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Abstract

Video Person Re-Identification (Re-ID) is a task of retriev-
ing persons from multi-camera surveillance systems. Despite
the progress made in leveraging spatio-temporal informa-
tion in videos, occlusion in dense crowds still hinders fur-
ther progress. To address this issue, we propose a Tempo-
ral Correlation Vision Transformer (TCViT) for video person
Re-ID. TCViT consists of a Temporal Correlation Attention
(TCA) module and a Learnable Temporal Aggregation (LTA)
module. The TCA module is designed to reduce the impact
of non-target persons by relative state, while the LTA mod-
ule is used to aggregate frame-level features based on their
completeness. Specifically, TCA is a parameter-free module
that first aligns frame-level features to restore semantic co-
herence in videos and then enhances the features of the tar-
get person according to temporal correlation. Additionally,
unlike previous methods that treat each frame equally with a
pooling layer, LTA introduces a lightweight learnable module
to weigh and aggregate frame-level features under the guid-
ance of a classification score. Extensive experiments on four
prevalent benchmarks demonstrate that our method achieves
state-of-the-art performance in video Re-ID.

Introduction
Video Person Re-Identification (Re-ID) is a key compo-
nent of surveillance systems (Zheng et al. 2016; Chen et al.
2018a; Wang et al. 2014). It is different from image-based
Re-ID as it retrieves persons from video sequences, thus pro-
viding extra temporal clues. With the rise of deep learning
techniques, there has been considerable progress in video
person Re-ID. However, it is still challenging due to the
occlusion caused by dense crowds. Therefore, the focus of
video person Re-ID research is on how to exploit temporal
information without the interference of occlusion.

The existing methods (Liu et al. 2021a; Yang et al. 2020;
Yan et al. 2020; He et al. 2021b; Gu et al. 2020) can
be divided into two categories. The first is the one-stage
method (Liu et al. 2021a; Yang et al. 2020; Yan et al. 2020;
He et al. 2021b; Gu et al. 2020), which utilizes 3D convolu-
tion or graph neural networks to learn spatial-temporal infor-
mation from videos. As mentioned in (Wu et al. 2022), 3D
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Figure 1: Examples of occlusion cases in video person Re-
ID. (a) The target person is the occluded one, while the non-
target person approaches from another direction. (b) The tar-
get person is the occluder, while the non-target person passes
the target at a faster pace. (c) The target person is in the cen-
ter of the frames and relatively static to the bounding box.

convolution-based methods are often affected by misalign-
ment of adjacent frames and the occlusion problem. Fur-
thermore, graph neural networks (Liu et al. 2021a) usually
require an additional pose estimation network to model the
body relationships of the target person across frames. The
second type is the two-stage method (Wu et al. 2022; Hou
et al. 2019), which first extracts frame-level features sepa-
rately and then performs temporal feature aggregation. This
kind of method uses attention mechanisms or generative ad-
versarial networks (GANs) (Hou et al. 2019) to reduce the
impact of occlusion within frames, but usually treats video
frames equally during the aggregation stage.

As seen in Figure 1 (c), each frame in videos is cropped
according to the bounding box generated by the video per-
son detector (Girshick 2015; Xu, Hrustic, and Vivet 2020),
which ensures that the target person is always in the center of



each frame and relatively static to the bounding box. On the
other hand, when the non-target person approaches from an-
other direction or passes the target person at a faster pace, the
non-target person is relatively dynamic to the bounding box.
As illustrated in the first row of Figure 1 (a) and (b), it is dif-
ficult to determine whether the target person is an occluder
or an occluded one based on a single frame. However, by re-
ferring to other frames and considering their relative state, it
can be inferred that the target person is the occluded one in
(a) and the occluder in (b). Thus, we can use the relative state
to mine information about the target person and reduce the
impact of most occlusion cases (e.g., the non-target person
is relatively dynamic to the bounding box).

