
Embedded Intelligent System and

Novel Computer Architecture

Lecture 04 – Memory Hierarchy and Programming
（Leverage the Spatial and Temporal Locality)

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2023

http://gr.xjtu.edu.cn/web/pengjuren

Review: Accessing Memory

2

◼ Memory latency

 The amount of time for a memory request (e.g., load, store) from a

processor to be serviced by the memory system

 Example: 100 cycles, 100 nsec

◼ Memory bandwidth

 The rate at which the memory system can provide data to a processor

 Example: 20 GB/s

Pengju Ren@XJTU 2023

Memory Stalls

3

◼ A processor “stalls” when it cannot run the next instruction

in an instruction stream because of a dependency on a

previous instruction.

◼ Accessing memory is a major source of stalls

ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

◼ Memory access times ~ 100’s of cycles

 Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction
until data at mem[r2] and mem[r3] have
been loaded from memory

Pengju Ren@XJTU 2023

Caches reduce lengths of stalls

4

Processors run efficiently when data is resident in caches
◼ Caches reduce memory access latency
◼ Caches also provide high bandwidth data transfer to CPU

Pengju Ren@XJTU 2023

Memory Hierarchy

5

◼ Capacity: Register << SRAM << DRAM
◼ Latency: Register << SRAM << DRAM
◼ Bandwidth: on-chip >> off-chip
◼On a data access:

if data  fast memory  low latency access (SRAM)
if data  fast memory  high latency access (DRAM)

◼Memory hierarchies only work if the small, fast memory actually
stores data that is reused by the processor

holds frequently used data
::

Pengju Ren@XJTU 2023

Typical Memory Hierarchy

6

Principle of locality + memory hierarchy presents programmer with
≈ as much memory as is available in the cheapest technology at the
≈ speed offered by the fastest technology

Pengju Ren@XJTU 2023

Register File

7

rs2-=Inst[24:20]

rs1=Inst[19:15]

rd=Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

Reg[rs1]

Reg[rs2]

Taking 32-bits RISC-V add instruction for an example:

With two read ports and one write port

W/R

DataD

AddrD
DataA (Reg[rs1])

DataB (Reg[rs2])

AddrA

AddrB

Mux

Mux

RF design at the level of registers and multiplexers

Pengju Ren@XJTU 2023

SRAM (Cache)

8

Static Random Access Memory (SRAM): Data is stored in transistors and
requires a constant power flow. Because of the continuous power, SRAM
doesn’t need to be refreshed to remember the data being stored.

Pengju Ren@XJTU 2023

DRAM (Main Memory)

9

R
o

w
 A

d
d

re
ss

D

ec
o

d
er

Col.
1

Col.
2M

Row 1

Row 2N

Column Decoder &
Sense Amplifiers

M

N

N+M

bit lines
word lines

Memory cell
(one bit)

DData

1-T DRAM Cell

word

bit

access transistor

Storage
capacitor (FET gate,
trench, stack)

Dynamic Random Access Memory (DRAM): Data is stored in capacitors.
Capacitors that store data in DRAM gradually discharge energy. DRAM is
called dynamic as refreshing is needed to keep the data intact.

Pengju Ren@XJTU 2023

Magnetic Disk

10

Read/write heads
move in unison
from cylinder to cylinder

The disk surface
spins at a fixed
rotational rateDisks consist of platters,

each with two surfaces

Each surface consists
of concentric rings
called tracks

Each track consists
of sectors
separated by gaps

Average time to access some target sector approximated by:

Taccess = Tavg seek + Tavg rotation + Tavg transfer

Pengju Ren@XJTU 2023

Disk Access Time

11

 Average time to access some target sector approximated by:
▪ Taccess = Tavg seek + Tavg rotation + Tavg transfer

 Seek time (Tavg seek)
▪ Time to position heads over cylinder containing target sector.

▪ Typical Tavg seek is 3—9 ms

 Rotational latency (Tavg rotation)
▪ Time waiting for first bit of target sector to pass under r/w head.

▪ Tavg rotation = 1/2 x 1/RPMs x 60 sec/1 min

▪ Typical rotational rate = 7,200 RPMs

 Transfer time (Tavg transfer)
▪ Time to read the bits in the target sector.

▪ Tavg transfer = 1/RPM x 1/(avg # sectors/track) x 60 secs/1 min

time for one rotation (in minutes) fraction of a rotation to be read

Pengju Ren@XJTU 2023

The CPU-Memory Gap

12

0.0

0.1

1.0

10.0

100.0

1,000.0

10,000.0

100,000.0

1,000,000.0

10,000,000.0

100,000,000.0

1985 1990 1995 2000 2003 2005 2010 2015

T
im

e
 (

n
s

)

Year

Disk seek time

SSD access time

DRAM access time

SRAM access time

CPU cycle time

Effective CPU cycle time

DRAM

CPU

SSD

Disk

Effective CPU cycle time:
accounts for parallelism
within CPU (e.g., multiple
cores per CPU)

The gap widens between DRAM, disk, and CPU speeds.

Pengju Ren@XJTU 2023

Memory Control is Getting More Complex

• Heterogeneous agents: CPUs, GPUs, and HWAs

• Main memory interference between CPUs, GPUs, HWAs

CPU CPU CPU CPU

Shared Cache

GPU

HWA HWA

DRAM and Hybrid Memory Controllers

DRAM and Hybrid Memories

Many goals, many constraints, many metrics …

Pengju Ren@XJTU 2023

Management of Memory Hierarchy

◼Small/fast storage, e.g., registers

– Address usually specified in instruction

– Generally implemented directly as a register file

» but hardware might do things behind software’s back, e.g.,
stack management, register renaming

◼Larger/slower storage, e.g., main memory

– Address usually computed from values in register

– Generally implemented as a hardware-managed cache hierarchy
(hardware decides what is kept in fast memory)

» but software may provide “hints”, e.g., don’t cache or
prefetch

14

Pengju Ren@XJTU 2023

Two predictable properties of memory references

◼ Temporal Locality: If a location is referenced it is likely to
be referenced again in the near future.
-- Exploit temporal locality by remembering the contents of recently
accessed locations.

