Embedded Intelligent System and

Novel Computer Architecture

Lecture 04 - Memory Hierarchy and Programming

(Leverage the Spatial and Temporal Locality)

Pengju Ren Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Review: Accessing Memory

■ Memory latency

- The amount of time for a memory request (e.g., load, store) from a processor to be serviced by the memory system
- Example: $\mathbf{1 0 0}$ cycles, $\mathbf{1 0 0} \mathbf{~ n s e c}$
- Memory bandwidth
- The rate at which the memory system can provide data to a processor
- Example; 20 GB/s

Memory Stalls

■ A processor "stalls" when it cannot run the next instruction in an instruction stream because of a dependency on a previous instruction.

- Accessing memory is a majorsource of stalls

■ Memory access times ~100's of cycles

- Memory "access time" is a measure of latency

Caches reduce lengths of stalls

Processors run efficiently when data is resident in caches

- Caches reduce memory access latency
- Caches also provide high bandwidth data transfer to CPU

Memory Hierarchy

■ Capacity: Register << SRAM << DRAM
■ Latency: Register << SRAM << DRAM

- Bandwidth: on-chip >> off-chip

■ On a data access:
if data \in fast memory \Rightarrow low latency access (SRAM)
if data \notin fast memory \Rightarrow high latency access (DRAM)
■ Memory hierarchies only work if the small, fast memory actually stores data that is reused by the processor

Typical Memory Hierarchy

Cost/bit: highest
lowest
Principle of locality + memory hierarchy presents programmer with z as much memory as is available in the cheapest technology at the \approx speed offered by the fastest technology

Register File

Taking 32-bits RISC-V add instruction for an example:

RF design at the level of registers and multiplexers

SRAM (Cache)

Static Random Access Memory (SRAM): Data is stored in transistors and requires a constant power flow. Because of the continuous power, SRAM doesn't need to be refreshed to remember the data being stored.

(a) A typical SRAM array.
(b) A six-transistor SRAM cel

DRAM (Main Memory)

Dynamic Random Access Memory (DRAM): Data is stored in capacitors. Capacitors that store data in DRAM gradually discharge energy. DRAM is called dynamic as refreshing is needed to keep the data intact.

Magnetic Disk

Average time to access some target sector approximated by:

$T_{\text {access }}=T_{\text {avg seek }}+T_{\text {avg rotation }}+T_{\text {avg transfer }}$

Disk Access Time

- Average time to access some target sector approximated by:
- $T_{\text {access }}=T_{\text {avg seek }}+T_{\text {avg rotation }}+T_{\text {avg transfer }}$
- Seek time ($T_{\text {avg seek }}$)
- Time to position heads over cylinder containing target sector.
- Typical $\mathrm{T}_{\text {avg seek }}$ is $3-9 \mathrm{~ms}$
- Rotational latency ($T_{\text {avg rotation }}$)
- Time waiting for first bit of target sector to pass under r/w head.
- $\mathrm{T}_{\text {avg rotation }}=1 / 2 \times(1 / \mathrm{RPMs} \times 60 \mathrm{sec} / 1 \mathrm{~min}$
- Typical rotational rate $=7,200 \mathrm{RPMs}$
- Transfer time ($\mathrm{T}_{\text {avg transfer }}$)
- Time to read the bits in the target sector.
- $\mathrm{T}_{\text {avg transfer }}=1 / \mathrm{RPM} \times 1 /($ avg $\#$ sectors/track) $\times 60 \mathrm{secs} / 1 \mathrm{~min}$
time for one rotation (in minutes) fraction of a rotation to be read

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

$\rightarrow-$ Disk seek time
七-SSD access time

- - DRAM access time
\rightarrow-SRAM access time
- - CPU cycle time
-O-Effective CPU cycle time

Effective CPU cycle time: accounts for parallelism within CPU (e.g., multiple cores per CPU)

Memory Control is Getting More Complex

DRAM and Hybrid Memories

- Heterogeneousagents: CPUs, GPUs, and HWAs
- Main memory interference between CPUs, GPUs, HWAs

Many goals, many constraints, many metrics ...

Management of Memory Hierarchy

■Small/fast storage, e.g., registers

- Address usually specified in instruction
- Generally implemented directly as a register file
» but hardware might do things behind software's back, e.g., stack management, register renaming

■Larger/slower storage, e.g., main memory

- Address usually computed from values in register
- Generally implemented as a hardware-managed cache hierarchy (hardware decides what is kept in fast memory)
» but software may provide "hints", e.g., don't cache or prefetch

Two predictable properties of memory references

■ Temporal Locality: If a location is referenced it is likely to be referenced again in the near future.
-- Exploit temporal locality by remembering the contents of recently accessed locations.

■ Spatial Locality: If alocation is referenced it is likely that locations near (it will be referenced in the near future.
-- Exploit spatial locality by fetching blocks of data around recently accessed locations.