Motivated by the above observations, we propose a Tem-
poral Correlation Vision Transformer (TCViT) to tackle the
occlusion problem. This two-stage approach first extracts
frame-level features using Vision Transformer (ViT) and
then enhances the features of the target person based on their
relative state. Thereafter, frame-level features are aggregated
as the final video representation based on their complete-
ness. To do this, we introduce a parameter-free Temporal
Correlation Attention (TCA) module, which aligns the video
frames using a kernel correlation filtering algorithm and then
boosts the target person’s portion in the frame-level fea-
tures according to temporal correlation. Additionally, unlike
other two-stage approaches that treat video frames equally,
we employ a lightweight Learnable Temporal Aggregation
(LTA) module to weigh and aggregate frame-level features
based on classification scores.

We conduct extensive experiments on four prevalent
datasets to evaluate our method. The results demonstrate that
our method achieves competitive performance with state-
of-the-art methods, validating its effectiveness. In summary,
our contribution is threefold.

• We propose a Temporal Correlation Vision Trans-
former (TCViT) for video person Re-ID, which exploits
relative state to learn robust features from the target per-
son and aggregate them based on completeness.

• We design a parameter-free Temporal Correlation At-
tention (TCA) module to solve the occlusion problem,
which first aligns the frame-level features by the correla-
tion filter and then re-weights them according to temporal
correlation.

• We design a lightweight Learnable Temporal Aggrega-
tion (LTA) module to replace the equal treatment strat-
egy, which weighs and aggregates frame-level features
under the guidance of classification scores.

Related Work
Video Person Re-ID. Along with the achievement in image-
based Re-ID (Chen et al. 2018b; Sun et al. 2018; Zheng et al.
2019; Zhang et al. 2019; Kalayeh et al. 2018), much progress
has been made in video-based Re-ID. Existing video Re-ID
methods (Bai et al. 2022; Zhou et al. 2017; Aich et al. 2021;
McLaughlin, del Rincon, and Miller 2016; Yang et al. 2020;
Song et al. 2018) mainly focus on exploiting spatio-temporal
clues in videos. Widely used techniques, such as optical
flow (McLaughlin, del Rincon, and Miller 2016; Chung,

Tahboub, and Delp 2017; Chen et al. 2020), recurrent neural
networks (Zhou et al. 2017; McLaughlin, del Rincon, and
Miller 2016), graph convolution (Yang et al. 2020; Yan et al.
2020), and 3D convolution (Gu et al. 2020; Li, Zhang, and
Huang 2019), are employed to model spatio-temporal rela-
tions. However, occlusion and misalignment problems often
corrupt the learned features.

Recently, some methods (Gu et al. 2020; Hou et al. 2019,
2020) have been proposed to tackle misalignment and occlu-
sion issues. Gu et al. (Gu et al. 2020) reconstruct the feature
maps of its adjacent frames to the central frame to ensure
feature alignment. Hou et al. (Hou et al. 2019) use infor-
mation from whole frames to restore occluded body parts
in occluded frames. However, these approaches can address
only one of the misalignment and occlusion problems. An-
other line of work (He et al. 2021b; Liu et al. 2021a; Yan
et al. 2020) exploits the correlation between frames to ad-
dress occlusion and misalignment implicitly. For example,
Liu et al. (Liu et al. 2021a) employ a keypoint estimator to
extract local features from body parts and interact with cor-
responding ones across frames. He et al. (He et al. 2021b)
divide the feature map extracted by CNN into several hori-
zontal parts and then pay dense attention to multi-scale and
multi-granularity local features under the guidance of global
features. However, the above methods ignore the fixed body
structure of humans and the different relative states between
the target person and the occlusion. In contrast, we jointly
address the problems of occlusion and misalignment and dif-
ferentiate the target person from occlusion by their different
relative states.
Correlation Filtering. Correlation filters are widely ex-
plored in object tracking (Henriques et al. 2014, 2012;
Bolme et al. 2010; Dai et al. 2019; Ma et al. 2015). Bolme
et al. (Bolme et al. 2010) learn a minimum output sum of
the squared error filter and update it with average mov-
ing. Henriques et al. (Henriques et al. 2012) augment the
training samples by cyclic shift and speed up the algorithm
with the kernel method. Based on it, KCF (Henriques et al.
2014) exploits the histogram of oriented gradients (HOG)
feature (Dalal and Triggs 2005) to improve the accuracy
of the tracker. Zhang et al. (Zhang et al. 2014) model the
scale change and learn the filters with context information.
Danelljan et al. (Danelljan et al. 2014) learn an adaptive cor-
relation filter and adopt the color attributes of the target ob-
ject to object tracking. As for the proposed method, we di-
rectly perform correlation filtering on RGB images and use
the correlation filter to calculate the deviation of the target
person across frames so as to tackle the problem of mis-
alignment efficiently.

