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Abstract

Pedestrian trajectory prediction is critical in many vi-

sion tasks but challenging due to the multimodality of the

future trajectory. Most existing methods predict multi-

modal trajectories conditioned by goals (future endpoints)

or instances (all future points). However, goal-conditioned

methods ignore the intermediate process and instance-

conditioned methods ignore the stochasticity of pedestrian

motions. In this paper, we propose a simple yet effective

Sparse Instance Conditioned Network (SICNet), which gives

a balanced solution between goal-conditioned and instance-

conditioned methods. Specifically, SICNet learns compre-

hensive sparse instances, i.e., representative points of the

future trajectory, through a mask generated by a long short-

term memory encoder and uses the memory mechanism to

store and retrieve such sparse instances. Hence SICNet can

decode the observed trajectory into the future prediction con-

ditioned on the stored sparse instance. Moreover, we design

a memory refinement module that refines the retrieved sparse

instances from the memory to reduce memory recall errors.

Extensive experiments on ETH-UCY and SDD datasets show

that our method outperforms existing state-of-the-art meth-

ods. In addition, ablation studies demonstrate the superi-

ority of our method compared with goal-conditioned and

instance-conditioned approaches.

1. Introduction

Pedestrian trajectory prediction aims to predict pedestri-

ans’ future paths given their observed trajectories. It plays an

important role in autonomous driving [22, 43, 5], human mo-

tion prediction [6, 12, 19], video surveillance [57, 48, 18, 32],

and visual recognition [38, 42, 46]. Despite the recent ad-

vancement [30, 49, 8, 36, 10], pedestrian trajectory predic-

tion is still challenging due to the multimodality of future

trajectories. As the pedestrian’s motions are stochastic and
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Figure 1. Illustration of different multimodal prediction methods.

(a) Goals, instances and sparse-instances prepared for the predic-

tion. (b) Goal-conditioned methods. (c) Instance-conditioned

methods. (d) Sparse-instance-conditioned methods. The sparse-

instance-conditioned method is more accurate in in-between states

than the goal-conditioned method and more flexible than the

instance-conditioned method, thus making the better prediction.

indeterminate [29], multiple future paths are possible given

their current states.

To handle multimodality, many methods [27, 49, 55]

transform the multimodal trajectories into multimodal goals.

They first predict various goals as modality representations

and then sample multiple goals to generate diverse future

trajectories. However, they only focus on goals while ne-

glecting the intermediate movement process. As illustrated

in Figure 1(b), although with accurate goals, the intermedi-

ate process could be far from the ground truth. Thus, the

multimodal goals are not equal to the multimodal future tra-

jectories. It is necessary to consider the in-between states

to comprehensively describe the multimodality of trajec-

tory. Moreover, some other work [27, 28] predicts multi-

modal trajectories conditioned by instances. However, the

instance-conditioned methods will lead to motion stochastic-

ity loss and modality redundancy, resulting in performance

degradation and computational resource waste. As shown in

Figure 1(c), due to the reduced randomness of the instance-

conditioned approach, the prediction retains the same bias
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when the instance deviates from the ground truth.

To close this gap, we present a Sparse Instance Condi-

tioned Network (SICNet). In our model, a sparse instance,

which can give a comprehensive and adaptive description

of future modality, is constructed by element-wise multi-

plication between the future trajectory and a learned mask.

Hence, SICNet can predict the future trajectory more pre-

cisely guided by the sparse instance. To obtained the related

sparse instancs during inference, we adopt the memory mech-

anism to store non-redundant sparse instances corresponding

to all observed trajectories. Therefore, SICNet can recall its

modality’s most related sparse instance and jointly generate

the prediction during inference. Moreover, when the mem-

ory meets an unfamiliar observed trajectory, i.e., a trajectory

quite different from stored items, the memory mechanism

may recall false experiences. Hence we propose a memory

refinement module with a refinement loss to reduce such

recall errors by bridging the gap between the recall and the

ground truth. For multimodal trajectories generation, we can

retrieve a certain number of the most likely sparse instances

from the external memory and then generate corresponding

multimodal trajectories. In addition, to further remove the

redundancy from the retrieved sparse instances, we use the

cluster mechanism as a post-process to obtain succinct mul-

timodal proposals for the prediction instead of the sparse

instance during inference.