◼ Spatial Locality: If a location is referenced it is likely that
locations near it will be referenced in the near future.
-- Exploit spatial locality by fetching blocks of data around recently
accessed locations.

15

Pengju Ren@XJTU 2023

Approaches to Handling Memory Latency

• Reuse values in fast memory (bandwidth filtering)

– need temporal locality in program

• Move larger chunks (achieve higher bandwidth)

– need spatial locality in program

• Issue multiple reads/writes in single instruction (higher bw)

– vector operations require access set of locations (typically
neighboring)

• Issue multiple reads/writes in parallel (hide latency)

– prefetching issues read hint
– delayed writes (write buffering) stages writes for later operation
– both require that nothing dependent is happening (parallelism)

16

Pengju Ren@XJTU 2023

Typical Memory Reference Patterns
Address

Time

Instruction
 fetches

Stack
accesses

Data
accesses

n loop iterations

subroutine
call

subroutine
return

argument access

scalar accesses

17

Pengju Ren@XJTU 2023

Memory Reference Patterns

Donald J. Hatfield, Jeanette Gerald: Program

Restructuring for Virtual Memory. IBM Systems Journal

10(3): 168-192 (1971)

Time

M
e

m
o

ry
 A

d
d

re
ss

 (
o

n
e

 d
o

t
p

e
r

ac
ce

ss
)

Temporal &
Spatial
Locality

Temporal
 Locality

18

Spatial
 Locality

Pengju Ren@XJTU 2023

Understanding the Memory Hierarchy
is critical to Programming

19

Pengju Ren@XJTU 2023

Parallelism and Locality

• Parallelism and data locality both critical to performance
– Recall that moving data is the most expensive operation

• Real world problems have parallelism and locality:
– Many objects operate independently of others.

– Objects often depend much more on nearby than distant objects.

– Dependence on distant objects can often be simplified.

» Example of all three: particles moving under gravity （n-body）

• Scientific models may introduce more parallelism:
– When a continuous problem is discretized, time dependencies are

generally limited to adjacent time steps.

» Helps limit dependence to nearby objects (e.g, collisions)

– Far-field effects may be ignored or approximated in many cases.

• Many problems exhibit parallelism at multiple levels

Pengju Ren@XJTU 2023

Matrix Multiply, Naïve Code

21

for(i=0; i < N; i++)

for(j=0; j < N; j++) {

r = 0;

for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];

x[i][j] = r;

}

Not touched Old access New access

x j

i

y k

i

z j

k

Pengju Ren@XJTU 2023

22

x j

i

y k

i

z j

k

Matrix Multiply, Naïve Code (If there is no Cache)

Total Mem access = N𝟐 x (2 + N + N) = 𝟐N𝟐 + 𝟐N𝟑

Computational intensity : 𝟐N𝟑/(𝟐N𝟐 + 𝟐N𝟑) ≈ 𝟏

(including 𝑵𝟑multiplies and 𝑵𝟑addition)

For each element of X, read one row of Y and one column of Z

Pengju Ren@XJTU 2023

23

for(i=0; i < N; i++)

【read row i of y into fast Mem】

for(j=0; j < N; j++) {

【read x[i][j] into fast Mem】
【read column j of z into fast Mem】

r = 0;

for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];

x[i][j] = r;

【write x[i][j] back to fast Mem】

}

Matrix Multiply, Naïve Code (If Cache size is 3N)

x j

i

y k

i

z j

k

For each row of X, read one row of Y and every column of Z

Pengju Ren@XJTU 2023

24

for(i=0; i < N; i++)

【read row i of y into fast Mem】

for(j=0; j < N; j++) {

【read x[i][j] into fast Mem】
【read column j of z into fast Mem】

r = 0;

for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];

x[i][j] = r;

【write x[i][j] back to fast Mem】

}

Matrix Multiply, Naïve Code (If Cache size is 3N)

Computational intensity : 𝟐N𝟑/(N𝟑 + 𝟑N𝟐) ≈ 𝟐

Total Mem access = N𝟑 to read each column of z N𝟐 times (N ∗ N𝟐）
 + N𝟐 to read each row of y once (N ∗ N）
 + 2N𝟐 to read and write each element of x (N𝟐+ N𝟐)
 = N𝟑 + 𝟑𝑵𝟐

Pengju Ren@XJTU 2023

Matrix Multiply with Cache Tiling (If Cache size is bigger than 3𝐵2)

25

for(ii=0; ii < N; ii=ii+B){

for(jj=0; jj < N; jj=jj+B){

for(kk=0; kk < N; kk=kk+B){

for(i=ii; i < min(ii+B,N); i++){

for(j=jj; j < min(jj+B,N); j++){

r = 0;

for(k=kk; k < min(kk+B,N); k++){

r = r + y[i][k] * z[k][j];}//end k

x[i][j] = x[i][j] + r;}//end j

}//end i

}//end kk

}//end jj

}//end ii

What type of locality does this improve?

y k

i

z j

k

x j

iPengju Ren@XJTU 2023

26

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

x j

i

y k

i

z j

k

ii=0, jj=0, kk=0 ii=B, jj=0, kk=0

ii=B, jj=0, kk=B

ii=0, jj=B, kk=0 ii=B, jj=B, kk=0

ii=0, jj=B, kk=B ii=B, jj=B, kk=B

x j

i

y k

i

z j

k

ii=0, jj=0, kk=B

Matrix Multiply with Cache Tiling (If Cache size is bigger than 3𝐵2)

Pengju Ren@XJTU 2023

27

for(ii=0; ii < N; ii=ii+B){

 for(jj=0; jj < N; jj=jj+B){

 【read B*B block of x into fast Mem】
 for(kk=0; kk < N; kk=kk+B){

 【read B*B block of y into fast Mem】
 【read B*B block of z into fast Mem】
 for(i=ii; i < min（ii+B,N); i++)
 for(j=jj; j < min(jj+B,N); j++) {

 r = 0;

 for(k=kk; k < min(kk+B,N); k++)

 r = r + y[i][k] * z[k][j];

 x[i][j] = x[i][j] + r;}

 }

 }

 }

 }
Total Mem access = 𝑵𝟑 /B to read each block of z (

𝑵

𝑩
)𝟑 times ((

𝑵

𝑩
)𝟑∗ 𝑩𝟐 = 𝑵𝟑 /B)