Temporal Correlation Vision Transformer
The framework of our proposed TCViT, as shown in Fig-
ure 2, consists of TCA and LTA modules. The encoder di-
vides each frame into patches and generates frame-level fea-
tures. Meanwhile, the TCA module exploits the correlation
filtering algorithm to align the patches and then enhances the
patches of the target person based on temporal correlation.
Subsequently, under the guidance of classification scores,
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Figure 2: Framework of the proposed Temporal Correlation Vision Transformer (TCViT) for video person Re-ID.

the lightweight LTA module is introduced to weight and ag-
gregate frame-level features.

Vision Transformer Layers
Inspired by the success of Vision Transformer (ViT) in im-
age person Re-ID (He et al. 2021a), we use ViT to represent
frames as features. Given a video sequence V = {It}Tt=1
containing T frames, It ∈ RH×W×C is the t-th frame,
where H, W, and C denote its height, width, and chan-
nels, respectively. The ViT encoder first splits each frame
into N fixed-size patches It = {p1

t ,p
2
t , . . . ,p

N
t }. Then, an

extra learnable class token is prepended to patches and posi-
tion embedding P ∈ R(N+1)×D and camera index embed-
ding C ∈ R(N+1)×D (He et al. 2021a) are applied. The input
of the encoder is thus described as follows:

Xt =
[
pcls
t ; f

(
p1
t

)
; f
(
p2
t

)
; . . . ; f

(
pN
t

)]
+ P + C, (1)

where f(·) is a linear mapping function that maps each patch
to a D-dimensional feature vector, and pcls

t ∈ RD is the
class token. The ViT encoder composed of L layers extracts
features layer by layer. We denote the frame-level feature
process by layer l as Zl

t = {zcls
t ; z1

t ; z
2
t ; . . . ; z

N
t }, where

zcls
t and zn

t are D-dimensional feature vectors of the class
token and patches, respectively.

Temporal Correlation Attention Module
As mentioned in the Introduction, the target person is rela-
tively static to the bounding box, providing a clue to enhance
the feature of the target person. Drawing inspiration from the
previous method (Hou et al. 2019), we apply temporal aver-
age pooling on frame-level features to focus on the relatively
static part of the video. We then calculate the cosine similar-
ity between the frame-level features and the pooled one to
measure their temporal correlation separately. Patches with
low temporal correlation correspond to relatively dynamic
parts (i.e., the non-target person), while those with high tem-
poral correlation correspond to relatively static parts (i.e., the
target person).

However, the inadequate detector leads to misalignment
between adjacent frames, resulting in an issue during tem-
poral average pooling where the features of the target per-
son can be confused by the misaligned background. To align
the frame-level features, we use the kernelized correlation
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Figure 3: Diagram of Filter-based Patch Alignment

filter (KCF) (Henriques et al. 2014) to recover semantic co-
herence, which first calculates the cross-frame position de-
viation and then rolls patches in the frame-level features for
alignment.
Filter-based Patch Alignment. Following KCF (Henriques
et al. 2014), we transform the deviation calculation into a
ridge regression problem with the kernel method. The goal
is to obtain a filter with the highest response to a certain part
of the target person. Therefore, the deviation across frames
can be obtained by comparing the maximum response points
of the filter on adjacent frames. For this reason, the first step
is to calculate a filter with the highest response to the center
of the frame It.

