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Abstract

Forecasting the future trajectory of pedestrians is an impor-
tant task in computer vision with a range of applications, from
security cameras to autonomous driving. It is very challeng-
ing because pedestrians not only move individually across
time but also interact spatially, and the spatial and temporal
information is deeply coupled with one another in a multi-
agent scenario. Learning such complex spatio-temporal cor-
relation is a fundamental issue in pedestrian trajectory pre-
diction. Inspired by the procedure that the hippocampus pro-
cesses and integrates spatio-temporal information to form
memories, we propose a novel multi-stream representation
learning module to learn complex spatio-temporal features
of pedestrian trajectory. Specifically, we learn temporal, spa-
tial and cross spatio-temporal correlation features in three
respective pathways and then adaptively integrate these fea-
tures with learnable weights by a gated network. Besides, we
leverage the sparse attention gate to select informative inter-
actions and correlations brought by complex spatio-temporal
modeling and reduce complexity of our model. We evaluate
our proposed method on two commonly used datasets, i.e.,
ETH-UCY and SDD, and the experimental results demon-
strate that our method achieves state-of-the-art performance.
Code: https://github.com/YuxuanIAIR/MSRL-master

Introduction
Pedestrian trajectory prediction aims to predict the future
movement of each pedestrian in a traffic scenario. It is im-
portant in many intelligent applications like autonomous
driving and video surveillance.

Although great progress has been made recently, predict-
ing future trajectories of pedestrians remains challenging
due to the temporal motion directed by each pedestrian’s in-
tention (Mangalam et al. 2020) and the spatial interaction
among different pedestrians (Gupta et al. 2018; Huang et al.
2019; Sun, Jiang, and Lu 2020; Yu et al. 2020). By mod-
eling the temporal dependence and the spatial interactions,
previous works have achieved great advancement. Most of
them learn temporal motion and spatial interaction via sep-
arate models and feed trajectories into stacked models of
spatial and temporal components to get spatio-temporal fea-
tures, as shown in Figure 1. Concretely, the temporal model
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Figure 1: (a) represents previous methods that model tempo-
ral motion and spatial interaction by two separate branches.
(b) represents joint modeling. (c) represents our method that
learns temporal, spatial and correlation feature in three path-
ways and integrates them adaptively.

employs the temporal sequential networks (e.g., Recurrent
Neural Networks and its variants (Hochreiter and Schmid-
huber 1997), Temporal Convolutional Network (Bai, Kolter,
and Koltun 2018), and Self-attention (Vaswani et al. 2017))
to model the temporal dependence, and meanwhile, the spa-
tial model aggregates the messages from all other pedestri-
ans via the pooling mechanism (Gupta et al. 2018), Graph
Convolutional Networks (Sun, Jiang, and Lu 2020), or the
spatial attention (Huang et al. 2019).

However, the architecture mentioned above may not cap-
ture complex spatio-temporal correlations completely be-
cause there exists interplay between the two dimensions.
Although there are models like AgentFormer (Yuan et al.
2021) that learns spatio-temporal features jointly as shown
in Figure 1(b), the efficiency and representation ability is
sub-optimal because of the great amount of computation
brought by joint modeling and interference between differ-
ent kinds of features. Hence, an architecture that can effec-
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tively handle such complex spatio-temporal information is
required for accurately predicting pedestrians’ trajectories.

Inspired by the finding that hippocampus has different
sub-regions for processing temporal, spatial and conjoint in-
formation respectively (Rangel, Quinn, and Chiba 2016) and
a special region is responsible for integrating the features
above (Buzsáki and Llinás 2017), we propose the multi-
stream representation learning module, which learns tem-
poral dependency, spatial interaction and multidimensional
correlation in three pathways and integrates them with learn-
able weights by a gated network, as shown in Figure 1(c)
and Figure 2. The temporal branch learns temporal motion
dependency via performing self-attention on each person’s
trajectory sequence. The spatial branch learns spatial inter-
action by performing sparse self-attention on slices of each
time step. Each slice contains motion states of each person
in one time step. The cross branch processes spatial and tem-
poral dimensions together and employs sparse self-attention
to investigate the relationship between motion states of dif-
ferent persons within a certain time scale and learn possible
correlations between two dimensions. Then temporal, spa-
tial and correlation features are merged by the gated net-
work, which enables the model to adaptively assign different
weights according to the importance of different features.
The proposed multi-stream representation learning module
makes each pathway focus on distinct features and allows
the model to integrate these features adaptively.

