
Embedded Intelligent System and
Novel Computer Architecture

Lecture 03(a) – Understanding Modern Processor：
ILP and Optimization Code

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2023

Outline
 Instruction level parallel
 Pipeline
 Data hazards
 Control hazards
 Structure hazards

 Out-of-Order Execution
 Dataflow

 Optimization based on ILP
 Case study
 Throughput bound
 Latency bound
 Performance Optimization

Pengju Ren@XJTU 2023

Why so many? What differentiates these
processors?

CPU GPU FPGA ASIC Etc.

Many kinds of processors

3

Pengju Ren@XJTU 2023

Each processor is designed for different kinds of programs

 CPUs
 “Sequential” code – i.e., single / few threads

GPUs
 Programs with lots of independent work 

“Embarrassingly parallel”

Many others: Deep neural networks, Digital signal
processing, Etc.

Why so many kinds of processors?

4

Pengju Ren@XJTU 2023

Parallelism pervades architecture

 Speeding up programs is all about parallelism
 Find independent work
 Execute it in parallel
 Profit

 Key questions:
 Where is the parallelism?
 Whose job is it to find parallelism?

5

Pengju Ren@XJTU 2023

Where is the parallelism?

Different processors take radically different
approaches
 CPUs: Instruction-level parallelism (ILP)
 Implicit
 Fine-grain

GPUs: Thread- & data-level parallelism (TLP, DLP)
 Explicit
 Coarse-grain

6

Pengju Ren@XJTU 2023

Whose job to find parallelism?

Different processors take radically different approaches
 CPUs: Hardware dynamically schedules instructions
 Expensive, complex hardware  Few cores (tens)
 (Relatively) Easy to write fast software

GPUs: Software makes parallelism explicit
 Simple, cheap hardware Many cores (thousands)
 (Often) Hard to write fast software

7

Pengju Ren@XJTU 2023

Visualizing these differences

 Pentium 4 “Northwood”
(2002)

8

Pengju Ren@XJTU 2023

Visualizing these differences

 Pentium 4 “Northwood”
(2002)

 Highlighted areas
actually execute
instructions

Most area spent on
Caches and Scheduling
(not on executing the
program)

9

Pengju Ren@XJTU 2023

Visualizing these differences

 AMD Fiji
(GPU@2015)

10

Pengju Ren@XJTU 2023

Visualizing these differences

 AMD Fiji (GPU@2015)

 Highlighted areas
actually execute
instructions

Most area spent
executing the program
 (Rest is mostly I/O &

memory, not
scheduling)

11

Pengju Ren@XJTU 2023

Today you will review (or learn) …

How CPUs exploit ILP to speed up sequential code
 Key ideas:
 Pipelining & Superscalar: Work on multiple instructions at

once
 Out-of-order execution: Dynamically schedule instructions

whenever they are “ready”
 Speculation: Guess what the program will do next to discover

more independent work, “rolling back” incorrect guesses
 CPUs must do all of this while preserving the illusion that

instructions execute in-order, one-at-a-time

12

Pengju Ren@XJTU 2023

In other words… Today is about:

13

Pengju Ren@XJTU 2023

Example: Polynomial evaluation

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

𝒋

𝒕𝒆𝒓𝒎𝒔

𝒋ୀ𝟎

14

Pengju Ren@XJTU 2023

Example: Polynomial evaluation

 Compiling on ARM
int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

poly:
cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0

.L3:
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

.L4:
movs r0, #0
bx lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[0]
r4: power
r5: coef[j]

𝒋

𝒕𝒆𝒓𝒎𝒔

𝒋ୀ𝟎

15

Pengju Ren@XJTU 2023

Compilers Manage Memory and Registers

Compilers for languages like C/C++:
Check that program is legal
Translate into assembly code
Optimizes the generated code

Compiler performs “register allocation” to decide when
to load/store and when to reuse

16

Pengju Ren@XJTU 2023

Example: Polynomial evaluation

 Compiling on ARM

int poly(int *coef,

int terms, int x) {

int power = 1;

int value = 0;

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

return value;

}

poly:
cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0

.L3:
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

.L4:
movs r0, #0
bx lr

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

Pr
ea

m
b

le
Ite

ra
tio

n
Fi

ni
sh

17

Pengju Ren@XJTU 2023

 Compiling on ARM

for (int j = 0; j < terms; j++) {

value += coef[j] * power;

power *= x;

}

.L3:
ldr r5, [r3], #4 // r5 <- coef[j]; j++ (two operations)
cmp r1, r3 // compare: j < terms?
mla r0, r4, r5, r0 // value += r5 * power (mul + add)
mul r4, r2, r4 // power *= x
bne .L3 // repeat?

r0: value
r1: &coef[terms]
r2: x
r3: &coef[j]
r4: power
r5: coef[j]

Iteration

Example: Polynomial evaluation

18

Pengju Ren@XJTU 2023

 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

Example: Polynomial evaluation

19

Pengju Ren@XJTU 2023

 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

J=
0

 it
er

a
tio

n
Pr

ea
m

b
le

Example: Polynomial evaluation

20

Pengju Ren@XJTU 2023

 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

...
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

J=
0

 it
er

a
tio

n
Pr

ea
m

b
le

J=
1

 it
er

a
tio

n
J=

2
 it

er
a

tio
n

Fi
ni

Example: Polynomial evaluation

21

Pengju Ren@XJTU 2023

 Executing poly(A, 3, x)

cmp r1, #0
ble .L4
push {r4, r5}
mov r3, r0
add r1, r0, r1, lsl #2
movs r4, #1
movs r0, #0
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
...