Suppose that Y ∈ RH×W is the response map of the filter
on frame It, as shown in the first row of Figure 3. The cen-
ter of the map is the highest response, marked as one, and
the response gradually decreases to zero from the center to
the corners. Following KCF, we use It to initialize the fil-
ter and calculate the self-correlation Kt,t ∈ RH×W with a
Gaussian kernel as:

Kt,t = exp

(
− 2

σ2

(
∥It∥2 −F−1

(∑
C(Ît

∗
⊙ Ît)

)))
, (2)

where ⊙ is the element-wise product, F−1(·) denotes the in-
verse discrete Fourier transform, and

∑
C(·) means summa-

tion along the channel dimension. Moreover, σ is the band-
width parameter, Ît means the discrete Fourier transforma-
tion of It, and Ît

∗
is the complex conjugate of Ît.



Algorithm 1: Deviation calculation procedure
Input: Video V = {It}Tt=1, response map Y
Output: Deviations (ex, ey)

1: Initial filter α with I1 by Eq. (3);
2: for t = 2, t ≤ T do
3: Compute the response Mt+1 of filter α on It+1 by

Eq. (5)
4: Obtain the deviations (ext+1, e

y
t+1) by Eq. (6)

5: Based on deviations, roll the patches of feature Zl
t for

alignment.
6: end for
7: return Aligned features Z̄l

Based on Kt,t and the regression target Y , the filter α
can be computed as follows:

α =
F(Y )

F(Kt,t) + λ
, (3)

where F(·) represents the discrete Fourier transformation
and λ is a regularization parameter. The filter α ∈ RH×W is
most responsive to the center of It. To obtain the deviation
across frames, we compute the response map of the filter on
the next frame It+1. We first compute the cross-correlation
Kt,t+1 between It and It+1 as follows:

Kt,t+1 = exp

(
− 1

σ2

(
∥It∥2 + ∥It+1∥2

−2F−1
(∑

C
(Ît

∗
⊙ Ît+1)

)))
.

(4)

Then, the response Mt+1 ∈ RH×W of the filter α on
frame It+1 can be calculated as follows:

Mt+1 = F−1
(
F(Kt,t+1)⊙α

)
. (5)

The location of the maximum response point of Mt+1,
denoted as (Mx

t+1,M
y
t+1), corresponds to the center of

frame It. Accordingly, the deviation can be calculated as:

(ext+1, e
y
t+1) = (Mx

t+1 −W/2, My
t+1 −H/2), (6)

where ext+1 and eyt+1 are horizontal and vertical deviations,
respectively. Based on it, TCA rolls patches (except for class
token) in feature maps for alignment, as shown in the second
row of Figure 3. This operation ensures that frame-level fea-
ture maps have the same semantics along the same spatial
region, thus restoring semantic coherence. The entire pro-
cess of the deviation calculation is outlined in Algorithm 1
to facilitate comprehension.
Correlation Attention. As illustrated in Figure 4, the fea-
tures aligned after layer l are represented as Z̄l

t, and tempo-
ral average pooling is applied to them to obtain V ∈ RN×D:

V =
1

T

T∑
t=1

Z̄l
t. (7)

As mentioned above, averaging over the temporal dimen-
sion focuses on the relatively static parts. We can determine
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Figure 4: Diagram of Correlation Attention

whether a patch is important (i.e., belonging to the target
person) by comparing it with the pooled ones. To do this,
we calculate the cosine similarity between Z̄l

t and V as fol-
lows:

st =
Z̄l

t

∥Z̄l
t∥

⊗ V

∥V ∥
, (8)

where ⊗ denotes the inner product. Here, st ∈ RN , which
lies between 0 and 1, estimates the temporal correlation
of each patch. Applying Sigmoid(st) to the input features,
TCA will return frame-level features that focus more on the
target person as follows:

Zl
t = Z̄l

t + Z̄l
t ⊙ Sigmoid(st). (9)

During the alignment operation, we initial filter with the
first frame. However, in some cases, the first frame may not
be an accurate detection result. Aligning subsequent frames
to it can cause the body structure of the target person to be
distorted (e.g., patches of the legs rolling up to the upper
body). Our aim is to make sure that the features have the
same semantic in the same spatial region so that patches with
the same semantic can be merged together during temporal
average pooling. Therefore, the disruption of body structure
does not reduce performance, and the original patch arrange-
ment will be restored for the subsequent layer after the TCA
process.