In addition, sparse attention gate is utilized in spatial
branch and cross branch to select informative interactions
and cross-space-time correlations. This enforces the model
to focus on most relevant interactions or correlations and re-
duces complexity. Finally, we apply our proposed module
into CVAE framework to achieve multi-modal prediction.

We evaluate our method on two widely used benchmarks -
ETH-UCY (Pellegrini et al. 2009; Lerner, Chrysanthou, and
Lischinski 2007) and SDD (Bock et al. 2020). Extensive ex-
periments show that our method outperforms the states of
the art under both metrics of Average Displacement Error
(ADE) and Final Displacement Error (FDE). The ablation
studies also verify the effectiveness of our proposed model.

The contributions of our work are summarized below:
• Learning complex spatial and temporal features of pedes-

trian trajectories as well as their correlations is not well-
addressed by previous models and we propose the multi-
stream representation learning module that learns tempo-
ral, spatial and conjoint features by three pathways and
integrates them dynamically via gated mechanism.

• One great challenge for interaction and correlation mod-
eling is that densely connecting the cross correlations and
spatial interactions not only leads to intractable compu-
tational complexity but also introduces redundancy. To
address this issue, we design a sparse attention gate that
can selectively model the most relevant interactions and
correlations to sparsify our model and reduce complexity.

• Extensive experiments show that learning complex
spatio-temporal patterns of pedestrian trajectories via our
proposed method greatly improves the prediction accu-
racy and achieves state-of-the-art performance.

Related Work
Trajectory Prediction. Trajectory prediction is a meaning-
ful and insightful task in audio, finance and traffic scenes.
Advancement in deep learning has greatly improved the ma-
chine’s ability to recognize and predict data with sequence
representations. RNN and its variant LSTM (Hochreiter and
Schmidhuber 1997) networks have made lots of progress
in various sequence prediction tasks and have been suc-
cessfully applied to learn the temporal motion pattern of
pedestrians, like Social-LSTM (Alahi et al. 2016) and
STGAT (Huang et al. 2019). Moreover, some models like
Social Attention (Vemula, Muelling, and Oh 2018) and Tra-
jectron (Ivanovic and Pavone 2019) use LSTM to implement
a spatio-temporal graph, which can represent structured se-
quence data and achieve great performances. As RNN-based
models may suffer from gradient varnishing or explosion in
certain conditions, some models like SGCN (Shi et al. 2021)
and UNIN (Zheng et al. 2021) utilize temporal convolutional
networks (TCN) (Lea et al. 2017) to learn temporal depen-
dency. In recent years, Transformer (Vaswani et al. 2017)
has quickly dominated NLP across various tasks. By replac-
ing recurrence with self-attention mechanism, Transformer
can better learn the long-term dependencies. Beyond NLP,
Transformer also achieves great success in pedestrian tra-
jectory prediction. TransformerTF (Giuliari et al. 2020) and
STAR (Yu et al. 2020) apply Transformer to model temporal
dependency and achieve better performance.

Social Interactions. Social interactions play an important
role in determining pedestrians’ future trajectories. Previ-
ous distance-based methods learn the interactions between
pedestrian pairs with a distance closer than a threshold. For
instance, S-GAN (Gupta et al. 2018) proposes a kind of
pooling mechanism to compute interactions based on rel-
ative distance between pedestrians. With the development
of graph-structured network, graph models are utilized by
many models to learn interactions. RSBG (Sun, Jiang, and
Lu 2020) and STGCNN (Mohamed et al. 2020) use graph
convolution networks to obtain interaction features. In ad-
dition, the attention mechanism is applied by many mod-
els because of its effectiveness in extracting relationship be-
tween elements. STGAT (Huang et al. 2019) leverages the
graph attention network (GAT) to assign different weights
to pedestrians involved in interactions. Other than the graph
attention network, self-attention (Vaswani et al. 2017) is also
prevalent in modeling spatial interactions. STAR (Yu et al.
2020) regards the self-attention mechanism as message pass-
ing in an undirected fully connected graph and calculates
the interaction weights to achieve weighted social interac-
tion modeling. SGCN (Shi et al. 2021) uses self-attention to
generate a sparse graph for interaction learning.