Approaches to Handling Memory Latency

- Reuse values in fast memory (bandwidth filtering)
- need temporal locality in program
- Move larger chunks (achieve higher bandwidth)
- need spatial locality in program
[• Issue multiple reads/writes in single instruction (higher bw)
- vector operations require access set of locations (typically neighboring)
- Issue multiple reads/writes in parallel (hide latency)
- prefetching issues read hint
- delayed writes (write buffering) stages writes for later operation
- both require that nothing dependent is happening (parallelism)

Typical Memory Reference Patterns

Memory Referenci

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems Journal 10(3): 168-192 (1971)

Understanding the Memory Hierarchy is critical to Programming

Parallelism and Locality

- Parallelism and data locality both critical to performance
- Recall that moving data is the most expensive operation
- Real world problems have parallelism and locality:
- Many objects operate independently of others.
- Objects often depend much more on nearby than distant objects.
- Dependence on distant objects can often be simplified.
» Example of all three: particles moving under gravity (n-body)
- Scientific models may introduce more parallelism:
- When a continuous problem is discretized, time dependencies are generally limited to adjacent time steps.
» Helps limit dependence to nearby objects (e.g, collisions)
- Far-field effects may be ignored or approximated in many cases.
- Many problems exhibit parallelism at multiple levels

Matrix Multiply, Naïve Code

Matrix Multiply, Naïve Code (If there is no Cache)

For each element of X, read one row of Y and one column of Z

Total Mem access $=\mathrm{N}^{2} \times(2+\mathrm{N}+\mathrm{N})=2 \mathrm{~N}^{2}+2 \mathrm{~N}^{3}$
Computational intensity: $2 \mathrm{~N}^{3} /\left(2 \mathrm{~N}^{2}+2 \mathrm{~N}^{3}\right) \approx 1$
(including N^{3} multiplies and N^{3} addition)

Matrix Multiply, Naïve Code (If Cache size is 3N)

```
for(i=0; i < N; i++)
    \read row i of y into fast Mem】
    for(j=0; j < N; j++) {
        Iread x[i][j] into fast Mem\
        \read column j of z into fast Mem】
        r = 0;
        for(k=0; k < N; k++)
        r = r + y[i][k] * z[k][j];
        x[i][j] Or;
        \write x[i][j] back to fast Mem\
```

 X
 i

Z
j

For each row of X, read one row of Y and every column of Z

Matrix Multiply, Naïve Code (If Cache size is 3N)

```
for(i=0; i < N; i++)
    \read row i of y into fast Mem】
    for(j=0; j < N; j++) {
        [read x[i][j] into fast Meml
        \read column j of z int0 fast Mem】
        r = 0;
        for(k=0; k < N; k++)
            r = r + y[i][k] * z[k][j];
        x[i][j] Or;
        \write x[i][j] back to fast Mem\
        }
```

Total Mem access $=\mathrm{N}^{3}$ to read each column of $z \mathrm{~N}^{2}$ times ($\mathrm{N} * \mathrm{~N}^{2}$)
$+\mathrm{N}^{2}$ to read each row of y once ($\mathrm{N} * \mathrm{~N}$)
$+2 N^{2}$ to read and write each element of $x\left(N^{2}+N^{2}\right)$
$=N^{3}+3 N^{2}$
Computational intensity: $2 \mathrm{~N}^{3} /\left(\mathrm{N}^{3}+3 \mathrm{~N}^{2}\right) \approx 2$

Matrix Multiply with Cache Tiling (If Cache size is bigger than $3 B^{2}$)

```
for(ii=0; ii < N; ii=ii+B){
    for(jj=0; jj < N; jj=jj+B){
        for(kk=0; kk < N; kk=kk+B) {
            for(i=ii; i < min(ii+B,N); i++){
                for(j=jj; j < min(jj+B,N); j++){
                r = 0;
                for(k=kk; k < min(kk+B,N); k++) {
                    r = r + y[i][k] * z[k][j];}//end k
                x[i][j] = x[i][j] + r,}//end j
        }//end i
        }//end kk
    }//end jj
}//end ii
```


Z

X
j

What type of locality does this improve?

Matrix Multiply with Cache Tiling (If Cache size is bigger than $3 B^{2}$)

$\mathrm{i}=0, \mathrm{jj}=0, \mathrm{kk}=\mathrm{B}$

$\mathrm{i} \mathrm{i}=0, \mathrm{jj}=\mathrm{B}, \mathrm{kk}=0$

$i i=0, j j=B, k k=B$

$\mathrm{ii}=\mathrm{B}, \mathrm{jj}=\mathrm{B}, \mathrm{kk}=0$

Matrix Multiply with Cache Tiling (If Cache size is bigger than $3 B^{2}$)

```
for(ii=0; ii < N; ii=ii+B) {
    for(jj=0; jj < N; jj=jj+B) {
    \read B*B block of x into fast Mem\
        for(kk=0; kk < N; kk=kk+B) {
            \read B*B block of }Y\mathrm{ into fast Mem\
        \read B*B block of z into fast Mem\
        for(i=ii; i < min (ii+B,N) ; i++)
            for(j=jj; j < min(jj+B,N); j++)
                r = 0;
                        for(k=kk; k < min(kk+B,N); k++)
                r = r + Y[i][k] * z[k][j];
                x[i][j] = x[i][j] + r;}
            }
        }
```