 + 𝑵𝟑 /B to read each block of y (
𝑵

𝑩
)𝟑 times

 + 𝟐𝑵𝟐 read and write each block of x once (𝟐(
𝑵

𝑩
)𝟐 ∗ 𝑩𝟐 = 𝟐𝑵𝟐)

 = 𝟐𝑵𝟑 /B + 2𝑵2

Computational intensity : 𝟐𝑵𝟑/(𝟐𝑵𝟑 /B + 𝟐𝑵2) ≈ 𝑩 when N is big

The larger the block size,
the more efficient our
algorithm will be，
however all three blocks
from x,y,z must fit in Cache

3b2  𝑀𝑓𝑎𝑠𝑡, so b  𝑀𝑓𝑎𝑠𝑡/3

Matrix Multiply with Cache Tiling (If Cache size is bigger than 3𝐵2)

Pengju Ren@XJTU 2023

Is there a more elegant approach ?

28

Pengju Ren@XJTU 2023

Recursive Matrix Multiplication

29

C = = A · B = · =

=  =

• True when each bock is a 1x1 or n/2 x n/2

• For simplicity: square matrices with n = 2m

– Extends to general rectangular case

A00 A01

A10 A11

B00 B01

B10 B11

C00 C01

C10 C11

A00·B00 + A01·B10 A00·B01 + A01·B11

A10·B00+ A11·B10 A10·B01 + A11·B11

C00 C01

C10 C11

A00 A01

A10 A11

B00 B10

B10 B11

A00*B00
+

A01*B10

A00*B01
+

A01*B11

A10*B00
+

A11*B10

A10*B01
+

A11*B11

Pengju Ren@XJTU 2023

Divide and conquer

◼ Split the problem into smaller sub-problems
◼ continue until the sub-problems can be solve directly

■ 3 Options:

◻ Do work as you split
into sub-problems

◻ Do work only at the
leaves

◻ Do work as you
recombine

30

Pengju Ren@XJTU 2023

Recursive Matrix Multiplication

Define C = RMM (A, B, n)

 if (n==1) { C00 = A00 * B00 ; } else

 { C00 = RMM (A00 , B00 , n/2) + RMM (A01 , B10 , n/2)

 C01 = RMM (A00 , B01 , n/2) + RMM (A01 , B11 , n/2)

 C10 = RMM (A10 , B00 , n/2) + RMM (A11 , B10 , n/2)

 C11 = RMM (A11 , B01 , n/2) + RMM (A11 , B11 , n/2)}

 return C

Arith(n) = # arithmetic operations in RMM(.,.,n)
 = 8 · Arith(n/2) + 4(n/2)2 if n > 1, else 1
 = 2n3

31

W(n) = # words moved between fast, slow memory by RMM(.,.,n)
 = 8 · W(n/2) + 4· 3(n/2)2 if 3n2 > Mfast , else 3n2

 = O(n3 / 𝑴𝒇𝒂𝒔𝒕) … same as blocked matmul

How many flops and memory moves ?

For RMM，we DO NOT need to know Mfast

 in stead of Blocking and Tiling

Pengju Ren@XJTU 2023

Strassen’s Matrix Multiply

• The traditional algorithm (with or without tiling) has O(n3) flops

• Strassen discovered an algorithm with asymptotically lower flops O(n2.81)

• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds

– Strassen does it with 7 multiplies and 18 adds

Let M = m11 m12 = a11 a12 b11 b12

 m21 m22 a21 a22 b21 b22

Let p1 = (a12 - a22) * (b21 + b22) p5 = a11 * (b12 - b22)

 p2 = (a11 + a22) * (b11 + b22) p6 = a22 * (b21 - b11)

 p3 = (a11 - a21) * (b11 + b12) p7 = (a21 + a22) * b11

 p4 = (a11 + a12) * b22

Then m11 = p1 + p2 - p4 + p6

 m12 = p4 + p5

 m21 = p6 + p7

 m22 = p2 - p3 + p5 - p7

Extends to nxn by divide & conquer

32

Pengju Ren@XJTU 2023

Strassen (continued)

• Asymptotically faster

• Several times faster for large n in practice

• Cross-over depends on machine

• “Tuning Strassen's Matrix Multiplication for Memory Efficiency”, M. S.
Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing '98

33

T(n) = Cost of multiplying nxn matrices

= 𝟕𝑻
𝒏

𝟐
+ 𝟏𝟖(

𝒏

𝟐
)𝟐

= 𝑶(𝒏log𝟐 𝟕)

= 𝑶(𝒏𝟐.𝟖𝟏)

Pengju Ren@XJTU 2023

Master Theorem

34

The Master Theorem for solving recurrences applies to
recurrences of the form

where a ≥ 1, b > 1, and f is asymptotically positive.

IDEA: Compare 𝒏log𝑏 𝒂 with 𝒏𝒄 .

◼ CASE 1: log𝑏 𝒂 ≫ c

f (n) = O(nlogba – ε), constant ε > 0  T(n) = Θ(nlogba) .
◼ CASE 2: log𝑏 𝒂 ≈ c

f (n) = Θ(nlogba lgkn), constant k  0  T(n) = Θ(nlogba logn) .
◼ CASE 3: log𝑏 𝒂 ≪ c

f (n) = Ω(nlogba + ε), constant ε > 0  T(n) = Θ(f(n)) .