Learnable Temporal Aggregation Module
ViT, when used in conjunction with the TCA module, en-
codes each frame as a frame-level feature. In the traditional
approach, the class tokens zcls

t are separated from ZL
t and

then averaged over time to generate the final video represen-
tation. However, in crowded scenes, some frames may be
occluded, resulting in only a partial view of the target per-
son. It is more appropriate to assign a higher weight to com-
plete frames compared to occluded ones, rather than treating
all frames equally. To this end, a lightweight LTA module is
introduced to weigh and aggregate each frame-level feature.

The illustration in Figure 2 provides an overview of our
LTA. Specifically, the class tokens Zcls ∈ RT×D are sepa-
rated from the output of the last layer in ViT. Subsequently,
a linear layer and a RELU layer are used to downsample the
channel dimension:

F = GELU(MLP(Zcls)). (10)



Here, F ∈ RT×D/r compresses the information of class
tokens by downsampling it at a rate of r. We reshape F into
a vector f ∈ RT ·D/r and compute the weight w ∈ RT of
class tokens as follows:

w = MLP(f),

v =
1

T

∑
T
(Zcls ⊙ Sigmoid(w)),

(11)

where
∑

T (·) means summation along time dimension. Sub-
sequently, LTA multiplies Zcls with Sigmoid(w) and ag-
gregates over time to obtain the final video representation
v ∈ RD.

It is insufficient to learn the weights only through cas-
caded linear layers. To better guide the training of LTA, we
calculate classification scores for Zcls with a classification
head and use the cross entropy loss as the classification loss
for training. Generally, partially occluded frames have lower
classification scores due to incomplete information about the
target person, while complete frames tend to have higher
classification scores. Taking this into account, we apply a
Mean Squared Error (MSE) loss to measure the discrepancy
between x and the classification score:

c = MLP(Zcls),

Lmse(c,w) =
∑

T
∥y(c)−w∥2,

(12)

where c ∈ RT×M is the classification score, M is the num-
ber of classes. The function y(c) ∈ RT selects a score cor-
responding to the ground truth from each row of c.

Last, with the help of the classification scores, LTA can
efficiently aggregate frame-level features to create an infor-
mative representation of the video.

Objective Function
We adopt the triplet loss (Hermans, Beyer, and Leibe 2017)
Ltri and mutual information loss (Hjelm et al. 2019) Lmi

to guide the training of frame-level feature maps, similar
to (Bai et al. 2022; Yan et al. 2020). Additionally, we ap-
ply the MSE loss Lmse in Eq. (12) and cross entropy loss
Lxent to improve the learned weights:

Lf = Ltri(Z
cls) +Lmi(Z

cls) +Lxent(c) +Lmse(c,w). (13)

After the process of LTA, Ltri and Lxent are adopted to
guide the training of the video representation v:

Lv = Ltri(v) + Lxent(v). (14)

The overall objective function of our TCF is a combina-
tion of the above two losses:

L = Lv +
∥Lv∥
∥Lf∥

Lf . (15)

Experiments
Datasets and Settings
Datasets. We evaluate our method on three datasets, i.e.,
MARS (Zheng et al. 2016), LS-VID (Li et al. 2019), and
iLiDS-VID (Wang et al. 2014), for video person Re-ID and