 \(+2 N^{2}\) read and write each block of \(x\) once \(\left(2\left(\frac{N}{B}\right)^{2} * B^{2}=2 N^{2}\right)\)
 $$
=2 N^{3} / \mathrm{B}+2 N^{2}
$$

Computational intensity : $2 N^{3} /\left(2 N^{3} / \mathrm{B}+2 N^{2}\right) \approx B$ when N is big

Recursive Matrix Multiplication

$$
\begin{array}{|c|c|}
\hline \mathrm{A}_{00^{*}} \mathrm{~B}_{00} & \mathrm{~A}_{00^{*}} \mathrm{~B}_{01} \\
\mathrm{~A}_{01}+\mathrm{B}_{10} & \mathrm{~A}_{01 *} \mathrm{~B}_{11} \\
\hline \mathrm{~A}_{10^{*}} \mathrm{~B}_{00} & \mathrm{~A}_{10^{*}} \mathrm{~B}_{01} \\
+\quad+ & + \\
\mathrm{A}_{11^{*}} \mathrm{~B}_{10} & \mathrm{~A}_{11^{*}} \mathrm{~B}_{11} \\
\hline
\end{array}
$$

- True when each bock is a 1×1 or $n / 2 \times n / 2$
- For simplicity: square matrices with $n=2^{m}$
- Extends to general rectangular case

Divide and conquer

■ Split the problem into smaller sub-problems
■ continue until the sub-problems can be solve directly

Recursive Matrix Multiplication

```
Define C = RMM (A, B, n)
    if (n==1) { COO = AOO * BOO ; } else
    { COO = RMM (A00 , B00 , n/2) + RMM (A01 , B10 , n/2)
        C01 = RMM (A00 , B01 , n/2) + RMM (A01 , B11 , n/2)
        C10 = RMM (A10 , B00 , n/2) + RMM (A11 , B10 , n/2)
        C11 = RMM (A11 RO1_n/2) + RMM (A11 R11 n/2)}
        For RMM, we DO NOT need to know Mfast
                        in stead of Blocking and Tiling
```

Arith(n) = \# arithmetic operations in $\operatorname{RMM}(., ., n)$
$=8 \cdot \operatorname{Arith}(n / 2)+4(n / 2)^{2}$ if $n>1$, else 1
$=2 n^{3}$
$\mathrm{W}(\mathrm{n})$ = \# words moved between fast, slow memory by RMM (. . . , n)
$=8 \cdot W(n / 2)+4 \cdot 3(n / 2)^{2}$ if $3 n^{2}>M_{\text {fast }}$, else $3 n^{2}$
$=O\left(n^{3} / \sqrt{M_{f a s t}}\right) \quad$... same as blocked matmul

Strassen's Matrix Multiply

- The traditional algorithm (with or without tiling) has $\mathrm{O}\left(\mathrm{n}^{3}\right)$ flops
- Strassen discovered an algorithm with asymptotically lower flops $O\left(\mathrm{n}^{2.81}\right)$
- Consider a 2×2 matrix multiply, normally takes 8 multiplies, 4 adds
- Strassen does it with 7 multiplies and 18 adds

$$
\begin{aligned}
& \text { Let } M=\left(\begin{array}{ll}
\text { m11 } & \text { m12 } \\
\text { m21 } & \text { m22 }
\end{array}\right)=\left(\begin{array}{ll}
\text { a11 } & \text { a12 } \\
\text { a21 } & \text { a22 }
\end{array}\right)\left(\begin{array}{ll}
\text { b11 } & \text { b12 } \\
\text { b21 } & \text { b22 }
\end{array}\right) \\
& \text { Let } \\
& \begin{array}{ll}
\mathrm{p} 1=(\mathrm{a} 12-\mathrm{a} 22) *(\mathrm{~b} 21+\mathrm{b} 22) & \mathrm{p} 5=\mathrm{a} 11 *(\mathrm{~b} 12-\mathrm{b} 22) \\
\mathrm{p} 2=(\mathrm{a} 11+\mathrm{a} 22) *(\mathrm{~b} 11+\mathrm{b} 22) & \mathrm{p} 6=\mathrm{a} 22 *(\mathrm{~b} 21-\mathrm{b} 11) \\
\mathrm{p} 3=(\mathrm{a} 11-\mathrm{a} 2) *(\mathrm{~b} 11+\mathrm{b} 12) & \mathrm{p} 7=(\mathrm{a} 21+\mathrm{a} 22) * \mathrm{~b} 11 \\
\mathrm{p} 4=(\mathrm{a} 11+\mathrm{a} 12) * \mathrm{~b} 22
\end{array} \\
& \text { Then } \mathrm{m} 11=\mathrm{p} 1+\mathrm{p} 2-\mathrm{p} 4+\mathrm{p} 6 \\
& \mathrm{~m} 12=\mathrm{p} 4+\mathrm{p} 5 \\
& \mathrm{~m} 21=\mathrm{p} 6+\mathrm{p} 7 \\
& \text { Extends to nxn by divide \& conquer } \\
& \mathrm{m} 22=\mathrm{p} 2-\mathrm{p} 3+\mathrm{p} 5-\mathrm{p} 7
\end{aligned}
$$