...
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

J=
0

 it
er

a
tio

n

J=
1

 it
er

a
tio

n
J=

2
 it

er
a

tio
n

Pr
ea

m
b

le

Fi
ni

Example: Polynomial evaluation

22

Pengju Ren@XJTU 2023

The software-hardware boundary

 The instruction set architecture (ISA) is a functional
contract between hardware and software
 It says what each instruction does, but not how
 Example: Ordered sequence of x86 instructions

 A processor’s microarchitecture is how the ISA is
implemented

Arch : Arch :: Interface : Implementation

23

Pengju Ren@XJTU 2023

Simple CPU model

 Execute instructions in program order

Divide instruction execution into stages, e.g.:
 1. Fetch – get the next instruction from memory
 2. Decode – figure out what to do & read inputs
 3. Execute – perform the necessary operations
 4. Commit – write the results back to registers / memory

 (Real processors have many more stages)

24

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

Evaluating polynomial on the simple CPU model

25

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

1. Read “ldr r5, [r3] #4”
from memory

Evaluating polynomial on the simple CPU model

26

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

2. Decode “ldr r5, [r3] #4”
and read input regs

Evaluating polynomial on the simple CPU model

27

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

3. Load memory at r3 and
compute r3 + 4

Evaluating polynomial on the simple CPU model

28

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

4. Write values
into regs r5 and r3

Evaluating polynomial on the simple CPU model

29

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model

30

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model

31

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model

32

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp

Evaluating polynomial on the simple CPU model

33

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla

Evaluating polynomial on the simple CPU model

34

Pengju Ren@XJTU 2023

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1ns@1Ghz

Throughput = 1 instr / 4 ns

Evaluating polynomial on the simple CPU model

35

Pengju Ren@XJTU 2023

Simple CPU is very wasteful

Fetch ldr cmp mla

Decode ldr cmp mla

Execute ldr cmp

Commit ldr cmp

…

TIME
1ns@1Ghz

Idle
Hardware

36

Pengju Ren@XJTU 2023

Review: Pipelining

37

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

38

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

39

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

40

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mul mla cmp ldr

41

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

bne mul mla cmp

42

Pengju Ren@XJTU 2023

Pipelining keeps CPU busy through
instruction-level parallelism

 Idea: Start on the next instr’n immediately
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr bne mul mla

43

Pengju Ren@XJTU 2023

Evaluating polynomial on the pipelined CPU

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

Latency = 4 ns / instr

TIME

How fast is this processor?
Latency? Throughput?1ns@1Ghz

Throughput = 1 instr / ns
4X speedup!

44

Pengju Ren@XJTU 2023

Speedup achieved through pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME

Processor works on 4
instructions at a time

45

Pengju Ren@XJTU 2023

Limitations of pipelining

 Parallelism requires independent work

Q: Are instructions independent ?

 A: No! Many possible hazards limit parallelism…
Data hazards
Structure hazards
Control hazard

46

Pengju Ren@XJTU 2023

Data hazards

ldr rx, [rm], #4 // rx  Memory[rm]; rm  rm + 4
cmp ry, rn // compare ry and rn

Q: When can the CPU pipeline the cmp behind ldr?

Fetch ldr cmp … … … …

Decode ldr cmp … … …

Execute ldr cmp … …

Commit ldr cmp …

 A: When they use
different registers
 Specifically, when cmp

does not read any data
written by ldr
 E.g.,

 rx != ry
 rx!=rn
 rm!=rn
 rm!=ry

47

Pengju Ren@XJTU 2023

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

ldr

 Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards: Stalling the pipeline

48

Pengju Ren@XJTU 2023

 Cannot pipeline cmp (ldr writes r3)

Dealing with data hazards: Stalling the pipeline

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

cmp ldr

??

49

Pengju Ren@XJTU 2023

 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Dealing with data hazards: Stalling the pipeline

50

Pengju Ren@XJTU 2023

 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmp ldr

Inject a “bubble” (NOP)
into the pipeline

Dealing with data hazards: Stalling the pipeline

51

Pengju Ren@XJTU 2023

 Cannot pipeline cmp (ldr writes r3)
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

CPU
Fetch Decode Execute Commit

mla cmpmul

cmp proceeds once ldr
has committed

Dealing with data hazards: Stalling the pipeline

52

Pengju Ren@XJTU 2023

Stalling degrades performance

 But stalling is sometimes unavoidable
 E.g., long-latency instructions (divide, cache miss)

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne ldr

…

TIME

Processor works on 3
instructions at a time

53

Pengju Ren@XJTU 2023

Dealing with data hazards: Forwarding data

Wait a second… data is available after Execute!

 Forwarding eliminates many (not all) pipeline stalls

CPU
Fetch Decode Execute Commit

mla cmp ldrmul
r3+4r3

r1

ldr r5, [r3], #4
cmp r1, r3

54

Pengju Ren@XJTU 2023

Speedup achieved through pipeline parallelism

Fetch ldr cmp mla mul bne ldr cmp mla mul bne

Decode ldr cmp mla mul bne ldr cmp mla mul

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

…

TIME

Processor works on 4
instructions at a time 

55

Pengju Ren@XJTU 2023

Pipelining is not free!