Most of the methods above learn temporal motion and
spatial interaction via separate models and feed trajectories
into stacked models of spatial and temporal components to
get spatio-temporal features. They failed to capture the cor-
relation between two dimensions. AgentFormer (Yuan et al.
2021) learns such correlation via agent-aware attention but
the spatial interaction and cross spatio-temporal correlation
may interfere with each other in their model. Besides, ex-
cessive connections across different time steps are useless.
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Figure 2: Architecture of the multi-stream representation learning module. Temporal, spatial and cross branches aim to learn
temporal, spatial and correlation features respectively. The gated network integrates these features adaptively. Sparse attention
gate is utilized in spatial branch and cross branch to enforce the model focus on important interactions and correlations.

Hence, our model is designed to learn spatial features, tem-
poral features as well as their correlations in three pathways
in which each branch can concentrate on one specific fea-
ture. In addition, sparse attention gate is used to enforce the
model focus on a small number of important interactions or
correlations and dismiss useless interactions or correlations.

Method
Problem Formulation
We represent the state of the n-th pedestrian at time t
as Xt

n including its position and velocity. Given n ∈
{1, 2, . . . , N} pedestrians over observable time steps t ∈
{T1, T2, . . . , Tobs}, the historical trajectories can be ex-
pressed as X = {Xt

n}
N,Tobs
n=1,t=1. Likewise, the future tra-

jectories of N pedestrians over future time steps t ∈
{Tobs+1, Tobs+2, . . . , Tpred} can be represented as Y =

{Y t
n}

N,Tpred
n=1,t=Tobs+1

We would like to learn the probability dis-
tribution function P (Y |X), a generative future trajectory
distribution conditioned on past trajectories.

Multi-stream Representation Learning Module
Time Encoding Before learning trajectory features, the
position encoding method of Transformer (Vaswani et al.
2017) is utilized to represent the temporal information of
trajectory positions. The “time encodings” are concatenated
with trajectory input embeddings to form the input of our
multi-stream representation learning module.

Given the trajectory embeddings of all N pedestrians in
T time steps as input keys K ∈ RT×N×D, queries Q ∈
RT×N×D, and values V ∈ RT×N×D, where D is the em-
bedding dimension of the input state. As shown in Figure 2,
we apply three parallel branches to extract motion tendency
feature, spatial interaction feature and multidimensional cor-
relation feature and then fuse them via gated mechanism.
This makes each pathway focus on a specific kind of feature
and allows the model to select important features adaptively.

Temporal Dependency The temporal branch learns tem-
poral dependency of trajectory via self-attention. We extract
their own trajectory features for each pedestrian from the in-
put and do linear projections to obtain Q,K, V as queries
Qt ∈ RT×D, keys Kt ∈ RT×D and values Vt ∈ RT×D.
Temporal self-attention is executed on each person’s keys,
queries and values. For each of the N pedestrians, we get
the temporal feature as follows:

Ft = Softmax(
QtK

T
t√

dk
) · Vt, (1)

where Ft ∈ RT×D. The temporal feature of each pedestrian
is then concatenated and reshaped back into F t ∈ RT×N×D.

Spatial Interaction The spatial branch learns spatial in-
teractions via sparse self-attention. We extract spatial states
of all pedestrians in each time step from the input and do lin-
ear projections to obtain Q,K, V as queries Qs ∈ RN×D,
keys Ks ∈ RN×D and values Vs ∈ RN×D. For each time
step, we get a dense attention weight matrix as follows:

Ws = Softmax(
QsK

T
s√

dk
), (2)

where Ws ∈ RN×N is for each time step. Then we proceed
to select important interactions and generate the sparse in-
teraction weight matrix via sparse attention gate:

W̃s = Relu(Ws − Sigmoid(CNN(Ws))). (3)
Convolution is applied on lines of the dense attention weight
matrix to get high-level features of interactions and the out-
put of sigmoid layer is between 0 and 1, which can serve
as the gate for dense attention weight matrix. The equation
above preserves informative interactions with weight gener-
ated by self-attention and the weights of interactions to be
dismissed become 0. Finally, we design the “Zero-Softmax”
function to normalize the sparse attention weights and pre-
vent zero-weights from being back into non-zero weights.
Specifically, given a flattened matrix x = [x1, x2, . . . , xD],

Zero-Softmax(xi) =
exp(xi)− 1∑D

j (exp(xj)− 1) + ϵ
, (4)
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Figure 3: Multi-Stream Representation Learning Module (MSRL Module) based trajectory prediction framework

where ϵ is a neglectable small constant for numerical stabil-
ity, D is the dimensionality of the input vector. The normal-
ized sparse interaction weight matrix is then multiplied with
Vs to produce the spatial feature for each time step as:

Fs = Zero-Softmax(W̃s) · Vs, (5)

where Fs ∈ RN×D. The spatial feature of each time step is
then concatenated and reshaped back into F s ∈ RT×N×D.

