r0, r4, r5, r0 // value += r5 * power  (mul + add)
mul r4, r2, r4 // power *= x
bne .L3 // repeat?

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

Iteration

Example: Polynomial evaluation
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 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

Example: Polynomial evaluation
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 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

J=
0

 it
er

a
tio

n
Pr

ea
m

b
le

Example: Polynomial evaluation
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 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

...
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

J=
0

 it
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Example: Polynomial evaluation
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 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push    {r4, r5}
mov     r3, r0
add     r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

...
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr
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Example: Polynomial evaluation
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The software-hardware boundary

 The instruction set architecture (ISA) is a functional 
contract between hardware and software
 It says what each instruction does, but not how
 Example: Ordered sequence of x86 instructions

 A processor’s microarchitecture is how the ISA is 
implemented

Arch : Arch :: Interface : Implementation
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Simple CPU model

 Execute instructions in program order

Divide instruction execution into stages, e.g.:
 1. Fetch – get the next instruction from memory
 2. Decode – figure out what to do & read inputs
 3. Execute – perform the necessary operations
 4. Commit – write the results back to registers / memory

 (Real processors have many more stages)
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

1. Read “ldr r5, [r3] #4” 
from memory

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

2. Decode “ldr r5, [r3] #4” 
and read input regs

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

3. Load memory at r3 and 
compute r3 + 4

Evaluating polynomial on the simple CPU model

28

Pengju Ren@XJTU 2023



ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

4. Write values 
into regs r5 and r3

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla

Evaluating polynomial on the simple CPU model
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Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1ns@1Ghz

Throughput = 1 instr / 4 ns

Evaluating polynomial on the simple CPU model
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Simple CPU is very wasteful

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

TIME
1ns@1Ghz

Idle 
Hardware
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Review: Pipelining
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mul mla cmp ldr
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

bne mul mla cmp
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Pipelining keeps CPU busy through 
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr bne mul mla
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Evaluating polynomial on the pipelined CPU

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1ns@1Ghz

Throughput = 1 instr / ns
4X speedup!
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Speedup achieved through pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME

Processor works on 4 
instructions at a time
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Limitations of pipelining

 Parallelism requires independent work

Q: Are instructions independent ?

 A: No! Many possible hazards limit parallelism…
Data hazards
Structure hazards
Control hazard
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Data hazards

ldr rx, [rm], #4 // rx  Memory[rm]; rm  rm + 4
cmp ry, rn // compare ry and rn

Q: When can the CPU pipeline the cmp behind ldr?

Fetch ldr cmp … … … …

Decode ldr cmp … … …

Execute ldr cmp … …

Commit ldr cmp …

 A: When they use 
different registers
 Specifically, when cmp

does not read any data 
written by ldr
 E.g., 

 rx != ry
 rx!=rn
 rm!=rn
 rm!=ry
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ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

 Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards: Stalling the pipeline
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 Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards: Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

??
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 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Dealing with data hazards: Stalling the pipeline
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 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Inject a “bubble” (NOP) 
into the pipeline

Dealing with data hazards: Stalling the pipeline
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 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmpmul

cmp proceeds once ldr
has committed

Dealing with data hazards: Stalling the pipeline
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Stalling degrades performance

 But stalling is sometimes unavoidable
 E.g., long-latency instructions (divide, cache miss)

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne ldr

…

TIME

Processor works on 3 
instructions at a time
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Dealing with data hazards: Forwarding data

Wait a second… data is available after Execute!

 Forwarding eliminates many (not all) pipeline stalls

CPU
Fetch Decode Execute Commit

mla cmp ldrmul
r3+4r3

r1

ldr r5, [r3], #4
cmp r1, r3
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Speedup achieved through pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME

Processor works on 4 
instructions at a time 
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Pipelining is not free!