Q: How well does forwarding scale?
 A: Not well… many forwarding paths in deep &

complex pipelines

CPU
Fetch Decode Execute Commit

Mem

Execute

56

Pengju Ren@XJTU 2023

Control hazards + Speculation

 Programs must appear to execute in program order
 All instructions depend on earlier ones

Most instructions implicitly continue at the next…
 But branches redirect execution to new location

57

Pengju Ren@XJTU 2023

Dealing with control hazards: Flushing the pipeline

What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

bne mul mla cmp

Static instruction sequence
(i.e., program layout in memory)

58

Pengju Ren@XJTU 2023

What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

pop bne mul mla

Static instruction sequence
(i.e., program layout in memory)

Dealing with control hazards: Flushing the pipeline

59

Pengju Ren@XJTU 2023

What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

bx pop bne mul

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!
(Loop not finished)

Dealing with control hazards: Flushing the pipeline

60

Pengju Ren@XJTU 2023

What if we always fetch the next instruction?
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
pop {r4, r5}
bx lr

CPU
Fetch Decode Execute Commit

ldr bne

Static instruction sequence
(i.e., program layout in memory) Whoops! We fetched the

wrong instructions!
(Loop not finished)

Dealing with control hazards: Flushing the pipeline

61

Pengju Ren@XJTU 2023

Pipeline flushes destroy performance

 Penalty increases with deeper pipelines

Fetch ldr cmp mla mul bne ldr cmp mla

Decode ldr cmp mla mul bne ldr cmp

Execute ldr cmp mla mul bne ldr

Commit ldr cmp mla mul bne

…

TIME

Processor works on 2 or 3
instructions at a time

62

Pengju Ren@XJTU 2023

Dealing with control hazards: Speculation!

 Processors do not wait for branches to execute
 Instead, they speculate (i.e., guess) where to go next +

start fetching
Modern processors use very sophisticated mechanisms
 E.g., speculate in Fetch stage—before processor even knows

instrs is a branch! (Branch Instrs can be detected by PC)
 >95% prediction accuracy
 Still, branch mis-speculation is major problem (The wider

and deeper the pipeline, the more serious the problem)

63

Pengju Ren@XJTU 2023

Pipelining Summary

 Pipelining is a simple, effective way to improve
throughput
 -stage pipeline gives up to speedup

 Pipelining has limits
 Hard to keep pipeline busy because of hazards
 Forwarding is expensive in deep pipelines(critical path)
 Pipeline flushes are expensive in deep pipelines

 Pipelining is ubiquitous, but tops out at

64

Pengju Ren@XJTU 2023

Software Takeaways

 Processors with a simple “in-order” pipeline are very
sensitive to running “good code”
 Compiler should target a specific model of CPU
 Low-level assembly hacking

…But very few CPUs are in-order these days
 E.g., embedded, ultra-low-power applications

 Instead, all modern CPUs are “out-of-order”
 Even in classic “low-power domains” (like mobile)

65

Pengju Ren@XJTU 2023

Out-of-Order Execution

66

Pengju Ren@XJTU 2023

Instruction Classes (as convention)

 Arithmetic and logical operations
– compute a result as a function of the operands
– update PC to the next sequential instruction

Data “movement” operations (no compute)
– fetch operands from specified locations
– store operand values to specified locations
– update PC to the next sequential instruction

 Control flow operations (affects only PC)
– compute a branch condition and a target address
– if “branch condition is true” then PC <- target address
else PC <- next seq. instruction

Atomic
Sequential

In-order

67

Pengju Ren@XJTU 2023

Superpipelined and SuperScalar Execution

Code1： r1  r2 +1
r3  r1 *2
r4  r0 -r3

Code2： r1  r2 +1
r3  r9 *2
r4  r0 -r10

Code1 : ILP=1 i.e., must execute serially
Code2 : ILP=3 i.e., can execute at the same time

Code3： r1  r2 +1
r3  r1 *2
r4  r0 -r3

r11  r12 +1
r13  r19 *2
r14  r0 -r20

ILP=1
ILP=2

Accessing ILP=2 requires：
(1) larger scheduling window and (2) out-of-order execution

68

Pengju Ren@XJTU 2023

Superpipelined and SuperScalar Execution

Achieving full performance requires finding N “independent”
instructions on every cycle

Su
p

er
p

ip
el

in
e

Su
p

er
Sc

a
la

r

69

Pengju Ren@XJTU 2023

Increasing parallelism via dataflow

 Parallelism limited by many false dependencies,
particularly sequential program order

Dataflow tracks how instructions actually depend on
each other
 True dependence: read-after-write
 False dependence: write-after-write, write-after-read

Dataflow increases parallelism by eliminating
unnecessary dependences

70

Pengju Ren@XJTU 2023

Example: Dataflow in polynomial evaluation

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

a
tio

n

71

Pengju Ren@XJTU 2023

Example: Dataflow in polynomial evaluation

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

...

ldr

cmp mla

mul

bne

Lo
op

 it
er

a
tio

n

ldr

cmp mla

mul

bne

ldr mul

cmp

bne

72

Pengju Ren@XJTU 2023

Example: Dataflow polynomial execution

 Execution only, with perfect scheduling & unlimited
execution units
 ldr, mul execute in 2 cycles
 cmp, bne execute in 1 cycle
 mla executes in 3 cycles

Q: Does dataflow speedup execution? By how much?

Q: What is the performance bottleneck?