Cross Correlation The cross branch learns correlation be-
tween spatial and temporal dimensions through cross-space-
time connections. We first flatten the spatio-temporal dimen-
sions of all pedestrians to obtain the trajectory feature se-
quence as X̃ = (X1

1 , ..., X1
N , X2

1 , ..., X2
N , ..., XTobs

1 , ...,
XTobs

N ) and do linear projection to obtain Q, K, V as queries
Qc ∈ R(T×N)×D, keys Kc ∈ R(T×N)×D and values
Vc ∈ R(T×N)×D. Self-attention is performed on flattened
sequence to get primitive cross attention weights:

Wc = Softmax(
QcK

T
c√

dk
). (6)

As the cross spatio-temporal interaction makes more con-
nections, it inevitably introduces noise. Thus, learning
sparse attention weight is more important because sparsity
can not only make the model concentrate on important atten-
tions but also remove noise. Similar with the spatial branch,
we apply convolution on lines of the primitive cross atten-
tion weight matrix and generate the sparse attention weight
matrix via gated mechanism as:

W̃c = Relu(Wc − Sigmoid(CNN(Wc))). (7)
In addition, we add proper masks to make this branch fo-
cus on cross-space-time connections. Finally, the correlation
feature is obtained by multiplying normalized sparse atten-
tion weights with Vc as:

Fc = Zero-Softmax(W̃c) · Vc. (8)

Fc ∈ R(T×N)×D is then rearranged into F c ∈ RT×N×D.

Gated Network With temporal feature F t, spatial feature
F s and correlation feature F c, we fuse them via gated net-
work to allow the model to identify important features and
fuse these features adaptively. For features of each branch,
the intermediate feature F̃ and weight of gated mechanism
G are calculated as:

F̃ = Tanh(ϕ(F ,WF )),

G = Sigmoid(ϕ(F ,WG)),
(9)

where WF and WG are learnable weights of linear projec-
tion ϕ and the three pathways use different weights for linear
projection. In this way, the intermediate feature F̃t, F̃s, F̃c

for each branch and the fusion weight Gt, Gs, Gc for each
branch can be obtained. The fusion weight is then normal-
ized via Softmax and the integrated feature F is obtained
by summing features from each pathway with normalized
weights, where [, , ] indicates concatenation:

[Ĝt, Ĝs, Ĝc] = Softmax([Gt, Gs, Gc]),

F = F̃t ⊙ Ĝt + F̃s ⊙ Ĝs + F̃c ⊙ Ĝc.
(10)

Multi-modal Prediction
Having introduced our multi-stream representation learning
module, we apply it into CVAE framework shown in Fig-
ure 3 to achieve multi-modal prediction. We introduce the
Gaussian latent variable Z = {z1, z2, .., zn} for the scene
with n pedestrians and the latent distribution can be ex-
pressed as:

P (Y |X) =

∫
P (Y |X,Z)P (Z|X)dZ, (11)

where P (Z|X) is a Gaussian conditional prior factorized
over pedestrians and P (Y |Z,X) is a conditional likelihood
model. The optimization can be performed by minimizing
the negative evidence-based lower bound (ELBO) as:

LELBO =− Eq(Z|Y,X)[logP (Y |Z,X)]

+KL(Q(Z|Y,X)||P (Z|X)).
(12)
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History Encoder The History Encoder aims to encode
the past trajectories into a latent distribution and generate
the Gaussian parameters of the conditional prior distribu-
tion P (Z|X) for each pedestrian. It takes the multi-stream
representation learning module followed by standard feed-
forward and norm layers in Transformer to get the features
of past trajectories. Mean-pooling is used to get pedestrian-
wise past trajectory feature, which is then fed into an MLP
to generate the Gaussian parameters of P (Z|X).