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒇(𝒏) Let 𝒇 𝒏 = 𝒏𝒄

Pengju Ren@XJTU 2023

35

Master Theorem

◼ Binary Search: 𝑻 𝒏 = 𝑻
𝒏

𝟐
+ 𝑶(𝟏)

◼Merge Sort: 𝑻 𝒏 = 𝟐𝑻
𝒏

𝟐
+ 𝑶(𝒏)

◼ Binary Tree traversal: 𝑻 𝒏 = 𝟐𝑻
𝒏

𝟐
+ 𝑶(𝟏)

𝑶(log2 𝒏)

𝑶(𝒏 log2 𝒏)

𝑶(𝒏)

⇒

⇒

⇒

𝑻 𝒏 = 𝟕𝑻
𝒏

𝟐
+ 𝟏𝟖(

𝒏

𝟐
)𝟐 𝑶(𝒏log𝟐 𝟕）=𝑶(𝒏𝟐.𝟖𝟏)⇒

◼ Strassen Matrix Multiplication

◼ Recursive Matrix Multiplication

𝑻 𝒏 = 𝟖𝑻
𝒏

𝟐
+ 𝒏𝟐 𝑶(𝒏log𝟐 𝟖）=𝑶(𝒏𝟑)⇒

Pengju Ren@XJTU 2023

36

Master Theorem

𝒏

𝒃

𝒏

𝒃

𝒏

𝒃

𝒏

𝒏

𝒃𝟐

𝒏

𝒃𝟐

𝒏

𝒃𝟐

𝒂

𝒂

𝒏

𝒃𝟐

𝒏

𝒃𝟐

𝒏

𝒃𝟐

𝒂

𝒏

𝒃𝒌

… … …

𝑏𝑘 = 𝑛
log𝑏 𝑛 = 𝑘 → 𝒇(𝒏)

→ 𝒂𝒇(
𝒏

𝒃
)

𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒇(𝒏)

𝑻 𝒏 = 𝒇 𝒏 + 𝒂𝒇
𝒏

𝒃
+ 𝒂𝟐𝒇

𝒏

𝒃𝟐
+ ⋯ 𝒂𝒌𝒇 𝟏

= σ𝒊=𝟎
𝒌 𝒂𝒊𝒇

𝒏

𝒃𝒊 = σ𝒊=𝟎
𝒌 𝒂𝒊(

𝒏

𝒃𝒊)
𝒄 = 𝒏𝒄 σ𝒊=𝟎

𝒌 (
𝒂

𝒃𝒄)𝒊

Let 𝒇 𝒏 = 𝒏𝒄

Let
𝒂

𝒃𝒄 = 𝒒

𝑻 𝒏 = 𝒏𝒄
𝟏 − 𝒒𝒌+𝟏

𝟏 − 𝒒

1） 𝒒 < 1 ⇒
𝒂

𝒃𝒄 < 𝟏 ⇒ 𝒂 < 𝒃𝒄 ⇒ 𝒄 > log𝑏 𝒂 𝑻 𝒏 = 𝒏𝒄 𝟏

𝟏−𝒒
= α 𝒏𝒄 ⇒ 𝑻 𝒏 = 𝑶(𝒏𝒄)

2） 𝒒 = 1 ⇒
𝒂

𝒃𝒄 = 𝟏 ⇒ 𝒂 = 𝒃𝒄 ⇒ 𝒄 = log𝑏 𝒂 𝑻 𝒏 = 𝒏𝒄𝒌 = 𝒏𝒄 log𝑏 𝒏 = 𝒏𝒄 log2 𝒏

log𝟐 𝒃
⇒ 𝜷𝒏𝒄 log2 𝒏

⇒ 𝑻 𝒏 = 𝑶(𝒏𝒄 log2 𝒏) = 𝑶(𝒏log𝑏 𝒂 log2 𝒏)

3） 𝒒 > 1 ⇒
𝒂

𝒃𝒄 > 𝟏 ⇒ 𝒂 > 𝒃𝒄 ⇒ 𝒄 < log𝑏 𝒂 𝑻 𝒏 = 𝒏𝒄𝒒𝒌 = 𝒏𝒄(
𝒂

𝒃𝒄
)log𝒃 𝒏 = 𝒏𝒄

𝒂log𝒃 𝒏

𝒃clog𝒃 𝒏

= 𝒏𝒄
𝒂log𝒃 𝒏

(𝒃log𝒃 𝒏)𝒄
= 𝒏𝒄

𝒂log𝒃 𝒏

𝒏𝒄
= 𝒂

log𝒂 𝒏
log𝒂 𝒃 = 𝒂log𝒂 𝒏 log𝒃 𝒏 = 𝒏log𝑏 𝒂 ⇒ 𝑻 𝒏 = 𝑶(𝒏log𝑏 𝒂)

Pengju Ren@XJTU 2023

Matrix-matrix multiplication take-aways

◼Matrix matrix multiplication

Computational intensity O(2n3) flops on O(3n2) data

◼ Tiling matrix multiplication (cache aware)

Can increase to B if BxB blocks fit in fast memory

B = 𝑀𝑓𝑎𝑠𝑡/3 , the fast memory size 𝑀𝑓𝑎𝑠𝑡

Tiling (a.k.a blocking) “cache-aware”

Cache-oblivious (Recursive Matrix Multiplication)

37

Pengju Ren@XJTU 2023

Roofline Model
(How fast can an algorithm go in practice?)

38

Pengju Ren@XJTU 2023

Think of “Data movement” very generally

◼ Data movement between a
processor and its cache

◼ Data movement between processor
and memory (e.g., memory on same
machine)

◼ Data movement between processor
and a remote memory (e.g.,
memory on another node in the
cluster, accessed by sending a
network message)

39

Accesses not satisfied in “local memory” cause communication with “next level”

Pengju Ren@XJTU 2023

Data Movement or Compute

40

Which takes longer? Data movement or Compute?