73

Pengju Ren@XJTU 2023

ldr
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

74

Pengju Ren@XJTU 2023

ldr

cmp

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

75

Pengju Ren@XJTU 2023

ldr

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

76

Pengju Ren@XJTU 2023

ldr mul

cmp

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

77

Pengju Ren@XJTU 2023

ldr mul

cmp

mlabne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

78

Pengju Ren@XJTU 2023

ldr mul

ldr
cmp

mla
mul

bne

cmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

79

Pengju Ren@XJTU 2023

ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mlacmp

bne

mla

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

80

Pengju Ren@XJTU 2023

ldr mul

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

ldr
cmp

mul
bne

mla
ldr

cmp
mul

bne

ldr
cmp

mla
mul

bne

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

TIM
E

81

Pengju Ren@XJTU 2023

Example: Dataflow polynomial execution

Q: Does dataflow speedup execution? By how much?
 Yes! 3 cycles / loop iteration
 Instructions per cycle (IPC) = 5/3 1.67

(vs. 1 for perfect pipelining)

Q: What is the performance bottleneck?
 mla: Each mla depends on previous mla & takes 3 cycles
  This program is latency-bound

82

Pengju Ren@XJTU 2023

Latency Bound

What is the “critical path” of the computation?
 Longest path across iterations in dataflow graph
 E.g., mla in last slide (but could be multiple ops)

 Critical path limits maximum performance
 Real CPUs may not achieve latency bound, but useful

mental model + tool for program analysis

83

Pengju Ren@XJTU 2023

Out-of-order (OoO) execution uses dataflow
to increase parallelism

 Idea: Execute programs in dataflow order, but give the
illusion of sequential execution

 This is a “restricted dataflow” model
 Restricted to instructions near those currently committing
 (Pure dataflow processors also exist that expose dataflow to

software)

84

Pengju Ren@XJTU 2023

High-level OoO microarchitecture

CPU

Fetch Decode Commit

Execute

Instruction queue

In-order In-orderOut-of-order

Reorder Buffer

85

Pengju Ren@XJTU 2023

CPU
Instruction queue Reorder Buffer

OoO is hidden behind in-order frontend & commit

 Instructions only enter instruction queue(IQ) and leave reorder
buffer(ROB) in program order; all bets are off in between!

Fetch Decode Commit

ExecuteABC

86

Pengju Ren@XJTU 2023

CPU
Instruction queue Reorder Buffer

Fetch Decode Commit

Execute

ABC

OoO is hidden behind in-order frontend & commit

 Instructions only enter instruction queue(IQ) and leave reorder
buffer(ROB) in program order; all bets are off in between!

87

Pengju Ren@XJTU 2023

CPU
Instruction queue Reorder Buffer

Fetch Decode Commit

Execute

ABC

 Instructions only enter instruction queue(IQ) and leave reorder
buffer(ROB) in program order; all bets are off in between!

OoO is hidden behind in-order frontend & commit

88

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation

Q: Does OoO speedup execution? By how much?

Q: What is the performance bottleneck?

 Assume perfect forwarding & branch prediction

89

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr

Execute ldr

Commit ldr

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

90

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr cmp

Execute ldr cmp

Commit ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

91

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr cmp mla

Execute ldr cmp mla

Commit ldr cmp mla

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

92

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr cmp mla mul

Execute ldr cmp mla mul

Commit ldr cmp mla mul

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

93

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr cmp mla mul bne

Execute ldr cmp mla mul bne

Commit ldr cmp mla mul bne

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

94

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

95

Pengju Ren@XJTU 2023

Example: OoO polynomial evaluation
pipeline diagram

 This isn’t OoO… or even faster than a simple pipeline!
Q: What went wrong?
 A: We’re throughput-limited: can only exec 1 instrn

Fetch &
Decode

ldr cmp mla mul bne ldr cmp mla mul bne ldr cmp mla mul bne ldr

Execute ldr cmp mla mul bne ldr cmp mla

Commit ldr cmp mla mul bne ldr cmp

TIME

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

96

Pengju Ren@XJTU 2023

High-level Superscalar OoO microarchitecture

 Must increase pipeline width to increase ILP > 1 (2-way 3-issue)

CPU
Instruction queue Reorder Buffer

Fetch Decode

Execute

Commit

Execute Execute

In-order In-orderOut-of-order

Fetch Decode Commit

97

Pengju Ren@XJTU 2023

Focus on Execution, not Fetch & Commit

Goal of OoO design is to only be limited by dataflow
execution
 Fetch and commit are over-provisioned so that they

(usually) do not limit performance
 Programmers can (usually) ignore fetch/commit

NOTEs: Programs with inherently unpredictable
control flow will often be limited by fetch stalls
(branch misprediction)
 E.g., branching based on random data

98

Pengju Ren@XJTU 2023

Example: Superscalar OoO polynomial evaluation

Fetch &
Decode

ldr

cmp

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

99

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

100

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

101

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

102

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp

mla

mul

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

103

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne

mla

mul ldr

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

104

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

ldr, mul execute in 2 cycles
cmp, bne execute in 1 cycle
mla executes in 3 cycles

Example: Superscalar OoO polynomial evaluation

105

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3
ldr r5, [r3], #4
cmp r1, r3
mla r0, r4, r5, r0
mul r4, r2, r4
bne .L3

Example: Superscalar OoO polynomial evaluation

106

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul

cmp mul ldr mla bne

Execute

ldr cmp bne mul

mla mla

mul ldr cmp bne

Commit

ldr cmp mla bne cmp mla bne

mul ldr mul

TIME

Observe:
 Front-end &

commit in-order
(i.e., left-to-right)
 Execute

out-of-order

Example: Superscalar OoO polynomial evaluation

107

Pengju Ren@XJTU 2023

Fetch &
Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Execute

ldr cmp bne mul ldr cmp bne mul ldr cmp

mla mla mla mla mla

mul ldr cmp bne mul ldr cmp bne mul

Commit

ldr cmp mla bne cmp mla bne cmp mla bne cmp mla

mul ldr mul ldr mul ldr mul

TIME

One loop iteration / 3 cycles!