Future Encoder The Future Encoder models the poste-
rior distribution Q(Z|Y,X) conditioned on past trajectories.
Firstly, the proposed multi-stream representation learning
module is utilized to learn the feature of future trajectory.
Then, we use a Future-Past Attention module to update the
future trajectory feature. It receives history trajectory fea-
ture from the History Encoder as K,V and future trajectory
feature produced by the previous multi-stream representa-
tion learning module as Q to learn the relationship between
past trajectory and future trajectory. The Future-Past Atten-
tion module shares the same architecture with the motion
branch in the multi-stream representation learning module,
except that K,V and Q are from different sources, as shown
in Figure 4. In this way, the connection between the observ-
able trajectory and future trajectory is built, which helps the
network learn more effective future trajectory features and
further excavate pedestrian motion patterns. Similar with the
History Encoder, standard feed-forward and norm layers are
followed. Mean-pooling is then used to get pedestrian-wise
future trajectory feature, which is then fed into an MLP to
generate the Gaussian parameters of Q(Z|Y,X).

Future Decoder The Future Decoder takes the sampled
result Z concatenated with the result of temporal convolu-
tion as input and decodes the input back into predicted future
trajectories. The samples are obtained from posterior dis-
tribution Q(Z|Y,X) in training but from prior distribution
P (Z|X) in testing. Besides, a sampler plugin like LDS (Ma
et al. 2021) is utilized to improve sample diversity within a
fixed number of sample amount. We use this plugin because
improved sample diversity and quality can better help our
model play advantages of spatio-temporal feature modeling.
More details about this plugin can be seen in supplemen-
tal materials. The architecture of Future Decoder is similar
with that of Future Encoder. The multi-stream representa-
tion learning module learns possible interactions in predic-
tion horizon and the Future-Past Attention module further
refines the future trajectory features with past features. In
addition, we add proper masks to prevent the model from
attending to subsequent positions when predicting. Standard
feed-forward and norm layers are followed. The predicted
future trajectory Ŷ is finally generated via MLP.

Training the Model
The CVAE model can be trained by minimizing the nega-
tive evidence-based lower bound (ELBO). The first term in
Eq.(12) is the reconstruction loss, or expected negative log-
likelihood. As we use a Gaussian to model the conditional
likelihood P (Y |X,Z) = N (Ŷ , I/β), where I is the iden-
tity matrix and β is a weighting factor, this term equals to
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Figure 4: Future-Past Attention module for strengthening the
relationship between future trajectories and past trajectories

the mean squared error: LMSE = 1
2β||Y − Ŷ ||2 The sec-

ond term in Eq.(12) is the KL divergence between prior and
posterior, which is calculated as follows:

LKL = KL(Q(Z|Y,X)||P (Z|X)). (13)

Besides the negative evidence-based lower bound
(ELBO), we add a variety loss proposed by S-GAN (Gupta
et al. 2018) to encourage the model to produce diverse re-
sults. For each scene we generate k possible predictions and
choose the best prediction to calculate the variety loss:

LV AR = min||Yi − Ŷ
(k)
i ||2. (14)

Finally, the total loss function is defined as:

L = LMSE + LKL + LV AR. (15)

Experiments
Evaluation Dataset. We evaluate our model on the ETH-
UCY (Pellegrini et al. 2009; Lerner, Chrysanthou, and
Lischinski 2007) and Stanford Drone Dataset (SDD) (Bock
et al. 2020), which are widely-used benchmarks for pedes-
trian trajectory prediction. ETH-UCY contains five scenar-
ios named ETH, HOTEL, UNIV, ZARA1 and ZARA2. Fol-
lowing prior work, we use the leave-one-out cross valida-
tion strategy on ETH-UCY. SDD contains 20 scenes and
the coordinate of trajectory is recorded in pixel coordinate
system with the pixel as the unit. An observation length of
8 timesteps (3.2s) and a prediction horizon of 12 timesteps
(4.8s) is used for evaluation.

Evaluation Metrics. We employ two evaluation metrics:
Average Displacement Error (ADE) and Final Displace-
ment Error (FDE). ADE is the average L2 distance between
ground truth and prediction over all predicted time steps.
FDE is the L2 distance between predicted final destination
and real final destination at the end of the prediction horizon.
Following previous works, for each model compared, 20 tra-
jectories are generated and the trajectory closest to ground
truth is used to calculate ADE and FDE.

