
Embedded Intelligent System and

Novel Computer Architecture

Lecture 06 – FPGA (Field Programmable Gate Array)

and CGRA (Coarse-Grained Reconfigurable Architectures)

Pengju Ren
Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

http://gr.xjtu.edu.cn/web/pengjuren

Pengju Ren@XJTU 2023

http://gr.xjtu.edu.cn/web/pengjuren

Three Important Trends

2

Requirement：Big Data
Advances in ML, Data Analytics

(Challenges: Data-driven discovery,
Search, Analyze data in real time)

Increasing compute &
memory requirements

Limitations：Moore’ Law
Dennard Scaling

(Power\Memory\Utilization Wall)

Specialization: Domain Specific Architecture

Performance / Watt is key

Challenges：Algorithms change rapidly
High NRE Costs with ASICs

Flexible Hardware
Pengju Ren@XJTU 2023

Flexibility: Instructions

Instructions add overheads:
◼ Instruction fetch, decode, register file

◼ Roughly 40% of datapath energy on CPU[2]

◼ Roughly 30% of dynamic power on GPU[3]

3

[1] Mark Horowitz, Computing’s Energy Problem (and what we can do about it), ISSCC 2014
[2] Hameed et al, Understanding Sources of Inefficiency in General-purpose Chips, ISCA 2010
[3] Leng et al, GPUWattch: Enabling Energy Optimizations in GPGPUs, ISCA 2013

Pengju Ren@XJTU 2023

Flexibility: Reconfigurable Hardware

◼ FPGAs, CGRAs are pre-fabricated silicon devices that can be
reprogrammed using a stream of configuration bits.
• Sea of reconfigurable elements
• Programmable interconnect
• Statically programmed
• No instruction overheads

4

Pengju Ren@XJTU 2023

Fine-grained v.s Coarse-grained RA

5

Fine-Grained RA
Configure at bits-level with connected
flexibly
Example: FPGA

Coarse-Grained RA
Configure at word-level(16/32 INT/FP)
with local connectivity
Example: CGRA

Configuration
Memory

Configuration
Controller

FPGA

Configuration
Memory

Configuration
Controller

CGRA

Pengju Ren@XJTU 2023

What is an FPGA ?

FPGA = Field Programmable Gate Array

Programmable logic, Clock, Interconnections and Routing
Programmable in System (ISP)
Dedicated Blocks: Memory\Clock Control\DSP blocks\Embedded Processor\I/O blocks

Basic FPGA structurePengju Ren@XJTU 2023

What is an FPGA ? – Configurable Logic Block

CLBs contains： LUTs for creating arbitrary combinatorial logic functions
flip-flops for clocked storage elements,
multiplexers to route the logic within the block and to and from external resources
The muxes also allow polarity selection and reset and clear input selection.

Basic FPGA structure

Look-up Tables(LUTs)

Flip-flop

Outputs:

⚫ Combinational

⚫ Registered

I/O carry chain

…Configurable Logic Block(CLB)

Or Logic Element(LE)
Pengju Ren@XJTU 2023

Look-Up Table——the Key to re-programmability

8

◼ An n-input LUT can be used to implement an arbitrary Boolean-valued
function with up to n Boolean arguments

◼ LUTs can also be used as memory elements, small FIFO, Shift Registers

Reading(left) and writing(left) of 4-input LUT

Inputs Output

In0 In1 In2 In3 out

0 0 0 0 #

0 0 0 1 #

0 0 1 0 #

0 0 1 1 #

0 1 0 0 #

0 1 0 1 #

0 1 1 0 #

0 1 1 1 #

1 0 0 0 #

1 0 0 1 #

1 0 1 0 #

1 0 1 1 #

1 1 0 0 #

1 1 0 1 #

1 1 1 0 #

1 1 1 1 #Pengju Ren@XJTU 2023

What is an FPGA ? – Distributed Memories

◼ The FPGA fabric includes embedded memory elements that can be used as random-access
memory (RAM), read-only memory (ROM), or shift registers. A single BRAM block can hold a
few kilobytes of data (e.g., 4 KiB), a few hundred BRAMs can be accessed in parallel.

◼ BRAMs can be used for clock domain crossing and bus width conversion in an elegant way.