Example: Superscalar OoO polynomial evaluation

108

Pengju Ren@XJTU 2023

Structural hazards: Other throughput limitations

However, execution units are specialized
 Floating-point (add/multiply)
 Integer (add/multiply/compare)
 Memory (load/store)

 Processor designers must choose which execution
units to include and how many

 Structural hazard: Data is ready, but instr’n
cannot issue because no hardware is available

109

Pengju Ren@XJTU 2023

Example: Structural hazards can severely
limit performance

Fetch &
Decode

ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr

cmp mul ldr mla bne cmp mul ldr mla bne cmp mul ldr mla bne cmp

Mem
Execute

ldr ldr ldr ldr ldr ldr

Int
Execute

cmp bne cmp bne cmp bne cmp bne cmp bne cmp

Mult
Execute

mla mul mla mul mla mul

Commit

ldr cmp mla mul ldr mla mul ldr mla

bne cmp bne cmp

One loop iteration / 5 cycles 110

Pengju Ren@XJTU 2023

Throughput Bound

 Ingredients:
 Number of operations to perform (of each type)
 Number & issue rate of “execution ports”/“functional

units” (of each type)

 Throughput bound = ops / issue rate
 E.g., (1 mla + 1 mul) / (2 + 3 cycles)

 Again, a real CPU might not exactly meet this bound

111

Pengju Ren@XJTU 2023

Software Takeaway

OoO is much less sensitive to “good code”
 Better performance portability
 Of course, compiler still matters

OoO makes performance analysis much simpler
 Throughput bound: Availability of execution ports
 Latency bound: “Critical path” latency
 Slowest gives good approximation of program perf

112

Pengju Ren@XJTU 2023

Out-of-Order Execution:
Under the Hood

113

Pengju Ren@XJTU 2023

Register Renaming

 “False dependences” can severely limit parallelism
 Write-after-read (WAR)
 Write-after-write(WAW)
 Read-after-read (RAR)

OoO processors eliminate false dependences by
transparently renaming registers
 CPU has many more “physical” than “architectural” registers
 Each time register is written, it is allocated to a new physical

register
 Physical registers freed when instructions commit

114

Pengju Ren@XJTU 2023

Original： r1  r2/r3

r4  r1*r5

r1  r3+r6

r3  r1- r5

Register Renaming
Renamed：p1  p2/p3

p4  p1*p5

p8  p3+p6

p9  p8- p5

 Maintain mapping from ISA reg. names to physical registers
 When decoding an instruction that updates ‘rx’:

– allocate unused physical register ‘py’ to hold inst result
– set new mapping from ‘rx’ to ‘py’
– younger instructions using ‘rx’ as input finds ‘py’

 De-allocate a physical register for reuse
 Need a place to hold free physical registers (Free list)

Rename
table

Physical
Registers

(p0…p79)

Architectural Registers
(ISA defined: r0…r31)

rename p8

115

Pengju Ren@XJTU 2023

Memory Disambiguation

 CPU must respect store  load ordering
 E.g., a later instruction reads a value from memory written

by an earlier instruction, but the address might be implicit.
st X3 #4

ld X2 #16

 But what if the OoO CPU executes the load first?
 Must “rollback” + execute the load again (next slide)

 Corollary: OoO CPU must track the order of all loads &
stores, and only write memory when a store commits

116

Pengju Ren@XJTU 2023

Store Buffer

allow younger LD to execute (out-of-order), must ensure
ST target block not evicted

Memory dependence and forwarding
 younger LD must check against pending ST addresses

in store buffer (CAM) for RAW dependence

117

Pengju Ren@XJTU 2023

Rollback & Recovery

 OoO CPUs speculate constantly to improve performance
 E.g., even guessing the results of a computation (“value prediction”)

 Need mechanisms to “rollback” to an earlier point in
execution when speculation goes wrong
 Complex: Need to recover old register names, flush pending

memory operations, etc (Using Checkpoint, support fewer branch
instructions on-the-fly, the # of Checkpoint is limited)

 Very expensive: Up to hundreds of instrns of work lost!
(width*depth + size_of_ROB)

118

Pengju Ren@XJTU 2023

SuperScalar Speculative OOO All Together
For an example:

119

Pengju Ren@XJTU 2023

Except the Caches and TLBs

120

Pengju Ren@XJTU 2023

Outline

 Instruction level parallel
 Pipeline
 Data hazards
 Control hazards
 Structure hazards

 Out-of-Order Execution
 Dataflow

 Optimization based on ILP
 Case study
 Throughput bound
 Latency bound
 Performance Optimization

121

Pengju Ren@XJTU 2023

Optimization Code

Why optimize code is this programmers’ problem?
 In theory, compilers and hardware “understand” all this

and can optimize your program; in practice they don’t.
 Understanding the capabilities and limitations of

optimizing compliers
 They won’t know about a different algorithm that might

be a much better “match” to the processor

122

Pengju Ren@XJTU 2023

Example : Limitation of Optimizing Compiler(1)

Compilers must be careful to apply only SAFE optimization to a
program. Instead, the compiler assumes the worst case and
programmers must put more effort into writing programs to
assist compiler to generate efficient code.

void twiddle1(long *xp, long *yp)
{

*xp += *yp;
*xp += *yp;

}

void twiddle2 (long *xp, long *yp)
{

xp += 2 *yp;
}

The compiler knows nothing about how twiddle1 will be called, it must assume
that arguments xp and yp can be equal (memory aliasing).