Strassen (continued)

$$
\begin{aligned}
\mathrm{T}(\mathrm{n}) & =\text { Cost of multiplying nxn matrices } \\
& =7 T\left(\frac{n}{2}\right)+\mathbf{1 8}\left(\frac{n}{2}\right)^{2} \\
& =O\left(n^{\log _{2} 7}\right) \\
& =O\left(n^{2.81}\right)
\end{aligned}
$$

- Asymptotically faster
- Several times faster for large \mathbf{n} in practice
- Cross-over depends on machine
- "Tuning Strassen's Matrix Multiplication for Memory Efficiency", M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98

Master Theorem

The Master Theorem for solving recurrences applies to recurrences of the form

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n) \quad \text { Let } f(n)=n^{c}
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

IDEA: Compare $\boldsymbol{n}^{\log _{b} a}$ with \boldsymbol{n}^{c}

\square CASE 1: $\log _{b} a \gg c$

$$
f(n)=\mathbf{O}\left(n^{\log _{6}-\varepsilon}\right) \text {, constant } \varepsilon>0 \Rightarrow T(n)=O\left(n^{\log _{b} a}\right) .
$$

■ CASE 2: $\log _{b} a \approx c$

$$
f(n)=\Theta\left(n^{\log _{b} a} \lg ^{k} n\right) \text {, constant } k \geq 0 \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log n\right)
$$

- CASE 3: $\log _{b} a \ll c$

$$
\mathrm{f}(\mathrm{n})=\Omega\left(\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}+\varepsilon}\right), \text { constant } \varepsilon>0 \quad \Rightarrow \mathbf{T}(\mathrm{n})=\boldsymbol{\Theta}(\mathrm{f}(\mathrm{n})) .
$$

Master Theorem

■ Recursive Matrix Multiplication

$$
T(n)=8 T\left(\frac{n}{2}\right)+n^{2}
$$

$$
\Rightarrow O\left(n^{\log _{2} 8}\right)=0\left(n^{3}\right)
$$

■ Strassen Matrix Multiplication

$$
T(n)=7 T\left(\frac{n}{2}\right)+18\left(\frac{n}{2}\right)^{2}
$$

$$
\Rightarrow O\left(n^{\log _{2} 7}\right)=O\left(n^{2.81}\right)
$$

■ Binary Search: $\quad T(n)=\pi\left(\frac{n}{2}\right)+O(1)$
$\Rightarrow \boldsymbol{O}\left(\log _{2} \boldsymbol{n}\right)$
■ Merge Sort:

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)
$$

$$
\Rightarrow \boldsymbol{O}\left(\boldsymbol{n} \log _{2} \boldsymbol{n}\right)
$$

■ Binary Tree traversal: $\quad T(n)=2 T\left(\frac{n}{2}\right)+O(1) \Rightarrow O(n)$