Methods Para. Inference LS-VID
Time mAP rank-1

base. 86.3 1.0x 80.5 88.2

base. + TCA w/o Align. 86.3 1.03x 81.0 88.7
base. + TCA 86.3 1.40x 81.4 89.2

base. + LTA w/o MSE. 87.2 1.02x 81.0 88.8
base. + LTA 87.2 1.02x 82.0 89.3

TCViT(base.+TCA+LTA) 87.2 1.44x 83.1 90.1

Table 1: Component analysis of TCViT on LS-VID.

one dataset, i.e., VVeRI-901-trial (Zhao et al. 2021) for
video vehicle Re-ID. More details are introduced in supple-
mentary materials.
Evaluation protocols. We adopt the mean Average Pre-
cision (mAP) and the Cumulative Matching Characteris-
tics (CMC) as evaluation metrics.
Implementation Details. The ViT-base (l = 12) is adopted
as the baseline for our TCViT, the same as the CAViT (Wu
et al. 2022). During training, we randomly select 8 identi-
ties and sample 4 sequences for each identity. We follow the
restricted random sampling strategy (Li et al. 2018), which
evenly divides the video sequence into 8 chunks and ran-
domly selects one frame per chunk. The frames are resized
to 256 × 128 and augmented by random flipping and eras-
ing (Wang et al. 2018; Zhong et al. 2020). We set the re-
duction rate r = 8. Additionally, we add two TCA mod-
ules after the 7th and the 9th ViT layers separately. The
Adam (Kingma and Ba 2014) optimizer with a weight de-
cay of 0.001 is used as optimizer, and the learning rate is
initialized as 0.0005 with a cosine learning rate scheduler.
The model is trained for 90 epochs. During evaluation, we
split each video sequence into multiple 8-frame video clips
and obtain the video-level representation by averaging all
extracted clip features.

Ablation Study
For a fair comparison, we build the baseline by degrading
TCViT without TCA and LTA, which we refer to as “base.”
for simplicity. In addition, we compare the influence of TCA
and LTA on inference time in Table 1.
Component Analysis of TCA. We evaluate the contribu-
tions of TCA on LS-VID in Table 1. TCA is parameter-
free and does not add any computational costs, resulting in
a 0.9% / 1.0% increase in rank-1/ mAP over the baseline. In
particular, filter-based patch alignment is essential for TCA,
and its absence leads to a decrease in performance.

We conduct experiments to investigate the organizational
rationality of TCA by inserting two TCA modules into dif-
ferent positions. “Z3+Z5” means respectively inserting two
TCA modules after the 3rd and 5th ViT layers. The combina-
tion of “Z7 +Z9” achieves the best performance, as shown
in Table 2 (a). In shallow layers, patches learn features from
similar patches surrounding them. TCA weakens non-target
persons’ and background patches, which hinders the relation
construction between patches in shallow layers. However, in
deep layers, only a few patches with important semantic in-



Methods GFs. Para. mAP rank-1
TCViT 11.04 86.31 83.1 90.1
Z3 + Z5 11.04 86.31 76.6 84.5
Z5 + Z7 11.04 86.31 81.7 88.6
Z7 + Z9 11.04 86.31 83.1 90.1
Z9 + Z11 11.04 86.31 82.7 89.6

(a) The results of TCViT with two TCA mod-
ules at different positions.

Methods mAP rank-1 rank-5
TCViT 83.1 90.1 96.5
Z7 + Z9 + Z11 83.0 89.9 96.5
Z7 + Z9 83.1 90.1 96.5
Z7 + Z8 82.8 89.8 96.5
Z7 82.6 89.3 96.4

(b) The results of TCViT with a different num-
ber of TCA modules.

Methods GFs. Para. mAP rank-1
TCViT 11.05 87.02 83.1 90.1
r = 2 11.05 87.24 82.1 89.1
r = 4 11.05 87.09 82.6 89.6
r = 8 11.05 87.02 83.1 90.1
r = 16 11.05 86.98 82.9 89.8

(c) The results of TCViT with different reduc-
tion rate r in the LTA module.

Table 2: Ablation study on LS-VID. More details are explained in the text.