Basic FPGA structure

Different Sizes

Multiple configuration:

Dual-port (Async or Sync)

Different formats:

Word-wide, Depth, …

Pengju Ren@XJTU 2023

What is an FPGA ? - DSP

◼ Xilinx DSP48E slice has three input ports (which are 25 bits, 18 bits, 48 bits wide) and
provides a 25x18-bit multiplier in combination with a pipelined second stage that can be
programmed as 48-bit substractor or adder with optional accumulation feedback.

◼ DSP units can be used in a variety of modes, and perform operations such as multiply,
multiply-and-accumulate, multiply-and-add/subtract, three input addition, wide bus
multiplexing, barrel shifting, etc.

Basic FPGA structurePengju Ren@XJTU 2023

What is an FPGA ? – Configurable Connections

The programmable routing in an FPGA provides connections among logic blocks and I/O
blocks to complete a user-designed circuit. It consists of wires and programmable switches

Hierarchical Connection

Island-style(Distributed)Basic FPGA structure

Distributed Connection

Programmable switches

Pengju Ren@XJTU 2023

What is an FPGA ? – Configurable I/O

The I/O block (IOB) is used to drive signals to the pins of the CPLD device at the
appropriate voltage levels with the appropriate current. Two main classes of I/O standards
being single-ended (used, e.g., in PCI) and for higher performance differential (used, e.g.,
in PCI Express, SATA, 10G Ethernet, etc.)

Basic FPGA structure

IO-Serdes：

⚫ Parallel to serial

⚫ Serial to Parallel

IO-Delay

IO-Standard:

⚫ LVCMOS (3.3, 2.5, 1.8.1.2V)

⚫ SSTL

⚫ LVDS

…

Configurable I/O Block(IOB)Pengju Ren@XJTU 2023

FPGA (Could be data-driven)
⚫ HW-like Performance
⚫ Deterministic
⚫ Highly Parallelizable
⚫ Limited Resources
⚫ Develop using HDL(Hardware Description Language)

FPGA v.s GPU

GPU (Instruction-based)
⚫ Ideal for SIMD (SIMT)
⚫ Suited for Floating Point
⚫ Thousands of concurrent threads
⚫ Develop using Parallel Processing Language

Pengju Ren@XJTU 2023

Pros and Cons:

◼ Low-level hardware Control and Data movement Operations (Low Programming Efficiency)

◼ Flexibility comes at the cost of large compile (place/route) and debug times

◼ FPGA Engineers are hard to hire

A processor is programmed with instructions (CPU and GPU)

FPGA contains configurable blocks with logics and configurable connection lines
between these blocks, it is programmed with a circuit description.

FPGA v.s CPU and GPU

Pengju Ren@XJTU 2023

FPGA v.s CPU and GPU

Pengju Ren@XJTU 2023

FPGA Design Flow

16

Using Hardware Description Language (Verilog RTL,
VHDL, HLS) to implement your design following the
SPEC

Divide whole design
into sub elements

Complete physical
implementation and
optimize it with
constraints

FPGA verification
and debugging

Refining your design

Pengju Ren@XJTU 2023

Anatomy of a basic CGRA

◼ Hardware Building blocks: Compute, Memory, Interconnect
Compute: ALUs of varying capability

Memory: Programmer-managed scratchpads, caches

 Interconnect: Statically programmed paths vs. dynamically routed data

◼ Hardware Organization: Topology
Data path hierarchy: ALUs vs. clusters of ALUs

Communication granularity: bit-level vs. word-level

 Interconnect topology: Mesh, Torus, …

◼ Software: Programming Model
Software abstraction: Threads, VLIW, spatially configurable ALUs, …

Compiler technology to map high-level applications to CGRAs

17

Pengju Ren@XJTU 2023

CGRA v.s FPGA

18

◼ Fine-grained reconfigurability introduces overheads
Much higher area, delay and power vs. standard cell ASIC
Introduce coarse-grained building blocks, much less interconnect

◼ Programmability
Fine grained architecture leads to long place and route times (> 2 hours)
Not a good computing substrate target for a compiler

◼ CGRA architecture
New reconfigurable architectures and new compiler technology Pengju Ren@XJTU 2023

Top-Down Design of CGRA

◼Observation: We can abstract key software constructs that are
amenable to hardware acceleration
 Nested data and pipeline parallelism