Q: How well does forwarding scale?
 A: Not well… many forwarding paths in deep & 

complex pipelines

CPU
Fetch Decode Execute Commit

Mem

Execute
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Control hazards + Speculation

 Programs must appear to execute in program order
 All instructions depend on earlier ones

Most instructions implicitly continue at the next…
 But branches redirect execution to new location
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Dealing with control hazards: Flushing the pipeline

What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

bne mul mla cmp

Static instruction sequence
(i.e., program layout in memory)
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What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

pop bne mul mla

Static instruction sequence
(i.e., program layout in memory)

Dealing with control hazards: Flushing the pipeline
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What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

bx pop bne mul

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the 

wrong instructions! 
(Loop not finished)

Dealing with control hazards: Flushing the pipeline
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What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop     {r4, r5}
bx      lr

CPU
Fetch Decode Execute Commit

ldr bne

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the 

wrong instructions! 
(Loop not finished)

Dealing with control hazards: Flushing the pipeline
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Pipeline flushes destroy performance

 Penalty increases with deeper pipelines

Fetch ldr cmp mla mul bne ldr cmp mla

Decode ldr cmp mla mul bne ldr cmp

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne

…

TIME

Processor works on 2 or 3
instructions at a time
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Dealing with control hazards: Speculation!

 Processors do not wait for branches to execute
 Instead, they speculate (i.e., guess) where to go next + 

start fetching
Modern processors use very sophisticated mechanisms
 E.g., speculate in Fetch stage—before processor even knows 

instrs is a branch! (Branch Instrs can be detected by PC)
 >95% prediction accuracy
 Still, branch mis-speculation is major problem (The wider 

and deeper the pipeline, the more serious the problem)
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Pipelining Summary

 Pipelining is a simple, effective way to improve 
throughput
 -stage pipeline gives up to speedup

 Pipelining has limits
 Hard to keep pipeline busy because of hazards
 Forwarding is expensive in deep pipelines(critical path)
 Pipeline flushes are expensive in deep pipelines

 Pipelining is ubiquitous, but tops out at 
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Software Takeaways

 Processors with a simple “in-order” pipeline are very 
sensitive to running “good code”
 Compiler should target a specific model of CPU
 Low-level assembly hacking

…But very few CPUs are in-order these days
 E.g., embedded, ultra-low-power applications

 Instead, all modern CPUs are “out-of-order”
 Even in classic “low-power domains” (like mobile)
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Out-of-Order Execution
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Instruction Classes (as convention)

 Arithmetic and logical operations
– compute a result as a function of the operands
– update PC to the next sequential instruction

Data “movement” operations (no compute)
– fetch operands from specified locations
– store operand values to specified locations
– update PC to the next sequential instruction

 Control flow operations (affects only PC)
– compute a branch condition and a target address
– if “branch condition is true” then PC <- target address
else PC <- next seq. instruction 

Atomic
Sequential

In-order
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Superpipelined and SuperScalar Execution

Code1： r1  r2 +1
r3  r1  *2
r4  r0  -r3

Code2： r1  r2 +1
r3  r9  *2
r4  r0  -r10

Code1 :  ILP=1 i.e., must execute serially
Code2 :  ILP=3 i.e., can execute at the same time

Code3： r1  r2 +1
r3  r1  *2
r4  r0  -r3

r11  r12 +1
r13  r19  *2
r14  r0  -r20

ILP=1
ILP=2

Accessing ILP=2 requires：
(1) larger scheduling window and (2) out-of-order execution 
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Superpipelined and SuperScalar Execution

Achieving full performance requires finding N “independent” 
instructions on every cycle

Su
p

er
p

ip
el

in
e

Su
p

er
Sc

a
la

r
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Increasing parallelism via dataflow

 Parallelism limited by many false dependencies, 
particularly sequential program order

Dataflow tracks how instructions actually depend on 
each other
 True dependence: read-after-write
 False dependence: write-after-write, write-after-read

Dataflow increases parallelism by eliminating 
unnecessary dependences
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Example: Dataflow in polynomial evaluation

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

a
tio

n
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Example: Dataflow in polynomial evaluation

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla     r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

a
tio

n

ldr

cmp mla

mul

bne

ldr mul

cmp

bne
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Example: Dataflow polynomial execution

 Execution only, with perfect scheduling & unlimited 
execution units
 ldr, mul execute in 2 cycles
 cmp, bne execute in 1 cycle
 mla executes in 3 cycles

Q: Does dataflow speedup execution? By how much?