Quantitative Analysis
We compare our method with state-of-the-art models in re-
cent years. As we do not take scene context as input, models
using scene context are not listed for fair comparison. The
experimental results on ADE/FDE are presented in Table 1
and Table 2, showing that our model achieves state-of-the-
art performance on both ETH-UCY and SDD.
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Model ETH HOTEL UNIV ZARA1 ZARA2 AVG
S-GAN (Gupta et al. 2018) 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
Sophie (Sadeghian et al. 2019) 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15
NEXT (Liang et al. 2019) 0.73/1.65 0.30/0.59 0.60/1.27 0.38/0.81 0.31/0.68 0.46/1.00
STGAT (Huang et al. 2019) 0.68/1.29 0.68/1.40 0.57/1.29 0.29/0.60 0.37/0.75 0.52/1.07

STGCNN (Mohamed et al. 2020) 0.64/1.11 0.49/0.85 0.44/0.79 0.34/0.53 0.30/0.48 0.44/0.75
STAR (Yu et al. 2020) 0.36/0.65 0.17/0.36 0.31/0.62 0.26/0.55 0.22/0.46 0.26/0.53

PECNet (Mangalam et al. 2020) 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48
SGCN (Shi et al. 2021) 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

LB-EBM (Pang et al. 2021) 0.30/0.52 0.13/0.20 0.27/0.52 0.20/0.37 0.15/0.29 0.21/0.38
AgentFormer (Yuan et al. 2021) 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

PCCSNet (Sun et al. 2021) 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42
CAGN (Duan et al. 2022) 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

SIT (Shi et al. 2022) 0.39/0.61 0.13/0.22 0.29/0.49 0.19/0.31 0.15/0.29 0.23/0.38
MemoNet (Xu et al. 2022b) 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35
GroupNet (Xu et al. 2022a) 0.46/0.73 0.15/0.25 0.26/0.49 0.21/0.39 0.17/0.33 0.25/0.44

Ours AAAI 2023 0.28/0.47 0.14/0.22 0.24/0.43 0.17/0.30 0.14/0.23 0.19/0.33

Table 1: Comparison with state-of-the-art methods on ETH-UCY for ADE/FDE. Lower is better.

Model ADE FDE
S-GAN (Gupta et al. 2018) 27.23 41.44
Sophie (Sadeghian et al. 2019) 16.27 29.38
MATF (Zhao et al. 2019) 22.59 33.53

CF-VAE (Bhattacharyya et al. 2019) 12.60 22.30
Multiverse (Liang et al. 2020) 14.78 27.09
MANTRA (Marchetti et al. 2020) 8.96 17.76
SimAug (Liang and Hauptmann 2020) 10.27 19.71

EvolveGraph (Li et al. 2020) 13.90 22.90
PECNet (Mangalam et al. 2020) 9.96 15.88

LB-EBM (Pang et al. 2021) 8.87 15.61
PCCSNet (Sun et al. 2021) 8.62 16.16

CAGN (Duan et al. 2022) 9.42 15.93
SIT (Shi et al. 2022) 8.59 15.27

MemoNet (Xu et al. 2022b) 8.56 12.66
GroupNet (Xu et al. 2022a) 9.31 16.11

Ours AAAI 2023 8.22 13.39

Table 2: Comparison with state-of-the-art methods on SDD
for ADE and FDE. Lower is better. The bold/underlined font
represent the best/second best result.

Ablation Studies
We conduct extensive ablative experiments to show the ef-
fectiveness of each component in our proposed method. The
average performance of five sub-sets in ETH-UCY is shown
in Table 3. T, S and C refer to temporal branch, spatial
branch and cross branch respectively. FG is feature fusion
gated network and SG is sparse attention gate for spatial
and cross branches. For control groups without fusion gate,
element-wise sum is used as fusion function.

The comparison between (1), (2) and (3) indicates that
spatial interactions and correlation features are both useful
in trajectory prediction. In instance (4), we use temporal
transformer followed by spatial transformer to replace our
proposed multi-stream representation learning module, and
the result is worse than (2) and (3). This reveals that our
proposed model can better handle spatio-temporal features
compared with common methods used by previous models.

Model ADE FDE
(1) T 0.24 0.39
(2) T+S 0.22 0.36
(3) T+S+C 0.21 0.34
(4) Stacked T and S 0.22 0.37
(5) Joint 0.26 0.43
(6) T+(SC) 0.21 0.35
(7) T+S+C+FG 0.20 0.34
(8) T+S+C+FG+SG 0.19 0.33

Table 3: Ablation studies. T, S, C are temporal branch, spa-
tial branch and cross branch respectively. FG is gated net-
work for feature fusion and SG is sparse attention gate.
Stacked T and S means spatial model after temporal model.
T+(SC) means temporal branch is preserved and spatial and
correlative interactions are learned together.