Methods Proc. LS-VID MARS iLiDS-VID
mAP rank-1 mAP rank-1 rank-1 rank-5

GLTR(Li et al. 2019) ICCV2019 44.3 63.1 78.5 87.0 86.0 98
VRSTC(Hou et al. 2019) CVPR2019 82.3 88.5 83.4 95.5
M3D(Li, Zhang, and Huang 2019) AAAI2019 40.1 57.7 74.1 84.4 74.0 94.3
AP3D(Gu et al. 2020) ECCV2020 73.2 84.5 85.1 90.1 88.7
TCLNet(Hou et al. 2020) ECCV2020 70.3 81.5 85.1 89.8 86.6
AFA(Chen et al. 2020) ECCV2020 82.9 90.2 88.5 96.8
MGH(Yan et al. 2020) CVPR2020 85.8 90.0 85.6 97.1
MG-RAFA(Zhang et al. 2020) CVPR2020 85.9 88.8 88.6 98
BiCnet-TKS(Hou et al. 2021) CVPR2021 75.1 84.6 86.0 90.2
GRL(Liu et al. 2021b) CVPR2021 84.8 91.0 96.7 98.3
STRF(Aich et al. 2021) ICCV2021 86.1 90.3 89.3
STMN(Eom et al. 2021) ICCV2021 69.2 82.1 84.5 90.5
DenseIL(He et al. 2021b) ICCV2021 87.0 90.8 92.0 98.0
SINet(Bai et al. 2022) CVPR2022 79.6 87.4 86.2 91.0 92.5
CAViT(Wu et al. 2022) ECCV2022 79.2 89.2 87.2 90.8 93.3 98.0

TCViT 83.1 90.1 87.6 91.7 94.3 99.3

Table 3: Performance comparison with state-of-the-art methods on LS-VID, MARS, and iLiDS-VID.

Methods Sequence
Length Proc. VVeRI-901

mAP rank-1

base. 8 ICLR2021 63.5 56.7

BiCnet-TKS 8 CVPR 2021 50.8 41.3
AP3D 4 ECCV 2020 61.2 52.5
Token shift 8 ICCV 2019 67.4 57.5
CAViT 8 ECCV 2022 65.6 60.0

TCViT 4 65.0 58.7
8 69.0 63.9

Table 4: Comparison with state-of-the-arts on VVeRI-901.

formation are taken into account. Therefore, TCA improves
performance by weighting the deep frame-level features to
focus on the target person, which is in line with the findings
of Chang et al. (Chang et al. 2023). Further analysis can be
found in the supplementary materials.

We also evaluate the influence of the number of TCA
modules, as illustrated in Table 2 (b). It can be seen that the
performance increases and reaches its peak with two sep-
arate TCA modules after the 7th and 9th layers. Stacking
three TCA modules does not bring any performance gain,
and “Z7 + Z9” provides the best balance between perfor-
mance and complexity.

Component Analysis of LTA. We evaluate the effectiveness
of LTA, and the results are presented in Table 1. Replac-
ing the temporal average pooling with LTA has increased
the rank-1/mAP by 0.5%/0.6% over the baseline. Addition-
ally, when MSE loss is embedded to guide LTA training,
performance is further improved by 1.0%/0.5% rank-1/mAP
on LS-VID. LTA is a lightweight module that only intro-
duces 1% extra parameters and negligible GFLOPs, yet has
achieved a total improvement of 1.5%/1.1% rank-1/mAP.

As shown in Eq. (10), LTA compresses the class tokens at
a rate of r, and Table 2 (c) presents the results on LS-VID at
different reduction rates r, i.e., r = 2/4/8/16. As the reduc-
tion rate increases, the performance improves until it reaches
its peak at r = 8. After that, further increasing the rate does
not bring any benefit, probably due to the information loss
caused by the excessive reduction rate.