Q: What is the performance bottleneck?
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ldr
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr

cmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr mul

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr mul

cmp

mlabne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr mul

ldr
cmp

mla
mul

bne

cmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
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ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mlacmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E
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ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E
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Example: Dataflow polynomial execution

Q: Does dataflow speedup execution? By how much?
 Yes! 3 cycles / loop iteration
 Instructions per cycle (IPC) = 5/3 1.67

(vs. 1 for perfect pipelining)

Q: What is the performance bottleneck?
 mla: Each mla depends on previous mla & takes 3 cycles
  This program is latency-bound
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Latency Bound

What is the “critical path” of the computation?
 Longest path across iterations in dataflow graph
 E.g., mla in last slide (but could be multiple ops)

 Critical path limits maximum performance
 Real CPUs may not achieve latency bound, but useful 

mental model + tool for program analysis
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Out-of-order (OoO) execution uses dataflow 
to increase parallelism

 Idea: Execute programs in dataflow order, but give the 
illusion of sequential execution

 This is a “restricted dataflow” model
 Restricted to instructions near those currently committing
 (Pure dataflow processors also exist that expose dataflow to 

software)
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High-level OoO microarchitecture

CPU

Fetch Decode Commit

Execute

Instruction queue

In-order In-orderOut-of-order

Reorder Buffer
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CPU
Instruction queue Reorder Buffer

OoO is hidden behind in-order frontend & commit

 Instructions only enter instruction queue(IQ) and leave reorder 
buffer(ROB) in program order; all bets are off in between!

Fetch Decode Commit

ExecuteABC
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CPU
Instruction queue Reorder Buffer

Fetch Decode Commit

Execute

ABC

OoO is hidden behind in-order frontend & commit

 Instructions only enter instruction queue(IQ) and leave reorder 
buffer(ROB) in program order; all bets are off in between!
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CPU
Instruction queue Reorder Buffer

Fetch Decode Commit

Execute

ABC

 Instructions only enter instruction queue(IQ) and leave reorder 
buffer(ROB) in program order; all bets are off in between!

OoO is hidden behind in-order frontend & commit
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Example: OoO polynomial evaluation

Q: Does OoO speedup execution? By how much?

Q: What is the performance bottleneck?

 Assume perfect forwarding & branch prediction 
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Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr

Execute ldr

Commit ldr

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr cmp

Execute ldr cmp

Commit ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr cmp mla

Execute ldr cmp mla

Commit ldr cmp mla

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr cmp mla mul

Execute ldr cmp mla mul

Commit ldr cmp mla mul

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr cmp mla mul bne

Execute ldr cmp mla mul bne

Commit ldr cmp mla mul bne

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

94

Pengju Ren@XJTU 2023



Example: OoO polynomial evaluation 
pipeline diagram

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Example: OoO polynomial evaluation 
pipeline diagram

 This isn’t OoO… or even faster than a simple pipeline!
Q: What went wrong?
 A: We’re throughput-limited: can only exec 1 instrn

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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High-level Superscalar OoO microarchitecture

 Must increase pipeline width  to increase ILP > 1 (2-way 3-issue)

CPU
Instruction queue Reorder Buffer

Fetch Decode

Execute

Commit

Execute Execute

In-order In-orderOut-of-order

Fetch Decode Commit
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Focus on Execution, not Fetch & Commit

Goal of OoO design is to only be limited by dataflow 
execution
 Fetch and commit are over-provisioned so that they 

(usually) do not limit performance
 Programmers can (usually) ignore fetch/commit

NOTEs: Programs with inherently unpredictable 
control flow will often be limited by fetch stalls 
(branch misprediction)
 E.g., branching based on random data
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Example: Superscalar OoO polynomial evaluation

Fetch &
Decode 

ldr

cmp

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp

mla

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne

mla

mul ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

Observe:
 Front-end & 

commit in-order 
(i.e., left-to-right)
 Execute

out-of-order

Example: Superscalar OoO polynomial evaluation
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Fetch &
Decode 

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Execute

ldr cmp bne mul ldr cmp bne mul ldr cmp

mla mla mla mla mla

mul ldr cmp bne mul ldr cmp bne mul

Commit

ldr cmp mla bne cmp mla bne cmp mla bne cmp mla

mul ldr mul ldr mul ldr mul

TIME

One loop iteration / 3 cycles!