Master Theorem

$$
\begin{aligned}
& \text { 解 } \\
& \begin{array}{r}
\rightarrow f(n) \\
\rightarrow a f\left(\frac{n}{b}\right)
\end{array} \\
& T(n)=a T\left(\frac{n}{b}\right)+f(n) \\
& \rightarrow \boldsymbol{f}(\boldsymbol{n}) \quad \text { Let } \boldsymbol{f}(\boldsymbol{n})=\boldsymbol{n}^{c} \\
& T(n)=f(n)+a f\left(\frac{n}{b}\right)+a^{2} f\left(\frac{n}{b^{2}}\right)+\cdots a^{k} f(1) \\
& =\sum_{i=0}^{k} a^{i} f\left(\frac{n}{b^{i}}\right)=\sum_{i=0}^{k} a^{i}\left(\frac{n}{b^{i}}\right)^{c}=n^{c} \sum_{i=0}^{k}\left(\frac{a}{b^{c}}\right)^{i} \\
& \text { Let } \frac{a}{b^{c}}=\boldsymbol{q} \\
& T(n)=n^{c} \frac{1-q^{k+1}}{1-q} \\
& \text { 1) } \boldsymbol{q}<1 \Rightarrow \frac{a}{b^{c}}<1 \Rightarrow a<b^{c} \Rightarrow c>\log _{b} a \\
& T(n)=n^{c} \frac{1}{1-q}=\alpha n^{c} \Rightarrow T(n)=O\left(n^{c}\right) \\
& \text { 2) } \boldsymbol{q}=1 \Rightarrow \frac{a}{b^{c}}=1 \Rightarrow a=b^{c} \Rightarrow c=\log _{b} a \\
& \boldsymbol{T}(\boldsymbol{n})=\boldsymbol{n}^{c} \boldsymbol{k}=\boldsymbol{n}^{c} \log _{b} \boldsymbol{n}=\boldsymbol{n}^{c} \frac{\log _{2} \boldsymbol{n}}{\log _{2} \boldsymbol{b}} \Rightarrow \boldsymbol{\beta} \boldsymbol{n}^{c} \log _{2} \boldsymbol{n} \\
& \Rightarrow \boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{c} \log _{2} \boldsymbol{n}\right)=\boldsymbol{O}\left(\boldsymbol{n}^{\log _{b} a} \log _{2} \boldsymbol{n}\right) \\
& \text { 3) } \boldsymbol{q}>1 \Rightarrow \frac{\boldsymbol{a}}{b^{c}}>\mathbf{1} \Rightarrow \boldsymbol{a}>\boldsymbol{b}^{c} \Rightarrow \boldsymbol{c}<\log _{b} a \\
& \boldsymbol{T}(\boldsymbol{n})=\boldsymbol{n}^{c} \boldsymbol{q}^{k}=\boldsymbol{n}^{c}\left(\frac{a}{b^{c}}\right)^{\log _{b} n}=\boldsymbol{n}^{c} \frac{a^{\log _{b} n}}{b^{\log _{b} n}} \\
& =n^{c} \frac{a^{\log _{b} n}}{\left(b^{\log _{b} n}\right)^{c}}=n^{c} \frac{a^{\log _{b} n}}{n^{c}}=a^{\log _{a} n} \log _{a} b a^{\log _{a} n \log _{b} n}=n^{\log _{b} a} \quad \Rightarrow T(n)=O\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Matrix-matrix multiplication take-aways

- Matrix matrix multiplication

DComputational intensity $\mathrm{O}\left(2 n^{3}\right)$ flops on $\mathrm{O}\left(3 \mathrm{n}^{2}\right)$ data

- Tiling matrix multiplication (cache aware)

DCan increase to B if BxB blocks fit in fast memory
$\square \mathrm{B}=\sqrt{M_{\text {fast }} / 3}$, the fast memory size $M_{\text {fast }}$
\square Tiling (a.k.a blocking) "cache-aware"
-Cache-oblivious (Recursive Matrix Multiplication)

Roofline Módel
 (How fast can an algorithm go in practice?)

Think of "Data movement" very generally

■ Data movement between a processor and its cache

- Data movement between processor and memory (e.g., memory on same machine)
- Data movement between processor and a remote memory (e.g., memory on another node in the cluster, accessed by sending a network message)

Remote memory (1 network hop)
Remote memory (N network hops)

Accesses not satisfied in "local memory" cause communication with "next level"

Data Movement or Compute

Which takes longer? Data movement or Compute?
Time $=\max (\# F P$ ops/Peak GFLOP/s, \#Bytes/Peak GB/s)
\#FP ops/Time $=\min \left(\right.$ Peak GFLOP/s, (\#FP ops/\#Bytes) ${ }^{*}$ Peak GB/s)
Al (Arithmetic or Computational Intensity)

Arithmetic or Computational Intensity

- Can look at Arithmetic intensity as a spectrum
- Constants (at least leading constants) will matter

Operast leadion	FLOPs	Data	
Dot Prod	$O(n)$	$O(n)$	
Mat Vec	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$	
MatMul	$O\left(n^{3}\right)$	$O\left(n^{2}\right)$	
N-Body	$O\left(n^{2}\right)$	$O(n)$	
(infinite			
cache)			
FFT	$O(n \log n)$	$O(n)$	

Ideal cache - to be refined

Cases:3D 7-point Stencil

$$
\begin{aligned}
& \text { for } x, y, z \text { in } 0 \text { to } n-1 \\
& \text { Next }[x, y, z]= \\
& \text { C0 } * \text { Current }[x, y, z]+ \\
& \text { C1 } * \text { Current }[x-1, y, z]+ \\
& \text { Current }[x+1, y, z]+ \\
& \text { Current }[x, y-1, z]+ \\
& \text { Current }[x, y+1, z]+ \\
& \text { Current }[x, y, z-1]+ \\
&\text { Current }[x, y, z+1]) ;
\end{aligned}
$$

3D: "7-point stencil"
8 flops, 8 memory references (7 reads, 1 store) per point
The memory layout of data structure and Cache matters

PDEs (Partial Differential Equations)

Continuous variables depending on continuous parameters E.g. Heat, Elasticity, Electrostatics, Finance, Circuits ...