Time = max (#FP ops/Peak GFLOP/s, #Bytes/Peak GB/s)

#FP ops/Time = min (Peak GFLOP/s, (#FP ops/#Bytes)*Peak GB/s)

AI (Arithmetic or Computational Intensity)

Pengju Ren@XJTU 2023

Arithmetic or Computational Intensity

• Can look at Arithmetic intensity as a spectrum
• Constants (at least leading constants) will matter

O(N)O(log(N))O(1)

Sparse matrix-vector

Stencils (PDEs)

Lattice Methods

FFTs
MatMul

N-Body

Dense matrix-vector (BLAS2)

Ideal cache – to be refined

Operation FLOPs Data

Dot Prod O(n) O(n)

Mat Vec O(n2) O(n2)

MatMul O(n3) O(n2)

N-Body O(n2) O(n)

FFT O(n log n) O(n)

Ideal

(infinite

cache)

Pengju Ren@XJTU 2023

Cases：3D 7-point Stencil

42

x

y

z (unit-stride)

(x,y,z)

x+1

x-1

y-1 y+1

z-1

z+1

3D: “7-point stencil”

for x,y,z in 0 to n-1

 Next[x,y,z]=

 C0 * Current[x,y,z]+

 C1 *(Current[x-1,y,z]+

 Current[x+1,y,z]+

 Current[x,y-1,z]+

 Current[x,y+1,z]+

 Current[x,y,z-1]+

 Current[x,y,z+1]);

8 flops, 8 memory references (7 reads, 1 store) per point

The memory layout of data structure and Cache matters

Pengju Ren@XJTU 2023

PDEs (Partial Differential Equations)

Continuous variables depending on continuous parameters
E.g. Heat, Elasticity, Electrostatics, Finance, Circuits …

43

0 1𝒙 + 𝒉

Consider Deriving the heat equation:
A bar of uniform material, insulated except at ends
Let 𝒖(𝒙, 𝒕) be the temperature at position 𝒙 at time 𝒕
Heat travels from 𝒙 − 𝒉 to 𝒙 + 𝒉 at rate proportional to:

𝒙 − 𝒉 𝒙

𝒅𝒖(𝒙, 𝒕)

𝒅𝒕
= 𝒄

𝒖 𝒙 − 𝒉, 𝒕 − 𝒖(𝒙, 𝒕)
𝒉

−
𝒖 𝒙, 𝒕 − 𝒖(𝒙 + 𝒉, 𝒕)

𝒉
𝒉

As 𝒉 → 𝟎, we get the heat equation:

𝒅𝒖(𝒙, 𝒕)

𝒅𝒕
= 𝒄

𝒅𝟐𝒖(𝒙, 𝒕)

𝒅𝒙𝟐

Pengju Ren@XJTU 2023

44

PDEs (Partial Differential Equations)

𝒅𝒖(𝒙, 𝒕)

𝒅𝒕
= 𝒄

𝒅𝟐𝒖(𝒙, 𝒕)

𝒅𝒙𝟐

Discretize time and space using explicit approach (forward
Euler) to approximate time derivative:

𝒖 𝒙, 𝒕 + 𝜹 − 𝒖 𝒙, 𝒕

𝜹
= 𝑪

𝒖 𝒙 − 𝒉, 𝒕 − 𝒖(𝒙, 𝒕)

𝒉
−

𝒖 𝒙, 𝒕 − 𝒖 𝒙 + 𝒉, 𝒕
𝒉

𝒉

𝒖 𝒙, 𝒕 + 𝜹 = 𝒖 𝒙, 𝒕 + 𝑪
𝜹

𝒉𝟐 𝒖 𝒙 − 𝒉, 𝒕 − 𝟐𝒖 𝒙, 𝒕 + 𝒖 𝒙 + 𝒉, 𝒕

Let 𝒛 = 𝑪
𝜹

𝒉𝟐, then

𝒖 𝒊, 𝒌 + 𝟏 = 𝒛 ∗ 𝒖 𝒊 − 𝟏, 𝒌 + 𝟏 − 𝟐𝒛 ∗ 𝒖 𝒊, 𝒌 + 𝒛 ∗ 𝒖 𝒊 + 𝟏, 𝒌)

and change variable 𝒙 = 𝐢 ∗ 𝐡, 𝒕 = 𝐤 ∗ 𝜹 and 𝒖 𝒙, 𝒕 to 𝒖 𝒊, 𝒌 , we get:

𝒖 𝒙, 𝒕 + 𝜹 = 𝒛 ∗ 𝒖 𝒙 − 𝒉, 𝒕 + 𝟏 − 𝟐𝒛 ∗ 𝒖 𝒙, 𝒕 + 𝒛 ∗ 𝒖(𝒙 + 𝒉, 𝒕)
Pengju Ren@XJTU 2023

45

PDEs (Partial Differential Equations)

0 1𝒙 + 𝒉𝒙 − 𝒉 𝒙

k=5

k=4

k=3

k=2

k=1

K=0
u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

k

i

initial conditions on 𝒖 𝒊, 𝟎
boundary conditions on 𝒖 𝟎, 𝒌 and 𝒖 𝑵, 𝒌

𝒖 : , 𝒌 + 𝟏 = 𝑻 ∗ 𝒖(: , 𝒌)

𝑻 =

𝟏 − 𝟐𝒛 𝒛
𝒛 𝟏 − 𝟐𝒛 𝒛

𝒛 𝟏 − 𝟐𝒛 𝒛
… … …
𝒛 𝟏 − 𝟐𝒛 𝒛

𝒛 𝟏 − 𝟐𝒛

= 𝑰 + 𝒛 ∗ 𝑳

𝑳 =

−𝟐 𝟏
𝟏 −𝟐 𝟏

𝟏 −𝟐 𝟏
… … …
𝟏 −𝟐 𝟏

𝟏 −𝟐

1-D : “3-point Stencil”

𝒖 𝒊, 𝒌 + 𝟏 = 𝒛 ∗ 𝒖 𝒊 − 𝟏, 𝒌 + 𝟏 − 𝟐𝒛 ∗ 𝒖 𝒊, 𝒌 + 𝒛 ∗ 𝒖 𝒊 + 𝟏, 𝒌)

Pengju Ren@XJTU 2023

46

PDEs (Partial Differential Equations)

0 1

（𝒙 + 𝒉, 𝒚)（𝒙 − 𝒉, 𝒚) (𝒙, 𝒚)

（𝒙, 𝒚 + 𝒉)

（𝒙, 𝒚 − 𝒉)

𝒅𝒖(𝒙, 𝒚, 𝒕)

𝒅𝒕
= 𝒄(

𝒅𝟐𝒖 𝒙, 𝒚, 𝒕

𝒅𝒙𝟐
+

𝒅𝟐𝒖 𝒙, 𝒚, 𝒕

𝒅𝒚𝟐
)