Example: Superscalar OoO polynomial evaluation
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Structural hazards: Other throughput limitations

However, execution units are specialized
 Floating-point (add/multiply)
 Integer (add/multiply/compare)
 Memory (load/store)

 Processor designers must choose which execution 
units to include and how many

 Structural hazard: Data is ready, but instr’n
cannot issue because no hardware is available
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Example: Structural hazards can severely 
limit performance

Fetch &
Decode 

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Mem 
Execute

ldr ldr ldr ldr ldr ldr

Int 
Execute

cmp bne cmp bne cmp bne cmp bne cmp bne cmp

Mult
Execute

mla mul mla mul mla mul

Commit

ldr cmp mla mul ldr mla mul ldr mla

bne cmp bne cmp

One loop iteration / 5 cycles 110
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Throughput Bound

 Ingredients:
 Number of operations to perform (of each type)
 Number & issue rate of “execution ports”/“functional 

units” (of each type)

 Throughput bound = ops / issue rate
 E.g., (1 mla + 1 mul) / (2 + 3 cycles)

 Again, a real CPU might not exactly meet this bound
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Software Takeaway

OoO is much less sensitive to “good code”
 Better performance portability
 Of course, compiler still matters

OoO makes performance analysis much simpler
 Throughput bound: Availability of execution ports
 Latency bound: “Critical path” latency
 Slowest gives good approximation of program perf
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Out-of-Order Execution:
Under the Hood
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Register Renaming

 “False dependences” can severely limit parallelism
 Write-after-read (WAR)
 Write-after-write(WAW)
 Read-after-read (RAR)

OoO processors eliminate false dependences by 
transparently renaming registers
 CPU has many more “physical” than “architectural” registers
 Each time register is written, it is allocated to a new physical 

register
 Physical registers freed when instructions commit
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Original： r1  r2/r3

r4  r1*r5

r1  r3+r6

r3  r1- r5

Register Renaming
Renamed：p1  p2/p3

p4  p1*p5

p8  p3+p6

p9  p8- p5

 Maintain mapping from ISA reg. names to physical registers
 When decoding an instruction that updates ‘rx’:

– allocate unused physical register ‘py’ to hold inst result
– set new mapping from ‘rx’ to ‘py’
– younger instructions using ‘rx’ as input finds ‘py’

 De-allocate a physical register for reuse 
 Need a place to hold free physical registers (Free list)

Rename 
table

Physical
Registers

(p0…p79)

Architectural Registers 
(ISA defined: r0…r31)

rename p8
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Memory Disambiguation

 CPU must respect store  load ordering
 E.g., a later instruction reads a value from memory written 

by an earlier instruction, but the address might be implicit. 
st X3 #4

ld X2 #16

 But what if the OoO CPU executes the load first?
 Must “rollback” + execute the load again (next slide)

 Corollary: OoO CPU must track the order of all loads & 
stores, and only write memory when a store commits
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Store Buffer

allow younger LD to execute (out-of-order), must ensure 
ST target block not evicted

Memory dependence and forwarding
 younger LD must check against pending ST addresses 

in store buffer (CAM) for RAW dependence 
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Rollback & Recovery

 OoO CPUs speculate constantly to improve performance
 E.g., even guessing the results of a computation (“value prediction”)

 Need mechanisms to “rollback” to an earlier point in 
execution when speculation goes wrong
 Complex: Need to recover old register names, flush pending 

memory operations, etc (Using Checkpoint, support fewer branch 
instructions on-the-fly, the # of Checkpoint is limited)

 Very expensive: Up to hundreds of instrns of work lost!
(width*depth + size_of_ROB)
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SuperScalar Speculative OOO All Together
For an example:
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Except the Caches and TLBs
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Outline

 Instruction level parallel
 Pipeline
 Data hazards
 Control hazards
 Structure hazards

 Out-of-Order Execution
 Dataflow

 Optimization based on ILP 
 Case study
 Throughput bound
 Latency bound
 Performance Optimization
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Optimization Code