Consider Deriving the heat equation:
A bar of uniform material, insulated except at ends
Let $u(x, t)$ be the temperature at position x at time t
Heat travels from $x-h$ to $x+h$ at rate proportional to:

$$
\frac{d u(x, t)}{d t}=c \frac{\frac{u(x-h, t)-u(x, t)}{h}-\frac{u(x, t)-u(x+h, t)}{h}}{h}
$$

As $\boldsymbol{h} \rightarrow \mathbf{0}$, we get the heat equation:

$$
\frac{d u(x, t)}{d t}=c \frac{d^{2} u(x, t)}{d x^{2}}
$$

PDEs (Partial Differential Equations)

$$
\frac{d u(x, t)}{d t}=c \frac{d^{2} u(x, t)}{d x^{2}}
$$

Discretize time and space using explicit approach fforward Euler) to approximate time derivative:

$$
\begin{gathered}
\frac{u(x, t+\delta)-u(x, t)}{\delta}=C \frac{\frac{u(x-h, t)-u(x, t)}{h}-\frac{u(x, t)-u(x+h, t)}{h}}{h} \\
u(x, t+\delta)=u(x, t)+C \frac{\delta}{h^{2}}(u(x-h, t)-2 u(x, t)+u(x+h, t)) \\
\text { Let } z=C \frac{\delta}{h^{2}}, \text { then } \\
u(x, t+\delta)=z * u(x-h, t)+(1-2 z) * u(x, t)+z * u(x+h, t)
\end{gathered}
$$

and change variable $x=\mathbf{i} * \mathbf{h}, t=\mathbf{k} * \delta$ and $u(x, t)$ to $u(i, k)$, we get:

$$
u(i, k+1)=z * u(i-1, k)+(1-2 z) * u(i, k)+z * u(i+1, k))
$$

PDEs (Partial Differential Equations)

initial conditions on $u(i, 0)$ boundary conditions on $u(0, k)$ and $u(N, k)$

1-D : "3-point Stencil"

PDEs (Partial Differential Equations)

$$
\begin{aligned}
& u(x, y, t+\delta) \\
& =u(x, y, t)+C \frac{\delta}{h^{2}}((x-h, y, t)+u(x+h, y, t)+u(x, y-h, t)+u(x, y+h, t)-4 u(x, y, t)) \\
& \quad \text { Let } z=C \frac{\delta}{h^{2}}, \text { then } \\
& u(x, y, t+\delta) \\
& =z * u(x-h, y, t)+z * u(x+h, y, t)+z * u(x, y-h, t)+z * u(x, y+h, t)-(1-4 z) * u(x, y, t))
\end{aligned}
$$

PDEs (Partial Differential Equations)

$$
\begin{aligned}
& u(x, y, t+\delta) \\
& =z * u(x-h, y, t)+z * u(x+h, y, t)+z * u(x, y-h, t)+z * u(x, y+h, t)-(1-4 z) * u(x, y, t)) \\
& \quad \text { change variable } x=\mathbf{i} * \mathbf{h}, \mathbf{y}=\mathbf{j} * \mathbf{h}, \mathrm{t}=\mathbf{k} * \delta \text { and } u(x, y, t) \text { to } u(i, j, k) \text {, we get: }
\end{aligned}
$$

$$
u(i, j, k+1)
$$

$$
=z * u(i-1, j, k)+z * u(i+1, j, k)+z * u(i, j-1, k)+z * u(i, j)+1, k)-(1-4 z) * u(i, j, k))
$$

How to speedup stencil kernel?

Can it benefits from Cache?
$\left.\begin{array}{c:ccc} & 1-4 z & z & \\ z & & 1-4 z & z \\ z & & z & 1-4 z\end{array}\right]$

2-D : "5-point Stencil"

Cases: Galaxy evolution (N-body)

■ Newtonian laws of physics

- The gravitational force between two bodies of masses $m_{a} \& m_{b}$:

$$
F=\frac{G m_{a} m_{b}}{r^{2}}
$$

\square Subject to the force, acceleration occurs

$$
F=m \times a
$$

■ Let the time interval be Δt \& current velocity v^{t}, position x^{t}
\square New velocity v^{t+1} :

$$
F=m \frac{v^{t+1}-v^{t}}{\Delta t} \Rightarrow v^{t+1}=v^{t}+\frac{F \Delta t}{m}
$$

\square New position x^{t+1} :

$$
x^{t+1}=x^{t}+v^{t+1} \Delta t
$$

Cases: Galaxy evolution (N-body)

Represent galaxy as a collection of N particles (stars), assume mass is mi :

```
for(t=0; t<T; t++) {
    for(i=0; i<N; i++) {
        F = Compute_Force(i); // compute force in O(N^2)
        v_new[i]=v[i]+F*dt/mi;0// compute new velocity
            x_new[i]=x[i]+v_new[i]*dt; // compute new position
    }
    for(i=0; i<N; i++) {
        x[i] = x_new[i]; // update position
        v[i] = v_new[i]; // update velocity
    }
}
```

Non-feasible as N increases due to $\mathrm{O}\left(\mathrm{N}^{2}\right)$ complexity

Cases: Galaxy evolution (N-body)

■ Naive algorithm is $\mathrm{O}\left(N^{2}\right)$ - all particles interact with all others
■ Magnitude of gravitational force falls off with distance, so reduce time complexicity by approximating a cluster of bodies as a single distant body.
■ Result is an $\mathrm{O}(N \log N)$ algorithm for computing gravitational forces between all stars