123

Pengju Ren@XJTU 2023

Example : Limitation of Optimizing Compiler(2)

Compilers must be careful to apply only SAFE optimization to a
program. Instead, the compiler assumes the worst case and
programmers must put more effort into writing programs to
assist compiler to generate efficient code.

long f();

long func1()
{
return f() + f() + f() + f();

}

long func2()
{
return 4*f();

}

f() modifies some part of the global program state (counter). Changing the
number of times it gets called changes the program behavior.

long counter = 0;
long f()
{

return counter++;
}

124

Pengju Ren@XJTU 2023

Example Program

void sinx(int N, int terms, float * x,
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

X[1] X[2] X[3] …. X[n-1] X[n]

Compute sin(x) using Taylor Expansion:

For each element of an array of N floating-point numbers

𝟑 𝟓 𝟕

125

Pengju Ren@XJTU 2023

 How fast is this code?

Where should we focus
optimization efforts?

What is the bottleneck?

void sinx(int N, int terms, float * x,
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

Taylor expansion of

X[1] X[2] X[3] …. X[n-1] X[n]

𝟑 𝟓 𝟕

126

Pengju Ren@XJTU 2023

Taylor expansion of

Where should we focus
optimization efforts?

 A: Where most of the
time is spent

void sinx(int N, int terms, float * x,
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

𝟑 𝟓 𝟕

127

Pengju Ren@XJTU 2023

What is the bottleneck?void sinx(int N, int terms, float * x,
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

Taylor expansion of
𝟑 𝟓 𝟕

128

Pengju Ren@XJTU 2023

Dataflow for a single iteration

OK, but how does this perform on a real machine?

sign numerdenom x[i]

numer’

LD

value

value’

-1

sign’

j

2

3

denom’

1

j’

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

129

Pengju Ren@XJTU 2023

Superscalar OOO Processor

What in microarchitecture should we worry
about?

CPU
Instruction queue Reorder Buffer

Fetch Decode

Execute

Commit

Execute Execute

In-order In-orderOut-of-order

Fetch Decode Commit

130

Pengju Ren@XJTU 2023

OOO Processor Microarchitecture

What in microarchitecture should we worry about?

 Fetch & Decode?

 Execution?

 Commit?

NO. Any reasonable machine will have sufficient
frontend throughput to keep execution busy + all
branches in this code are easy to predict (not always the
case!).

YES. This is where dataflow + most structural hazards
will limit our performance.

NO. Again, any reasonable machine will have sufficient
commit throughput to keep execution busy.

131

Pengju Ren@XJTU 2023

Intel Skylake 132

Pengju Ren@XJTU 2023

Intel Skylake Execution Microarchitecture

Integer Floating Point

Latency Pipelined? Number Latency Pipelined? Number

Add 1  4 4*  2

Multiply 3  1 4  2

Divide 21-83  1 3-15 ** 1

Load 2  2

* 3 cycles if using x87 instructions
** Can issue another operation after 4 cycles

Source: Search for “Skylake” in
https://www.agner.org/optimize/microarchitecture.pdf
https://www.agner.org/optimize/instruction_tables.pdf

133

Pengju Ren@XJTU 2023

What is our throughput bound?

sign numerdenom x[i]

 ×

 ×

numer’

LD

value

 ×

 ÷

 +

value’

-1

 ×

sign’

j

 ×

2

 ×

 + +

3

 ×

denom’

 +

1

j’

Op # Code Arch Thput
bound

Int Add 3 4 0.75

Int Mul 4 1 4

Int Div 0 1 -

FP Add 1 1 1

FP Mul 3 2 1.5

FP Div 1 1 1

Load 1 2 0.5

Throughput bound: Ignore data
hazards, think only about max

issue rate due to structural hazards

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

134

Pengju Ren@XJTU 2023

What is our latency bound?
 Latency bound: Ignore structural hazards, think only about

the critical path through data hazards

sign numerdenom x[i]

numer’

LD

value

value’

-1

sign’

j

2

3

denom’

1

j’

3+1+3+3=10 3 1+3+3=71 3+(3~15)+3
=9 to 21

135

Pengju Ren@XJTU 2023

Takeaways

Observe performance of 23 cycles / element

 Latency bound dominates throughput bound
We are latency bound!

Notes
 This analysis can often be “eyeballed” w/out full dataflow
 Actual execution is more complicated, but latency/throughput bounds

are good approximation
 (Also, avoid division!!!)

136

Pengju Ren@XJTU 2023

Speeding up : Attempt #1

 What if we eliminate unnecessary work?
void sinx_better(int N, int terms, float * x,

float *result) {
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = x[i]*x[i];
float numer = x2*x[i];
int denom = 6; // 3!
int sign = -1;

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x2;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}

result[i] = value;
}

}

A: Small improvement.

6ns / element
18 cycles / element

Why not better?

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}
𝟑 𝟓 𝟕

137

Pengju Ren@XJTU 2023

What is our latency bound?

 Find the critical path in the dataflow graph
sign numerdenom x2

numer’

value

value’

NEG

sign’

j

2

3

denom’

1

j’

3+1+3+3=10 1 31 3+(3~15)+3
=9 to 21

138

Pengju Ren@XJTU 2023

Attempt #1 Takeaways

 First attempt didn’t change latency bound

 To get real speedup, we need to focus on the
performance bottleneck

Q: Why did we get any speedup at all?
 A: Actual dynamic scheduling is complicated; would

need to simulate execution in more detail (minus the
usage of multiplier, therefore reduce the % of
structure harzard)

139

Pengju Ren@XJTU 2023

Speeding up : Attempt #2

 Let’s focus on that pesky division…
void sinx_predenom(int N, int terms, float * x, float *result) {

float rdenom[MAXTERMS];
int denom = 6;
for (int j = 1; j <= terms; j++) {

rdenom[j] = 1.0/denom;
denom *= (2*j+2) * (2*j+3);

}
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = value * value;
float numer = x2 * value;
int sign = -1;
for (int j=1; j<=terms; j++) {

value += sign * numer * rdenom[j];
numer *= x2;
sign = -sign;

}
result[i] = value;

}
}

A: Big improvement!