Why optimize code is this programmers’ problem?
 In theory, compilers and hardware “understand” all this 

and can optimize your program; in practice they don’t.
 Understanding the capabilities and limitations of 

optimizing compliers
 They won’t know about a different algorithm that might 

be a much better “match” to the processor
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Example : Limitation of Optimizing Compiler(1)

Compilers must be careful to apply only SAFE optimization to a 
program. Instead, the compiler assumes the worst case and 
programmers must put more effort into writing programs to 
assist compiler to generate efficient code. 

void twiddle1(long *xp, long *yp) 
{ 

*xp += *yp; 
*xp += *yp; 

} 

void twiddle2 (long *xp, long *yp) 
{ 

*xp += 2* *yp;
}

The compiler knows nothing about how twiddle1 will be called, it must assume 
that arguments xp and yp can be equal (memory aliasing). 
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Example : Limitation of Optimizing Compiler(2)

Compilers must be careful to apply only SAFE optimization to a 
program. Instead, the compiler assumes the worst case and 
programmers must put more effort into writing programs to 
assist compiler to generate efficient code. 

long f(); 

long func1() 
{ 
return f() + f() + f() + f(); 

} 

long func2() 
{ 
return 4*f(); 

}

f() modifies some part of the global program state (counter). Changing the 
number of times it gets called changes the program behavior.

long counter = 0; 
long f() 
{

return counter++; 
}
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Example Program

void sinx(int N, int terms, float * x, 
float *result) {                                                                                                             

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

X[1]    X[2]     X[3]   ….     X[n-1]  X[n]

Compute sin(x) using Taylor Expansion:

For each element of an array of N floating-point numbers

𝟑 𝟓 𝟕
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 How fast is this code?

Where should we focus 
optimization efforts?

What is the bottleneck?

void sinx(int N, int terms, float * x, 
float *result) {                                                                                                             

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

Taylor expansion of 

X[1]    X[2]     X[3]   ….     X[n-1]  X[n]

𝟑 𝟓 𝟕
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Taylor expansion of 

Where should we focus 
optimization efforts?

 A: Where most of the 
time is spent

void sinx(int N, int terms, float * x, 
float *result) {                                                                                                             

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

𝟑 𝟓 𝟕
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What is the bottleneck?void sinx(int N, int terms, float * x, 
float *result) {                                                                                                             

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

Taylor expansion of 
𝟑 𝟓 𝟕
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Dataflow for a single iteration

OK, but how does this perform on a real machine?

sign numerdenom x[i]

numer’

LD

value

value’

-1

sign’

j

2

3

denom’

1

j’

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
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Superscalar OOO Processor

What in microarchitecture should we worry 
about?

CPU
Instruction queue Reorder Buffer

Fetch Decode

Execute

Commit

Execute Execute

In-order In-orderOut-of-order

Fetch Decode Commit
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OOO Processor Microarchitecture

What in microarchitecture should we worry about?

 Fetch & Decode?

 Execution?

 Commit?

NO. Any reasonable machine will have sufficient 
frontend throughput to keep execution busy + all 
branches in this code are easy to predict (not always the 
case!).

YES. This is where dataflow + most structural hazards 
will limit our performance.

NO. Again, any reasonable machine will have sufficient 
commit throughput to keep execution busy.
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Intel Skylake 132

Pengju Ren@XJTU 2023



Intel Skylake Execution Microarchitecture

Integer Floating Point

Latency Pipelined? Number Latency Pipelined? Number

Add 1  4 4*  2

Multiply 3  1 4  2

Divide 21-83  1 3-15 ** 1

Load 2  2

* 3 cycles if using x87 instructions
** Can issue another operation after 4 cycles

Source: Search for “Skylake” in 
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/instruction_tables.pdf
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What is our throughput bound?

sign numerdenom x[i]

 ×

 ×

numer’

LD

value

 ×

 ÷

 +

value’

-1

 ×

sign’

j

 ×

2

 ×

 +  +

3

 ×

denom’

 +

1

j’