Then we investigate whether the spatio-temporal features
can be learned together without disentangling. In (5), two di-
mensions are not distinguished and the spatio-temporal fea-
tures are learned by directly applying self-attention on flat-
tened sequence. The performance is much worse. This indi-
cates each branch has different features and learning these
features via multiple pathways is better. In (6), self-motion
tendency and interaction with others are separated but in-
teractions within the same frame and cross-frame interac-
tions are mixed together. This setting is also similar with the
agent-aware attention in AgentFormer. (3) is better than (6),
showing that out proposed model can better handle spatio-
temporal features of trajectories. Comparison between (3)
and (7) reveals that fusing features by gated network can
help the model adaptly focus on important features. The ef-
fectiveness of sparse attention gate is verified by (7) and (8).

Qualitative Analysis
Predicted Trajectory Visualization. We visualize the pre-
dicted trajectories in several scenarios to illustrate the effec-
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Figure 5: Visualizations of predicted future trajectory and sparse attention in typical scenarios

tiveness of our multi-stream representation learning module.
The visualization results are shown in Figure 5. We compare
our model with S-GAN, STGCNN and SGCN. The visual-
ization result on ETH and HOTEL shows that our model can
better handle the situation where pedestrians avoid collision
or walk together. The prediction result is also smoother. This
reveals that our model can capture the interplay between two
dimensions. In UNIV, there are a great number of pedestri-
ans. The interaction is presumably very complex and the mo-
tion tendency is hard to estimate. In this scenario, our model
can still outperform prior models. The prediction visualiza-
tion reveals that our model can learn more complex interac-
tions effectively. As for ZARA, our model is able to produce
trajectories closer to ground truth when abrupt changes in
moving direction occur, which is shown in the top-right cor-
ner. Conceivably, our model can better learn the impacts of
changes in motion trends on interactions. The visualizations
indicate that our model can better capture spatio-temporal
features of pedestrian trajectories and the correlation be-
tween spatial and temporal dimensions.

Visualization of interactions and correlations. We also
visualize spatial interactions and cross-space-time correla-
tions in typical scenarios in Figure 5. The sparse interactions
and correlations for the target pedestrian in the 6th predic-
tion time step and the sparse attention weight matrices for
corresponding scenarios are shown in the figure. The tar-
get pedestrian walks in group with another pedestrian while
needing to avoid collision with the coming pedestrian. Ap-
parently, our model can learn informative spatial interactions
and correlations while picking out connections that have a
major impact on the pedestrian’s trajectory. Moreover, we
visualize the sparse attention weight matrix of the multi-
stream representation learning module in the future decoder,

which shows the interaction and correlation weights within
12 future time steps. The spatial interaction weights and the
cross correlation weights are put into one matrix. The weight
matrix consists of T*T sub-blocks and each sub-block has
the shape of N*N. The sub-blocks on the diagonal line show
spatial interaction weights in each time step and other sub-
blocks show the weights for cross-spatio-temporal correla-
tions. The weights of spatial interactions and multidimen-
sional correlations for target pedestrian at the 6th time step
are shown in the line marked by black rectangle in the ma-
trix. As shown in Figure 5, besides spatial interactions, there
are also some cross correlations distributed in sub-blocks
that are not on the diagonal line. The weights in sub-blocks
of cross correlations are more sparse than the weights in sub-
blocks of spatial interactions. This reveals that spatial inter-
actions and cross correlations are different and two kinds
of connections should be processed in different pathways.
Overall, our model can adaptively pay attention to spatial
interactions and cross correlations and get better representa-
tions of spatio-temporal features in pedestrian trajectory.

Conclusion
In this paper, we propose to learn spatial, temporal and cor-
relation features of pedestrian trajectory in three respective
pathways and then adaptively integrate these features with
learnable weights by a gated network. Sparse attention gate
is also used to make the model focus on informative interac-
tions and correlations. Extensive experiments show that our
model achieves state-of-the-art performance and our multi-
stream representation learning module can accurately and
effectively model the trajectory features. It is expected that
our framework can also be applied in more diversified pre-
diction tasks other than pedestrian trajectory prediction.
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