2.4ns / element
7.7 cycles / element

for (int j=1; j<=terms; j++) {
value += sign * numer / denom;
numer *= x2;
denom *= (2*j+2) * (2*j+3);
sign = -sign;
}

𝟑 𝟓 𝟕

140

Pengju Ren@XJTU 2023

What is our latency bound?

 Find the critical path in the dataflow graph
sign numerrdenom[j] x2

numer’

value

+ &

LD

value’

NEG

sign’

j

1

j’

1 31 3+3=6

141

Pengju Ren@XJTU 2023

Attempt #2 Takeaways

 Attacking the bottleneck got nearly 3 !

…But performance is still near the latency bound,
can we do better?

142

Pengju Ren@XJTU 2023

Speeding up : Attempt #3

Don’t need sign in inner-loop either
void sinx_predenoms(int N, int terms, float * x, float *result) {

float rdenom[MAXTERMS];
int denom = 6;
float sign = -1.0;
for (int j = 1; j <= terms; j++) {

rdenom[j] = sign/denom;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = value * value;
float numer = x2 * value;
for (int j=1; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}
}

1.1ns / element
3.5 cycles / element

for (int j=1; j<=terms; j++) {
value += sign * numer * rdenom[j];
numer *= x2;
sign = -sign;

}
𝟑 𝟓 𝟕

143

Pengju Ren@XJTU 2023

What is our latency bound?

 Find the critical path in the dataflow graph
numerrdenom[j] x2

numer’

value

+ &

LD

value’

j

1

j’

31 3 (LD will be executed speculatively,
only depends on j)

LATENCY BOUND!

144

Pengju Ren@XJTU 2023

Attempt #3 Takeaways

We’re down to the latency of a single, fast operation
per iteration
 + Observed performance is very close to this latency

bound, so throughput isn’t limiting
We’re done optimizing individual iterations

How to optimize multiple iterations?
 Eliminate dependence chains across iterations
 A) Loop unrolling (ILP)
 B) Explicit parallelism (SIMD, threading)

145

Pengju Ren@XJTU 2023

Speeding up : Loop unrolling

 Compute multiple elements per iteration

void sinx_unrollx2(int N, int terms, float * x, float *result) {
// same predom stuff as before…
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
for (int j=1; j<=terms; j+=2) {

value += numer * rdenom[j];
value += numer * x2 * redom[j+1];
numer *= x4;

}
result[i] = value;

}
}

Correct?

for (int i=0; i<N; i++) {
float value = x[i];
float x2 = value * value;
float numer = x2 * value;
for (int j=1; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}

𝟑 𝟓 𝟕

146

Pengju Ren@XJTU 2023

Speeding up : Loop unrolling

 Compute multiple elements per iteration
void sinx_unrollx2(int N, int terms, float * x, float *result) {

// same predom stuff as before…
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j+=2) {

value += numer * rdenom[j];
value += numer * x2 * rdenom[j+1];
numer *= x4;

}
for (; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}
}

0.99 ns / element
3.2 cycles / element

Didn’t change 

𝟑 𝟓 𝟕

147

Pengju Ren@XJTU 2023

What is our latency bound?
 Find the critical path in the dataflow graph

numerrdenom[j] x4

numer’

value

+ &

LD

LD

j

2

j’

3/2=1.51/2=0.5 6/2=3 (LD will be executed
speculatively, only depends on j)

rdenom[j+1] x2

+ &

value’

148

Pengju Ren@XJTU 2023

Speeding up : Loop unrolling #2

What if floating point associated + distributed?
void sinx_unrollx2(int N, int terms, float * x, float *result) {

// same predom stuff as before…
for (int i=0; i<N; i++) {

float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
int j;
for (j=1; j<=terms-1; j++) {

value += numer * (rdenom[j] + x2 * redom[j+1]);
numer *= x4;

}
for (; j<=terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}
}

0.69 ns / element
2.2 cycles / element

for (j=1; j<=terms-1; j+=2) {
value += numer * rdenom[j];
value += numer * x2 * rdenom[j+1];
numer *= x4;

}

149

Pengju Ren@XJTU 2023

What is our latency bound?

 Find the critical path in the dataflow graph
numerrdenom[j] x4

numer’

value

+ &

LD LD

j

2

j’

3/2=1.51/2=0.5 3/2=1.5 (LD will be executed
speculatively, only depends on j)

rdenom[j+1] x2

+ &

value’

150

Pengju Ren@XJTU 2023

Loads do not limit

 Consider just the slice of the program that generates the
subexpression:

 What is this program’s
latency + throughput
bound?

 Latency bound: 1 cycle / iteration!
 Through computation, not the subexpression computation –

there is no cross-iteration dependence in the subexpression!)

 Throughput bound: also 1 cycle / iteration
 1 add / 4 adders; 2 LDs / 2 LD units; 1 FP FMA / 1 FP unit
 (This will change to 2 cycles if we add the value FMA)

j2

j’

rdenom[j]

+ & ×

LD LD

rdenom[j+1] x2

subexp

151

Pengju Ren@XJTU 2023

Loads do not limit : Visualization

 Consider just the slice of
the program that
generates the
subexpression:

 Subexpressions are off the
critical path + we have
enough throughput to
produce next
subexpression each cycle
(excluding value FMA)

02

j2

j’2

j’’2

j’’’2

j’’’’

LD

LD

+ & × subexp

LD

LD

+ & × subexp’

LD

LD

+ & × subexp’’

LD

LD

+ & × subexp’’’

LD

LD

+ & × subexp’’’’

152

Pengju Ren@XJTU 2023

Loads do not limit : Example execution

INT
ADD

j=0 j=2 j=4 j=6 j=8 ...