Op # Code Arch Thput
bound

Int Add 3 4 0.75

Int Mul 4 1 4

Int Div 0 1 -

FP Add 1 1 1

FP Mul 3 2 1.5

FP Div 1 1 1

Load 1 2 0.5

Throughput bound: Ignore data 
hazards, think only about max 

issue rate due to structural hazards

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
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What is our latency bound?
 Latency bound: Ignore structural hazards, think only about 

the critical path through data hazards

sign numerdenom x[i]

numer’

LD

value

value’

-1

sign’

j

2

3

denom’

1

j’

3+1+3+3=10 3 1+3+3=71 3+(3~15)+3
=9 to 21
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Takeaways

Observe performance of 23 cycles / element

 Latency bound dominates throughput bound
We are latency bound!

Notes
 This analysis can often be “eyeballed” w/out full dataflow
 Actual execution is more complicated, but latency/throughput bounds 

are good approximation
 (Also, avoid division!!!)
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Speeding up : Attempt #1

 What if we eliminate unnecessary work?
void sinx_better(int N, int terms, float * x, 

float *result) {                                                                                                       
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = x[i]*x[i];
float numer = x2*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x2;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}

result[i] = value;
}

}

A: Small improvement.

6ns / element 
18 cycles / element

Why not better?

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
𝟑 𝟓 𝟕
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What is our latency bound?

 Find the critical path in the dataflow graph
sign numerdenom x2

numer’

value

value’

NEG

sign’

j

2

3

denom’

1

j’

3+1+3+3=10 1 31 3+(3~15)+3
=9 to 21
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Attempt #1 Takeaways

 First attempt didn’t change latency bound

 To get real speedup, we need to focus on the 
performance bottleneck

Q: Why did we get any speedup at all?
 A: Actual dynamic scheduling is complicated; would 

need to simulate execution in more detail (minus the 
usage of multiplier, therefore reduce the % of 
structure harzard)
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Speeding up : Attempt #2

 Let’s focus on that pesky division…
void sinx_predenom(int N, int terms, float * x, float *result) {                                                                               

float rdenom[MAXTERMS];
int denom = 6;
for (int j = 1; j <= terms; j++) {

rdenom[j] = 1.0/denom;
denom *= (2*j+2) * (2*j+3);

}                              
for (int i=0; i<N; i++) {      

float value = x[i];        
float x2 = value * value;  
float numer = x2 * value;  
int sign = -1;             
for (int j=1; j<=terms; j++) {

value += sign * numer * rdenom[j];
numer *= x2;      
sign = -sign;     

}                     
result[i] = value;    

}                         
} 

A: Big improvement!

2.4ns / element 
7.7 cycles / element

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x2;
denom *= (2*j+2) * (2*j+3);
sign = -sign;
}

𝟑 𝟓 𝟕
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What is our latency bound?

 Find the critical path in the dataflow graph
sign numerrdenom[j] x2

numer’

value

+ & 

LD

value’

NEG

sign’

j

1

j’

1 31 3+3=6
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Attempt #2 Takeaways

 Attacking the bottleneck got nearly 3 !

…But performance is still near the latency bound, 
can we do better?
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Speeding up : Attempt #3

Don’t need sign in inner-loop either
void sinx_predenoms(int N, int terms, float * x, float *result) {                                             

float rdenom[MAXTERMS];
int denom = 6;
float sign = -1.0;
for (int j = 1; j <= terms; j++) {

rdenom[j] = sign/denom;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}                              
for (int i=0; i<N; i++) {      

float value = x[i];        
float x2 = value * value;  
float numer = x2 * value;               
for (int j=1; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}                     
result[i] = value;    

}                         
} 

1.1ns / element 
3.5 cycles / element

for (int j=1; j<=terms; j++) {
value += sign * numer * rdenom[j];
numer *= x2;      
sign = -sign;     

}                     
𝟑 𝟓 𝟕
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What is our latency bound?