Cases: N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions Record the center mass and position of each internal node

Cases: N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions Record the center mass and position of each internal node

Cases: N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions Record the center mass and position of each internal node

Cases: N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions Record the center mass and position of each internal node

Cases: N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object

1. traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node issufficiently far from the body, approximate the internal node as a single body

Far means: $d / r<\theta(e . t .0<\theta<1)$
r : the distance between the body and the node's center-of-mass
d: the width of the region

Cases: N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object

1. traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node issufficiently far from the body, approximate the internal node as a single body

Far means: $d / r<\theta$ (e.t. $0<\theta<1$)
r : the distance between the body and the node's center-of-mass
d: the width of the region

$$
\begin{aligned}
& d / r_{A}=16 / 10>\theta \\
& d / r_{B}=16 / 2>\theta \\
& d / r_{C}=16 / 15>\theta \\
& d / r_{D}=16 / 20<\theta
\end{aligned}
$$

Cases: N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object
3. If it is a leaf node, calculate the force and add to the object.
4. Otherwise, recursively compute the force from children of the internal node

$$
\begin{aligned}
& d / r_{A^{\prime}}=8 / 7>\theta \\
& d / r_{B^{\prime}}=8 / 15<\theta \\
& d / r_{C^{\prime}}=8 / 20<\theta
\end{aligned}
$$

A^{\prime} and C^{\prime} are leaf nodes, B^{\prime} treated like a single node

Cases: N-body (Barnes-hut algorithm)

$\square \theta$ controls the accuracy and approximation error of the algorithm
$\square \theta=0->d / r$ ALWAYS larger than θ-> same as brute force
$\square \theta=1$-> most likely only need to consider the object within tho_amo_ductor/rocion
\square If

How to speedup N-body kernel ?
 (Load balancing and Data Locality)

■ The tree must be re-blilt for each time interval
for each time step in simulation:
build tree structure compute (aggregate mass, center-of-
mass) for interior nodes
for each particle:
traverse tree to accumulate gravitational forces update particle position based on gravitational forces

Recap: Data Movement or Compute

Which takes longer? Data movement or Compute?
Time = max (\#FP ops/Peak GFLOP/s, \#Bytes/Peak GB/s)
\#FP ops/Time $=\min$ (Peak GFLOP/s, (\#FP ops/\#Bytes)*Peak GB/s)
Al (Arithmetic or Computational Intensity)

Roofline Model

Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual performance model for multicore architectures. Commun. ACM 52, 4

Roofline Model

Summary of Lecture 1-4

■ Details of machine are important for performance

- Processor and memory system (not just parallelism)
- What to expect? Use understanding of hardware limits
- There is parallelism hidden within processors
- Pipelining, OoO, SIMD, SMT, VLIW, etc

■ Machines have memory hierarchies

- 100s of cycles to read from DRAM (main memory)
- Caches are fast (small) memory that optimize average case

■ Locality is at least as important as computation

- Temporal: re-use of data recently used
- Spatial: using data nearby to recently used data

■ Can rearrange or prefetch code/data to improve locality

- Goal: minimize communication = data movement

Next Lecture OSystolic Array

Appendix: Data Movement and Programming (remote memory access)

Simulating of ocean currents (2D stencil)

Discretize 3D ocean volume into slices represented as 2D grids
Discretize time evolution of ocean: Δt
High accuracy simulation requires small Δt and high resolution grids

A 2D-grid based solver

Solve partial differential equation (PDE) on ($\mathrm{N}+2$) $\mathrm{x}(\mathrm{N}+2$) grid Iterative solution

- Perform Gauss-Seidel sweeps over grid until convergence

$$
\begin{aligned}
A[i, j] & =0.2^{*}(A[i, j]+A[i, j-1]+A[i-1, j] \\
& +A[i, j+1]+A[i+1, j+1])
\end{aligned}
$$

Grid solver algorithm

```
const int n;
float* A; // assume allocated to grid of N+2 x N+2 elements
void solve(float* A) {
    float diff, prev;
    bool done = false;
    while (!done) { // outermost loop: iterations
    diff = 0.f;
    for (int i=1; i<n; i++) { // iterate overnon-border points of grid
        for (int j=1; j<n; j++) {
            prev = A[i,j];
            A[i,j] = 0.2* (A[i,j] + A[i-1,j] + A[i,j-1] + A[i+1,j] + A[i,j+1]);
            diff+= fabs (A[I,j] - prev); // compute amount of change
        }
    }
    if (diff/(n*n) < TOLERANCE) // quit if converged
    done = true;
    }
}
```


Step1: identify dependencies(problem decomposition)

Each row element depends on element to left.
■ Each column depends on previous column.

Step1: identify dependencies(problem decomposition)

There is independent work along the diagonals!