LD1

rdenom[0] rdenom[4] rdenom[8] ...

rdenom[2] rdenom[6] ...

LD2

rdenom[1] rdenom[5] rdenom[9] ...

rdenom[3] rdenom[7] ...

FP
FMA

subexp’ value’ value’’ value’’’ value’’’’

subexp’’’ subexp’’’’’

subexp’’ subexp’’’’

FP
MUL

numer’=x^4 numer’’=x^8 numer’’’=x^12 numer’’’’=x^16 numer’’’’’=x^20 ...

Note: Throughput limit is 2 cycles / iteration
once we add value FMA, but this is dominated

by the latency bound of 3 cycles / iteration
(also from value FMA). Regardless, 2-cycle LDs

are not the bottleneck.

153

Pengju Ren@XJTU 2023

Loop unrolling takeaways

Need to break dependencies across iterations to get
speedup
 Unrolling by itself doesn’t help

We are now seeing throughput effects
 Latency bound = 1.5 vs. observed = 2.2

 Can unroll loop 3x, 4x to improve further, but…
…Diminishing returns (1.65 cycles / element at 4x)

154

Pengju Ren@XJTU 2023

What if? #1 Impact of structural hazards

Q: What would happen to if we only had a
single, unpipelined floating-point multiplier?

 A1: Performance will be much worse
 A2: We will hit throughput bound much earlier
 A3: Loop unrolling will help by reducing multiplies

155

Pengju Ren@XJTU 2023

What if? #2 Impact of structural hazards

Q: What would happen to if LDs (cache
hits) took 2 cycles instead of 1 cycle?

 A: Nothing. This program is latency bound, and
LDs are not on the critical path.

156

Pengju Ren@XJTU 2023

SIMD（Single Instruction Multiple Data）

Instantiate k copies of the hardware unit foo to
process k iterations of the loop in parallel

157

Pengju Ren@XJTU 2023

Speeding up :Going parallel (explicitly)

Use ISPC to vectorize the code

1.0 ns / element 3.2 cycles / element

void sinx
(int N,
int terms,
float * x,
float *result) {

for (int i=0; i<N; i++) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
int denom = 6; // 3!
int sign = -1;
for (int j=1; j<=terms; j++) {

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

export void sinx_reference
(uniform int N,
uniform int terms,
uniform float x[],
uniform float result[]) {

foreach (i=0 ... N) {
float value = x[i];
float numer = x[i]*x[i]*x[i];
uniform int denom = 6; // 3!
uniform int sign = -1;
for (uniform int j=1; j<=terms; j++) {

value += sign * numer / denom;
numer *= x[i] * x[i];
denom *= (2*j+2) * (2*j+3);
sign *= -1;

}

result[i] = value;
}

}

158

Pengju Ren@XJTU 2023

Speeding up : Going parallel (explicitly) + optimize
export void sinx_unrollx2a(uniform int N, uniform int terms,

uniform float x[],
uniform float result[]) {

uniform float rdenom[MAXTERMS];
uniform int denom = 6;
uniform float sign = -1;
for (uniform int j = 1; j <= terms; j++) {

rdenom[j] = sign/denom;
denom *= (2*j+2) * (2*j+3);
sign = -sign;

}
foreach (i=0 ... N) {

float value = x[i];
float x2 = value * value;
float x4 = x2 * x2;
float numer = x2 * value;
uniform int j;
for (j=1; j<=terms-1; j+=2) {

value += numer * (rdenom[j] + x2 * rdenom[j+1]);
numer *= x4;

}
for (; j <= terms; j++) {

value += numer * rdenom[j];
numer *= x2;

}
result[i] = value;

}
}

0.14 ns / element
0.45 cycles / element

159

Pengju Ren@XJTU 2023

SIMD takeaways

Well, that was easy!

 Cycles per element:

 Speedup

Scalar Vector

Unoptimized 23 3.2

Unrolled 2.2 0.45

Original

Unrolled

Vector

Vector +
Unrolled

4.9

7

7.2

10
51

160

Pengju Ren@XJTU 2023

Scaling Instruction-Level Parallelism

161

Pengju Ren@XJTU 2023

Recall from last time:
ILP & pipelining tapped out… why?

162

Pengju Ren@XJTU 2023

Superscalar scheduling is complex & hard to scale

Q: When is it safe to issue two instructions?
 A: When they are independent
 Must compare all pairs of input and output registers

 Scalability: comparisons where is “issue
width” of processor
 Not great!

163

Pengju Ren@XJTU 2023

Limitations of ILP

 4-wide superscalar 20-stage pipeline 80 instrns in flight
 High-performance OoO buffers hundreds of instructions

 Programs have limited ILP
 Even with perfect scheduling, >8-wide issue doesn’t help

 Pipelines can only go so deep
 Branch misprediction penalty grows
 Frequency (GHz) limited by power

 Dynamic scheduling overheads are significant
 Out-of-order scheduling is expensive

164

Pengju Ren@XJTU 2023

Limitations of ILP  SIMD\Multithread\Multicore

 ILP works great! …But is complex + hard to scale

 From hardware perspective, multicore is much more
efficient, but needs programmer’s effort based on the
knowledge about underlying architecture.

 Parallel software is hard!
 Industry resisted multicore for as long as possible
 When multicore finally happened, CPU arch simplified more

cores
 Many program(mer)s still struggle to use multicore effectively

165

Pengju Ren@XJTU 2023

Next Lecture：Understanding Modern
Processor：DLP and TLP

Pengju Ren@XJTU 2023