 Find the critical path in the dataflow graph
numerrdenom[j] x2

numer’

value

+ & 

LD

value’

j

1

j’

31 3 (LD will be executed speculatively, 
only depends on j)

LATENCY BOUND!
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Attempt #3 Takeaways

We’re down to the latency of a single, fast operation 
per iteration
 + Observed performance is very close to this latency 

bound, so throughput isn’t limiting
We’re done optimizing individual iterations

How to optimize multiple iterations?
 Eliminate dependence chains across iterations
 A) Loop unrolling (ILP)
 B) Explicit parallelism (SIMD, threading)
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Speeding up : Loop unrolling

 Compute multiple elements per iteration

void sinx_unrollx2(int N, int terms, float * x, float *result) {                                                             
// same predom stuff as before…
for (int i=0; i<N; i++) {      

float value = x[i];        
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;               
for (int j=1; j<=terms; j+=2) {

value += numer * rdenom[j];
value += numer * x2 * redom[j+1];
numer *= x4;

}                     
result[i] = value;    

}                         
} 

Correct? 

for (int i=0; i<N; i++) {      
float value = x[i];        
float x2 = value * value;  
float numer = x2 * value;               
for (int j=1; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}                     
result[i] = value;    

}                                          

𝟑 𝟓 𝟕
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Speeding up : Loop unrolling

 Compute multiple elements per iteration
void sinx_unrollx2(int N, int terms, float * x, float *result) {                                                             

// same predom stuff as before…
for (int i=0; i<N; i++) {      

float value = x[i];        
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j+=2) {

value += numer * rdenom[j];
value += numer * x2 * rdenom[j+1];
numer *= x4;

}                     
for (; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;    

}                         
} 

0.99 ns / element 
3.2 cycles / element

Didn’t change 

𝟑 𝟓 𝟕
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What is our latency bound?
 Find the critical path in the dataflow graph

numerrdenom[j] x4

numer’

value

+ & 

LD

LD

j

2

j’

3/2=1.51/2=0.5 6/2=3 (LD will be executed 
speculatively, only depends on j)

rdenom[j+1] x2

+ & 

value’
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Speeding up : Loop unrolling #2

What if floating point associated + distributed?
void sinx_unrollx2(int N, int terms, float * x, float *result) {                                                             

// same predom stuff as before…
for (int i=0; i<N; i++) {      

float value = x[i];        
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j++) {

value += numer * (rdenom[j] + x2 * redom[j+1]);
numer *= x4;

}                     
for (; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;    

}                         
} 

0.69 ns / element 
2.2 cycles / element

for (j=1; j<=terms-1; j+=2) {
value += numer * rdenom[j];
value += numer * x2 * rdenom[j+1];
numer *= x4;

}                     
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What is our latency bound?

 Find the critical path in the dataflow graph
numerrdenom[j] x4

numer’

value

+ & 

LD LD

j

2

j’

3/2=1.51/2=0.5 3/2=1.5 (LD will be executed 
speculatively, only depends on j)

rdenom[j+1] x2

+ & 

value’
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Loads do not limit 

 Consider just the slice of the program that generates the 
subexpression:

 What is this program’s
latency + throughput
bound?

 Latency bound: 1 cycle / iteration!
 Through computation, not the subexpression computation –

there is no cross-iteration dependence in the subexpression!)

 Throughput bound: also 1 cycle / iteration
 1 add / 4 adders; 2 LDs / 2 LD units; 1 FP FMA / 1 FP unit
 (This will change to 2 cycles if we add the value FMA)

j2

j’

rdenom[j]

+ & ×

LD LD

rdenom[j+1] x2

subexp
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Loads do not limit : Visualization

 Consider just the slice of 
the program that 
generates the 
subexpression:

 Subexpressions are off the 
critical path + we have 
enough throughput to 
produce next 
subexpression each cycle 
(excluding value FMA)

02

j2

j’2

j’’2

j’’’2

j’’’’

LD

LD

+ & × subexp

LD

LD

+ & × subexp’

LD

LD

+ & × subexp’’

LD

LD

+ & × subexp’’’

LD

LD

+ & × subexp’’’’
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Loads do not limit : Example execution

INT 
ADD

j=0 j=2 j=4 j=6 j=8 ...

LD1

rdenom[0] rdenom[4] rdenom[8] ...

rdenom[2] rdenom[6] ...

LD2

rdenom[1] rdenom[5] rdenom[9] ...

rdenom[3] rdenom[7] ...