𝒖 𝒙, 𝒚, 𝒕 + 𝜹 − 𝒖 𝒙, 𝒚, 𝒕

𝜹

= 𝑪(

𝒖 𝒙−𝒉,𝒚,𝒕 −𝒖 𝒙,𝒚,𝒕

𝒉
−

𝒖 𝒙,𝒚,𝒕 −𝒖 𝒙+𝒉,𝒚,𝒕

𝒉

𝒉
+

𝒖 𝒙,𝒚−𝒉,𝒕 −𝒖 𝒙,𝒚,𝒕

𝒉
−

𝒖 𝒙,𝒚,𝒕 −𝒖 𝒙,𝒚+𝒉,𝒕

𝒉

𝒉
)

𝒖 𝒙, 𝒚, 𝒕 + 𝜹

= 𝒖 𝒙, 𝒚, 𝒕 + 𝑪
𝜹

𝒉𝟐
(𝒙 − 𝒉, 𝒚, 𝒕 + 𝒖 𝒙 + 𝒉, 𝒚, 𝒕 + 𝒖 𝒙, 𝒚 − 𝒉, 𝒕 + 𝒖 𝒙, 𝒚 + 𝒉, 𝒕 − 𝟒𝒖 𝒙, 𝒚, 𝒕)

Let 𝒛 = 𝑪
𝜹

𝒉𝟐, then

𝒖 𝒙, 𝒚, 𝒕 + 𝜹
= 𝒛 ∗ 𝒖 𝒙 − 𝒉, 𝒚, 𝒕 + 𝒛 ∗ 𝒖 𝒙 + 𝒉, 𝒚, 𝒕 + 𝒛 ∗ 𝒖 𝒙, 𝒚 − 𝒉, 𝒕 + 𝒛 ∗ 𝒖 𝒙, 𝒚 + 𝒉, 𝒕 − (𝟏 − 𝟒𝒛) ∗ 𝒖 𝒙, 𝒚, 𝒕)

Pengju Ren@XJTU 2023

47

PDEs (Partial Differential Equations)

change variable 𝒙 = 𝐢 ∗ 𝐡, 𝐲 = 𝐣 ∗ 𝐡, 𝐭 = 𝐤 ∗ 𝜹 and 𝒖 𝒙, 𝒚, 𝒕 to 𝒖 𝒊, 𝒋, 𝒌 , we get:

𝒖 𝒙, 𝒚, 𝒕 + 𝜹
= 𝒛 ∗ 𝒖 𝒙 − 𝒉, 𝒚, 𝒕 + 𝒛 ∗ 𝒖 𝒙 + 𝒉, 𝒚, 𝒕 + 𝒛 ∗ 𝒖 𝒙, 𝒚 − 𝒉, 𝒕 + 𝒛 ∗ 𝒖 𝒙, 𝒚 + 𝒉, 𝒕 − (𝟏 − 𝟒𝒛) ∗ 𝒖 𝒙, 𝒚, 𝒕)

𝒖 𝒊, 𝒋, 𝒌 + 𝟏
= 𝒛 ∗ 𝒖 𝒊 − 𝟏, 𝒋, 𝒌 + 𝒛 ∗ 𝒖 𝒊 + 𝟏, 𝒋, 𝒌 + 𝒛 ∗ 𝒖 𝒊, 𝒋 − 𝟏, 𝒌 + 𝒛 ∗ 𝒖 𝒊, 𝒋 + 𝟏, 𝒌 − (𝟏 − 𝟒𝒛) ∗ 𝒖 𝒊, 𝒋, 𝒌)

𝑻 =

𝟏 − 𝟒𝒛 𝒛
𝒛 𝟏 − 𝟒𝒛 𝒛

𝒛 𝟏 − 𝟒𝒛

 𝒛
𝒛

𝒛
𝒛

𝒛
𝒛

𝟏 − 𝟒𝒛 𝒛
𝒛 𝟏 − 𝟒𝒛 𝒛

𝒛 𝟏 − 𝟒𝒛

 𝒛
𝒛

𝒛
𝒛

𝒛
𝒛

𝟏 − 𝟒𝒛 𝒛
𝟏 − 𝟒𝒛 𝒛

𝒛 𝟏 − 𝟒𝒛

 = 𝑰 − 𝒛 ∗ 𝑳

𝑳 =

𝟒 −𝟏
−𝟏 𝟒 −𝟏

−𝟏 𝟒

−𝟏
−𝟏

−𝟏
−𝟏

−𝟏
 −𝟏

𝟒 −𝟏
−𝟏 𝟒 −𝟏

−𝟏 𝟒

−𝟏
−𝟏

−𝟏
−𝟏

−𝟏
−𝟏

𝟒 −𝟏
𝟒 −𝟏

−𝟏 𝟒

2-D : “5-point Stencil”

How to speedup stencil kernel ?

Can it benefits from Cache?

Pengju Ren@XJTU 2023

48

Cases：Galaxy evolution (N-body)

◼ Newtonian laws of physics
 The gravitational force between two bodies of masses 𝒎𝒂 & 𝒎𝒃 :

𝑭 =
𝑮𝒎𝒂𝒎𝒃

𝒓𝟐

 Subject to the force, acceleration occurs
𝐹 = 𝑚× 𝑎

◼ Let the time interval be ∆𝑡 & current velocity 𝒗𝒕, position 𝒙𝒕

 New velocity 𝒗𝒕+𝟏 :

𝐹 =𝒎
𝒗𝒕+𝟏−𝒗𝒕

∆𝒕
⇒ 𝒗𝒕+𝟏= 𝒗𝒕+

𝑭∆𝒕

𝒎

 New position 𝒙𝒕+𝟏 :

𝒙𝒕+𝟏= 𝒙𝒕+ 𝒗𝒕+𝟏 ∆𝒕

Pengju Ren@XJTU 2023

49

Cases：Galaxy evolution (N-body)

for(t=0; t<T; t++) {

 for(i=0; i<N; i++) {

 F = Compute_Force(i); // compute force in O(N^2)

 v_new[i]=v[i]+F*dt/mi; // compute new velocity

 x_new[i]=x[i]+v_new[i]*dt; // compute new position

 }

 for(i=0; i<N; i++) {

 x[i] = x_new[i]; // update position

 v[i] = v_new[i]; // update velocity

 }

}

Represent galaxy as a collection of N particles (stars), assume mass
is mi：

Non-feasible as N increases due to O(N𝟐) complexity

Pengju Ren@XJTU 2023

Cases：Galaxy evolution (N-body)

◼Naive algorithm is O(𝑵𝟐) — all particles interact with all others

◼Magnitude of gravitational force falls off with distance，so
reduce time complexicity by approximating a cluster of bodies
as a single distant body.