Good: parallelism exists!
Possible implementation strategy:

1. Partition grid cells on a diagonal into tasks
2. Update values in parallel
3. When complete, move to next diagonal

Bad: independent work is hard to exploit
■ Not much parallelism at beginning and end of computation.
■ Frequent synchronization (after completing each diagonal)

New approach: reorder grid cell update via "red-black" coloring

Update all red cells in parallel When done updating red cells, update all black cells in parallel (respect dependency on red cells)
Repeat until convergence

Possible assignments of work to processors

Which is better ? Does it matter ?

Consider dependencies (data flow)

1.Perform red update in parallel
2.Wait until all processors done with update
3.Communicate updated red cells to other processors
4.Perform black update in parallel
5.Wait until all processors done with update 6.Communicate updated black cells to other processors
7.Repeat

Communication resulting from assignment

Blocked Assignment

Interleaved Assignment

\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	-	\bigcirc	-	\bigcirc	-	P1
-	-	\bullet	-		0	\bigcirc	\bigcirc	-	\bigcirc	-	-	P2
\bigcirc	\bullet	\bigcirc	-	0	,	\bigcirc	-	\bigcirc	\bullet	\bigcirc	-	P3
\bullet		-	0	-	-	\bullet	-	\bullet	-	\bullet	-	P4
	\bigcirc	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	-	\bigcirc	\bullet	\bigcirc	-	P1
-	-	\bullet	-	\bullet	-	\bullet	-	\bullet	-	-	-	P2
\bigcirc	-	P3										
\bullet	-	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	-	\bullet	-	-	-	P4
\bigcirc	-	\bigcirc	\bullet	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	-	P1
-	-	\bullet	\bigcirc	\bullet	-	\bullet	-	\bullet	-	-	-	P2
\bigcirc	-	\bigcirc	\bullet	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	-	P3
\bullet	\bigcirc	\bullet	\bigcirc	\bullet	-	\bullet	-	-	\bigcirc	\bullet	-	P4

Blocked assignment requires less data to be communicated between processors

Shared address space expression of solver

Programmer is responsible for synchronization

Common synchronization primitives:
\square Locks (provide mutual exclusion): only one thread in the critical region at a time
\square Barriers: wait for threads to reach this point

Barrier Synchronization Primitive

barrier(num_threads)
Barriers are a conservative way to express dependencies
\square Barriers divide computation into phases
\square All computations by all threads before the barrier complete before any computation in any thread after the barrier begins

Inherent Communication

For NxN grid and P processor, the Arithmetic intensity are:

Interleaved Assignment											
	\bullet	\bigcirc	- 0		O	\bullet	\bigcirc		\bigcirc		P1
\bullet	-	-	-		。	\bigcirc	-	\bigcirc	\bullet	\bigcirc	P2
\bigcirc		0	- 0	\bullet	\bigcirc	-	\bigcirc	\bullet	\bigcirc	-	P3
	0	-	- -	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	-	P4
10	-	\bigcirc	- 0	\bullet	\bigcirc	-	\bigcirc	-	\bigcirc	-	P1
\bullet	-	\bullet	- -	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	P2
\bigcirc	-	\bigcirc	- 0	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	-	P3
\bullet	\bigcirc	\bullet	- -	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	P4
\bigcirc	-	\bigcirc	- 0	-	\bigcirc	\bullet	0	-	\bigcirc	\bullet	P1
\bullet	\bigcirc	\bullet	- -	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	\bullet	\bigcirc	P2
\bigcirc	-	\bigcirc	- 0	-	\bigcirc	\bullet	0	-	\bigcirc	-	P3
\bullet	\bigcirc	-	$\bigcirc \cdot$	\bigcirc	\bullet	\bigcirc	-	\bigcirc	\bullet	\bigcirc	P4

$$
\frac{\text { elements computed }}{\text { elements communicated }}=\frac{1}{2}
$$

Reducing inherent communication

2D blocked assignment: Nx N grid

Elements: \boldsymbol{N}^{2}
Processors: \boldsymbol{P}
Elements computed (per processor): $\frac{N^{2}}{P}$
Elements communicated(per processor): $\frac{N}{\sqrt{P}}$
Arithmetic intensity: $\frac{N}{\sqrt{P}}$

Recap: Think of "Data movement" very generally

- Data movement between a processor and its cache

■ Data movement between processor and memory (e.g., memory on same machine)

- Data movement between processor and a remote memory (e.g., memory on another node in the cluster, accessed by sending a network message)

Remote memory (1 network hop)
Remote memory (N network hops)

Accesses not satisfied in "local memory" cause communication with "next level"

Data access in grid solver: row-major traversal

Data access in grid solver: row-major traversal

Data access in grid solver: row-major traversal

Assume row-major layout. Assume cache line is 4 elements. Cache capacity is 24 elements

Although elements $(0,2)$ and $(1,1)$ had been accessed previously, they are no longer present in cache at start of processing row 2

Artifactual communication due to cache line communication granularity

Reducing artifactual comm: blocked data layout

■ Blue lines indicate consecutive memory addresses)
■ don't confuse blocked assignment of work to threads with blocked data layout in the address space