FP 
FMA

subexp’ value’ value’’ value’’’ value’’’’

subexp’’’ subexp’’’’’

subexp’’ subexp’’’’

FP 
MUL

numer’=x^4 numer’’=x^8 numer’’’=x^12 numer’’’’=x^16 numer’’’’’=x^20 ...

Note: Throughput limit is 2 cycles / iteration 
once we add value FMA, but this is dominated 

by the latency bound of 3 cycles / iteration 
(also from value FMA). Regardless, 2-cycle LDs 

are not the bottleneck.
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Loop unrolling takeaways

Need to break dependencies across iterations to get 
speedup
 Unrolling by itself doesn’t help

We are now seeing throughput effects
 Latency bound = 1.5 vs. observed = 2.2

 Can unroll loop 3x, 4x to improve further, but…
…Diminishing returns (1.65 cycles / element at 4x)
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What if? #1 Impact of structural hazards

Q: What would happen to if we only had a 
single, unpipelined floating-point multiplier?

 A1: Performance will be much worse
 A2: We will hit throughput bound much earlier
 A3: Loop unrolling will help by reducing multiplies
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What if? #2 Impact of structural hazards

Q: What would happen to if LDs (cache 
hits) took 2 cycles instead of 1 cycle?

 A: Nothing. This program is latency bound, and 
LDs are not on the critical path.
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SIMD（Single Instruction Multiple Data）

Instantiate k copies of the hardware unit foo to 
process k iterations of the loop in parallel 
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Speeding up :Going parallel (explicitly)

Use ISPC to vectorize the code

1.0 ns / element 3.2 cycles / element

void sinx
(int N, 
int terms, 
float * x, 
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;
for (int j=1; j<=terms; j++) {

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

export void sinx_reference
(uniform int N, 
uniform int terms,
uniform float x[],
uniform float result[]) {

foreach (i=0 ... N) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
uniform int denom = 6; // 3!
uniform int sign = -1;
for (uniform int j=1; j<=terms; j++) {

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}
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Speeding up : Going parallel (explicitly) + optimize
export void sinx_unrollx2a(uniform int N, uniform int terms,

uniform float x[],
uniform float result[]) {

uniform float rdenom[MAXTERMS];
uniform int denom = 6;
uniform float sign = -1;
for (uniform int j = 1; j <= terms; j++) {

rdenom[j] = sign/denom;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}
foreach (i=0 ... N) {

float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
uniform int j;
for (j=1; j<=terms-1; j+=2) {

value += numer * (rdenom[j] + x2 * rdenom[j+1]);
numer *= x4;

}
for (; j <= terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}
}

0.14 ns / element 
0.45 cycles / element
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SIMD takeaways

Well, that was easy! 

 Cycles per element:

 Speedup

Scalar Vector

Unoptimized 23 3.2

Unrolled 2.2 0.45

Original

Unrolled

Vector

Vector + 
Unrolled

4.9

7

7.2

10
51
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Scaling Instruction-Level Parallelism
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Recall from last time:
ILP & pipelining tapped out… why?
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Superscalar scheduling is complex & hard to scale

Q: When is it safe to issue two instructions?
 A: When they are independent
 Must compare all pairs of input and output registers

 Scalability: comparisons where is “issue 
width” of processor
 Not great!
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Limitations of ILP

 4-wide superscalar 20-stage pipeline 80 instrns in flight
 High-performance OoO buffers hundreds of instructions

 Programs have limited ILP
 Even with perfect scheduling, >8-wide issue doesn’t help

 Pipelines can only go so deep
 Branch misprediction penalty grows
 Frequency (GHz) limited by power

 Dynamic scheduling overheads are significant
 Out-of-order scheduling is expensive
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Limitations of ILP  SIMD\Multithread\Multicore

 ILP works great! …But is complex + hard to scale

 From hardware perspective, multicore is much more 
efficient, but needs programmer’s effort based on the 
knowledge about underlying architecture.

 Parallel software is hard!
 Industry resisted multicore for as long as possible
 When multicore finally happened, CPU arch simplified more 

cores
 Many program(mer)s still struggle to use multicore effectively
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Next Lecture：Understanding Modern 
Processor：DLP and TLP
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