◼ Result is an O(𝑵log 𝑵) algorithm for computing gravitational
forces between all stars

50

𝒙
𝒚 =

𝟏

σ 𝒎𝒊

𝒙𝟏 … 𝒙𝒏

𝒚𝟏 … 𝒚𝒏

𝒎𝟏.
.
.

𝒎𝒏

, there are n particles in the cluster

Pengju Ren@XJTU 2023

51

Cases：N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions
Record the center mass and position of each internal node

Pengju Ren@XJTU 2023

52

Cases：N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions
Record the center mass and position of each internal node

Pengju Ren@XJTU 2023

53

Cases：N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions
Record the center mass and position of each internal node

Pengju Ren@XJTU 2023

54

Cases：N-body (Barnes-hut algorithm)

Step1: Recursively divide space by two in each dimensions
Record the center mass and position of each internal node

Pengju Ren@XJTU 2023

55

Cases：N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object
1. traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node is sufficiently far from

the body, approximate the internal node as a single body

Far means: d/r< θ (e.t. 0< θ<1)

r: the distance between the body and
the node’s center-of-mass

d: the width of the region

d=32

Pengju Ren@XJTU 2023

56

Cases：N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object
1. traverse the nodes of the tree, starting from the root.
2. If the center-of-mass of an internal node is sufficiently far from

the body, approximate the internal node as a single body

𝒅/𝒓𝑨=16/10 > θ
𝒅/𝒓𝑩=16/2 > θ
𝒅/𝒓𝑪=16/15 > θ
𝒅/𝒓𝑫=16/20 < θ

Far means: d/r< θ (e.t. 0< θ<1)
r: the distance between the body and the
node’s center-of-mass
d: the width of the region

Pengju Ren@XJTU 2023

57

Cases：N-body (Barnes-hut algorithm)

Step2: Compute approximate forces on each object
3. If it is a leaf node, calculate the force and add to the object.
4. Otherwise, recursively compute the force from children of the
internal node

𝒅/𝒓𝑨′= 8/7 > θ
𝒅/𝒓𝑩′= 8/15 < θ
𝒅/𝒓𝑪′= 8/20 < θ

A’ and C‘ are leaf nodes, B’
treated like a single node

Pengju Ren@XJTU 2023

58

Cases：N-body (Barnes-hut algorithm)

◼ θ controls the accuracy and approximation error of the algorithm

 θ = 0 -> d/r ALWAYS larger than θ -> same as brute force

 θ = 1 -> most likely only need to consider the object within
the same cluster/region

◼ If the tree is balanced, the complexity is O(nlogn)

 But in general , the tree could be very unbalanced ……..

◼ The tree must be re-built for each time interval

for each time step in simulation:

 build tree structure compute(aggregate mass, center-of-

mass) for interior nodes

 for each particle:

 traverse tree to accumulate gravitational forces

 update particle position based on gravitational forces

How to speedup N-body kernel ?

（Load balancing and Data Locality)

https://www.cs.utexas.edu/~pingali/CS378/2011sp/papers/nbody.pdf

Pengju Ren@XJTU 2023

Recap: Data Movement or Compute

59

Which takes longer? Data movement or Compute?

Time = max (#FP ops/Peak GFLOP/s, #Bytes/Peak GB/s)

#FP ops/Time = min (Peak GFLOP/s, (#FP ops/#Bytes)*Peak GB/s)

AI (Arithmetic or Computational Intensity)

Pengju Ren@XJTU 2023

Roofline Model

60

Roofline Model

Arithmetic Intensity

(FLOPs/Byte)

Performance

(FlOPs/Second)

Limited by Peak Performance

10G

100G

1G

1T

0.1 1 10 100

Memory-bound Compute-bound

#FP ops/Time = min (Peak GFLOP/s, AI*Peak GB/s)
Samuel Williams, Andrew Waterman, and David Patterson. 2009. Roofline: an insightful visual

performance model for multicore architectures. Commun. ACM 52, 4

Pengju Ren@XJTU 2023

Roofline Model

61

Roofline Model

Arithmetic Intensity

(FLOPs/Byte)

Performance

(FlOPs/Second)

Limited by Peak Performance

10G

100G

1G

1T

0.1 1 10 100

for (i=0;i<N;i=i+1)
 a[i]+=2.1*a[i]

for (i=0;i<N;i=i+1)
 a[i]=C0a[i]+C1*(a[i-1]+a[i+1])

for (i=0;i<N;i=i+1)
 a[i]=b[i]*b[i]+sin(b[i])+exp(b[i])

1-D Stencil (4 ops, 1

load/store(with Cache)

Scalar Vector Multiplication

(1ops, 2 load/store)

(x10 ops, 2 load/store)

for(i=0; i < N; i++)

 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;}Pengju Ren@XJTU 2023

62

Summary of Lecture 1-4

◼ Details of machine are important for performance

– Processor and memory system (not just parallelism)

– What to expect? Use understanding of hardware limits

◼ There is parallelism hidden within processors

– Pipelining, OoO, SIMD, SMT, VLIW, etc

◼Machines have memory hierarchies

– 100s of cycles to read from DRAM (main memory)

– Caches are fast (small) memory that optimize average case

◼ Locality is at least as important as computation

– Temporal: re-use of data recently used

– Spatial: using data nearby to recently used data

◼ Can rearrange or prefetch code/data to improve locality

– Goal: minimize communication = data movement

Pengju Ren@XJTU 2023

63

Next Lecture：Systolic Array

Pengju Ren@XJTU 2023

Appendix： Data Movement and
Programming (remote memory access)