 Data locality

◼ Parallel Patterns: Software abstractions that capture
parallelism and locality
 Loops with special properties

 Expressive over wide range of domains (ML, SQL, Graph analytics, etc)

 Enables building optimizing compilers with aggressive compiler
optimizations

◼ Design a CGRA to accelerate parallel patterns

19

Pengju Ren@XJTU 2023

CGRA: Basic Structure and Configuration

20

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

C
o

n
te

x
t

m
e
m

o
ry

Data memory (Scratchpad)

H
o

st
 C

o
n

tr
o

ll
er

ALU

REGs

MEM

VddH VddL

A + B A >> B A > B (A+B)>>C

A - B A + (B>>C) A == B (A+B)<<C

A & B A A < B (A-B)>>C

A | B A + (B<<C) A >= B (A+B)<<C

A ^ B A - (B<<C) A <= B A×B_H

A ~^ B |A-B| A != B Clip(A, -B, B)

~A (A>>C)-B A - (B>>C) Clip(A, 0, B)

A << B A×B_L (A<<C)-B C?A:B

Functions of ALU

Reconfigurable hardware

◼ Implement hardware structures dynamically

◼ Objective: high performance but low power

◼ Key Tech: spatial parallel computing like 2D-PE array

◼ Connection is programmable → routing

Pengju Ren@XJTU 2023

CGRA: Basic Structure and Configuration

21

Config

Execution

Config

Execution

Time

Pengju Ren@XJTU 2023

CGRA: Spacial Execution, Data Driven

22

◼ Compilation tool flow is critical to CGRAs
◼ Mapping & Scheduling: From DFG to Spatial/Temporal

deployment

Pengju Ren@XJTU 2023

23

CGRA: Spacial Execution, Data Driven

Task-Flow Mapping

◼Operator Mapping
◼Memory Mapping
◼Interconnection configuration

Pengju Ren@XJTU 2023

24

CGRA: Spacial Execution, Data Driven

Pengju Ren@XJTU 2023

25

CGRA: Spacial Execution, Data Driven

Pengju Ren@XJTU 2023

26

CGRA: Spacial Execution, Data Driven

Pengju Ren@XJTU 2023

27

CGRA: Spacial Execution, Data Driven

Pengju Ren@XJTU 2023

28

CGRA: Spacial Execution, Data Driven

The hardware structure and
functions are adapted during
runtime based on algorithm

Pengju Ren@XJTU 2023

CGRA: orchestrate dataflow and hardware

29

DDG (dif, min)A loop

Kernel

II: Initiation Interval
S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4

Loop Pipelining

Time

PE1 PE2

PE1 PE2

PE1 PE2

T

T+1

S3

S4

S1

S2

Time Extended PE Array

CGRA
for(i=0; i<N; i++){

S1: a[i] = b[i-1] + 1;

S2: b[i] = a[i] / 2;

S3: c[i] = b[i] + 3;

S4: d[i] = c[i];

}

S1

S2

S3

S4

(0,1)

(0,1)

(0,1)

(1,1)

Loop carried dependence

S1

S2

S3

S4

◼ Exploiting operator level parallelism

◼ Finding better OP-PE binding according to CGRA’s arch features

Pengju Ren@XJTU 2023

Computation models of CGRAs

30

Single/Multiple Configuration Single/Multiple Data (SCSD、SCMD、MCMD）

Configuration-1 through configuration-3 are independent and asynchronous; rectangles

with different colors represent different configurations, and blank ones represent idle

Pengju Ren@XJTU 2023

⚫ 可重构计算芯片以运算单元阵列为核心部件，由配置流和数据流共同驱
动（不使用指令），从而实现软硬件双编程。

⚫ 应用任务中的每个运算都可以在运算阵列中找到对应的单元，单元间的
互连与任务一一对应，由此获得比拟专用电路的能量效率。

高级语言程序， 如C/C++

（软件编程）

功能、互连等可按需动态改变的阵列

（硬件编程）

可重构计算处理器

Pengju Ren@XJTU 2023

32

Next Lecture：DNN Acceleractor & HiPU Arch

（Given by Prof. Wenzhe Zhao)

Pengju Ren@XJTU 2023