Comparison with State-of-the-art Methods
In Table 3, we compare TCViT with existing state-of-the-art
methods on three prevalent video person Re-ID benchmarks.
(1) LS-VID is one of the most challenging datasets. Our ap-
proach achieves 83.1% in mAP, surpassing the previous best
method CAViT (Wu et al. 2022) by a considerable margin.
(2) On MARS, we obtain a rank-1/mAP of 91.7%/87.6%,
outperforming all other state-of-the-art methods. Most of the
methods are CNN-based, except CAViT (Wu et al. 2022) and
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(a) Visualization of Filter-based Patch Alignment. The first row is
an example of misaligned videos, while the second is the video se-
quence after alignment.
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(b) Visualization of Correlation Attention. The first row is two exam-
ples of videos under occlusion, while the second is the corresponding
temporal correlation st.

Figure 5: Visualization of Filter-based Alignment and Correlation Attention in TCA.
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Figure 6: Visualization of the difference between the base-
line and our TCViT framework.

DenseIL (He et al. 2021b). Our method increases rank-1 by
0.9% over the above two methods. As Wu et al. (Wu et al.
2022) pointed out, the ID switch caused by the GMMCP
tractor (Dehghan, Modiri Assari, and Shah 2015) and the
misalignment caused by the DPM detector (Felzenszwalb
et al. 2009) led to confusion in the video Re-ID task, re-
sulting in a performance bottleneck on MARS. Neverthe-
less, TCViT achieves the best performance among all other
methods. (3) iLiDS-VID is a small benchmark with only
500 identities. TCViT still performs well on the small-scale
dataset, demonstrating the robustness and effectiveness of
our method.

To test the generalizability of our TCViT, we conduct ex-
periments on VVeRI-901-trial (Zhao et al. 2021). As Ta-
ble 4 shows, TCViT outperforms the previous best meth-
ods AP3D and CAViT by 6.2%/3.8% rank-1/mAP and
3.9%/3.4% rank-1/mAP, respectively, when using the same
sequence length. Additionally, the combination of TCA and
LTA results in a 7.3%/5.5% rank-1/mAP improvement over
the baseline.

Visualization Analysis
Visualization of Filter-based Patch Alignment. We visual-
ize the results of the alignment operation. As shown in Fig-
ure 5 (a), the misaligned frames in the input sequence are

highlighted with red boxes. After the alignment operation,
the misaligned frames align with each other, as indicated by
the green boxes. This demonstrates that our TCA model ac-
curately calculates the deviation of the target person between
frames and restores temporal coherence.
Visualization of Temporal Correlations. In Figure 5 (b),
we visualize the temporal correlations of frames with occlu-
sion. We sample two identities from the MARS dataset. The
top row shows the raw frames with the non-target person
occlusion, while the bottom row shows the corresponding
temporal correlation st in Eq. (8). It is clear that when the
non-target persons are relatively dynamic to the bounding
box, patches belonging to them are assigned lower weights.
In contrast, the attention map is activated when the relatively
static part (e.g., target person) appears. This demonstrates
that correlation attention is prone to focus on the relatively
static part. When the non-target person comes from another
direction or passes the target person, TCA is able to differ-
entiate the target from the occlusion, thus weakening the oc-
cluded patches and enhancing the valuable ones, which is in
line with the motivation.
Visualization of Activation Maps. We further evaluate the
performance of our method by comparing the activation map
with the baseline on MARS and iLiDS-VID. As marked by
red boxes in the second row of Figure 6, the baseline model
cannot distinguish the target person from the non-target per-
son, while our TCViT framework can focus on the target
person even under severe occlusion. This demonstrates that
TCF is effective in exploiting spatio-temporal information
and reducing the impact of occlusion.

Conclusion
The purpose of this paper is to develop a better represen-
tation of the target person, particularly when they are par-
tially occluded from view. Our TCViT utilizes the relative
state to differentiate the target person from occlusion and
aggregates frame-level features based on completeness. A
parameter-free TCA module is first introduced to enhance
the target person’s portion in frame-level features. Subse-
quently, a lightweight LTA module is employed to obtain
the final video representations under the guidance of clas-
sification scores. Thanks to the help of TCA and LTA, our
TCViT achieves competitive performance.
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