64

Pengju Ren@XJTU 2023

Simulating of ocean currents (2D stencil)

Discretize 3D ocean volume into slices represented as 2D grids

Discretize time evolution of ocean: ∆t

High accuracy simulation requires small ∆t and high resolution grids

65

Pengju Ren@XJTU 2023

A 2D-grid based solver

Solve partial differential equation (PDE) on (N+2) x (N+2) grid
Iterative solution
- Perform Gauss-Seidel sweeps over grid until convergence

66

A[i,j] = 0.2* (A[i,j] + A[i,j-1] + A[i-1,j]

 + A[i, j+1] + A[i+1, j+1])

Pengju Ren@XJTU 2023

Grid solver algorithm

67

const int n;
float* A; // assume allocated to grid of N+2 x N+2 elements
void solve(float* A) {

float diff, prev;
bool done = false;

while (!done) { // outermost loop: iterations
diff = 0.f;
for (int i=1; i<n; i++) { // iterate over non-border points of grid

 for (int j=1; j<n; j++) {
 prev = A[i,j];
 A[i,j] = 0.2* (A[i,j] + A[i-1,j] + A[i,j-1] + A[i+1, j] + A[i, j+1]);

 diff += fabs (A[I,j] – prev); // compute amount of change
 }

 }
 if (diff/(n*n) < TOLERANCE) // quit if converged
 done = true;
}

}

Pengju Ren@XJTU 2023

Step1: identify dependencies(problem decomposition)

◼ Each row element depends
on element to left.

◼ Each column depends on
previous column.

68

Pengju Ren@XJTU 2023

Step1: identify dependencies(problem decomposition)

There is independent work along
the diagonals!

Good: parallelism exists!

Possible implementation strategy:
1. Partition grid cells on a diagonal
into tasks
2. Update values in parallel
3. When complete, move to next
diagonal

Bad: independent work is hard to
exploit

◼ Not much parallelism at beginning
and end of computation.

◼ Frequent synchronization (after
completing each diagonal)

69

Pengju Ren@XJTU 2023

New approach: reorder grid cell update via
“red-black” coloring

Update all red cells in parallel

When done updating red cells ,
update all black cells in parallel
(respect dependency on red cells)

Repeat until convergence

70

Pengju Ren@XJTU 2023

Possible assignments of work to processors

Which is better ? Does it matter ?

71

Pengju Ren@XJTU 2023

Consider dependencies (data flow)

1.Perform red update in parallel

2.Wait until all processors done with update

3.Communicate updated red cells to other

processors

4.Perform black update in parallel

5.Wait until all processors done with update

6.Communicate updated black cells to other

processors

7.Repeat

72

P1 P2 P3 P4

Pengju Ren@XJTU 2023

Communication resulting from assignment

data that must be sent to others each iteration

Blocked assignment requires less data to be communicated between processors
73

Pengju Ren@XJTU 2023

Shared address space expression of solver

Programmer is responsible for
synchronization

Common synchronization
primitives:

 Locks (provide mutual
exclusion): only one thread in
the critical region at a time

 Barriers: wait for threads to
reach this point

74

P1 P2 P3 P4

Pengju Ren@XJTU 2023

Barrier Synchronization Primitive

75

barrier(num_threads)

Barriers are a conservative way to
express dependencies

 Barriers divide computation into
phases

 All computations by all threads
before the barrier complete
before any computation in any
thread after the barrier begins

Pengju Ren@XJTU 2023

Inherent Communication

76

For NxN grid and P processor, the Arithmetic intensity are:

𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅 𝒑𝒆𝒓 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓 ≈
𝑵𝟐

𝑷
𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒆𝒅 𝒑𝒆𝒓 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓 ≈ 𝟐𝑵

∝
𝑵

𝑷

𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒎𝒑𝒖𝒕𝒆𝒅

𝒆𝒍𝒆𝒎𝒆𝒏𝒕𝒔 𝒄𝒐𝒎𝒎𝒖𝒏𝒊𝒄𝒂𝒕𝒆𝒅
=

𝟏

𝟐

Pengju Ren@XJTU 2023

Reducing inherent communication

77

Elements: 𝑵𝟐

Processors: 𝑷

Elements computed (per processor):
𝑵𝟐

𝑷

Elements communicated(per processor):
𝑵

𝑷

Arithmetic intensity:
𝑵

𝑷Pengju Ren@XJTU 2023

Recap: Think of “Data movement” very generally

◼ Data movement between a
processor and its cache

◼ Data movement between processor
and memory (e.g., memory on same
machine)

◼ Data movement between processor
and a remote memory (e.g.,
memory on another node in the
cluster, accessed by sending a
network message)

78

Accesses not satisfied in “local memory” cause communication with “next level”

Pengju Ren@XJTU 2023

Data access in grid solver: row-major traversal

79

Assume row-major layout.
Assume cache line is 4 elements.
Cache capacity is 24 elements

Blue elements show data in cache
after update to red element.

Pengju Ren@XJTU 2023

Data access in grid solver: row-major traversal

80

Assume row-major layout.
Assume cache line is 4 elements.
Cache capacity is 24 elements

Blue elements show data in cache
after update to red element.

Pengju Ren@XJTU 2023

Data access in grid solver: row-major traversal

81

Although elements (0,2) and (1,1)
had been accessed previously, they
are no longer present in cache at
start of processing row 2

Assume row-major layout.
Assume cache line is 4 elements.
Cache capacity is 24 elements

Pengju Ren@XJTU 2023

Artifactual communication due to cache line
communication granularity

82

Threads access their assigned elements
(no inherent communication exists)
But data access on real machine triggers
(artifactual) communication due to the
cache line being written to by both
processors *

Pengju Ren@XJTU 2023

Reducing artifactual comm: blocked data layout

83

◼ Blue lines indicate consecutive memory addresses)

◼ don’t confuse blocked assignment of work to threads with blocked data

layout in the address space

Pengju Ren@XJTU 2023