Extensive experiments and ablation studies on two pop-

ular pedestrian trajectory prediction datasets, i.e., ETH-

UCY [31, 21] and Stanford Drone Dataset (SDD) [33],

demonstrate the superiority of our method over prior state-of-

the-art methods. In summary, our contributions are four-fold:

(1) We give a balanced solution, i.e., a novel sparse instance,

between the goal and instance to guide the multimodal trajec-

tory prediction. (2) We propose a simple yet effective sparse

instance conditioned network for the multimodal trajectory

prediction. (3) We propose a memory refinement module for

the external memory to reduce recall errors when meeting

unfamiliar observed trajectories. (4) Extensive experiments

and ablation studies demonstrate the superiority and flexibil-

ity of our method compared with the goal-conditioned and

instance-conditioned approaches.

2. Related Works

Multimodal Pedestrian Trajectory Prediction. Pedes-

trian trajectory prediction [2, 23, 3, 39, 45] aims to predict

pedestrians’ future trajectories based on their observed tra-

jectories. There are some early studies on the deterministic

trajectory prediction [1, 44, 14, 50]. Due to the strong ran-

domness and uncertainty of pedestrian motions, there is no

single correct future trajectory prediction. Motivated by this,

Social GAN [13] proposes the concept of multimodal pedes-

trian trajectory prediction and emphasizes its importance.

Earlier work generates multimodal trajectories through

latent variables. Social GAN [13] proposes a Generative

Adversarial Network based on a social pooling mechanism

to generate a multimodal trajectory distribution. SGCN [37]

generates multimodal trajectories by modeling the future

predictions as a bi-variate Gaussian distribution. The CVAE-

based methods [15, 35, 8] generate multimodal trajectories

by sampling latent variables from a learned latent space.

However, the latent variable conditioned method is perse-

cuted by the problem of model collapse, thus resulting in

performance degradation. Moreover, the latent variable con-

ditioned methods also suffer in interpretability.

To address the model collapse and interpretability is-

sues, PECNet [27] proposes a goal-conditioned approach,

which transforms multimodal trajectories into multimodal

goals and then samples multiple goals to generate corre-

sponding diverse predictions. After that, amounts of goal-

conditioned studies [55, 8, 49] emerge and show superior

performance. However, goal-conditioned methods repre-

sent different modalities with different possible goals while

neglecting the intermediate states, thus suffering in per-

formance improvement. In addition, PCCSNet[27] and

MANTRA [28] propose instance-conditioned approaches,

which use all points of the future instance to describe each

modality precisely. However, it could lead to stochastic-

ity loss and modality redundancy, resulting in performance

degradation and computational resource waste. Moreover,

Y-net [26] use goals and waypoints to make the prediction.

However, the waypoints’ number and time step locations are

manually determined in Y-net [26], which may decrease the

prediction accuracy by manually choosing errors.

In contrast, we give a balanced way, i.e., a novel sparse

instance, between the goal and instance to guide the mul-

timodal trajectory prediction. The sparse instance is con-

structed by the learned representative points of the instance,

which can improve modality representation accuracy com-

pared with goal-conditioned methods and preserve stochas-

ticity compared with instance-conditioned methods.

Memory Network. The memory-augmented net-

work [51, 11, 25, 24, 53] uses an external memory module

to store critical information and has been widely applied in

many areas like detection [7, 4], tracking [52, 9], segmen-

tation [47], image generation [17], and video summariza-

tion [20]. Memory GAN [17] proposed a novel end-to-end

unsupervised GAN network with a learnable memory net-

work that effectively learns a highly multimodal latent space

without suffering from structural discontinuity and forget-

ting problems. OGEMN [7] proposes the first object-guided

external memory network for the online video object detec-

tion. STMTrack [52] proposes a novel tracking framework

built on a space-time memory network, which can fully use

historical information related to the target for better adapt-

ing to appearance variations during tracking. RMNet [47]

memorizes the target object regions, effectively alleviating
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Figure 2. The framework of our proposed SICNet. SICNet adopts a two-stage training strategy. The sparse instance representation module

generates the sparse instances by a learned mask and then trains an external memory to store and retrieve them. The memory refinement

module refines the retrieved sparse instances from memory to reduce the searching errors. We cluster the refined sparse instances into

multimodal proposals to remove redundancy further. The cluster only exists in inference to save training costs.

objects’ ambiguity and reducing computational complexity.

Two previous memory-based work, MANTRA [28] and

MemoNet [49], also use the memory mechanism in mul-

timodal trajectory prediction. However, the difference are

mainly in three aspects: (1) The contribution of our pro-

posed SICNet focuses on a novel representation of the

trajectory modality, i.e., a learned sparse instance, while

MANTRA [28] uses the whole instance and MemoNet [49]

uses the goal to represent modalities of multimodal trajecto-

ries; (2) We propose a memory refinement module to reduce

recall errors when meeting unfamiliar observed trajectories

during inference, while MANTRA [28] and MemoNet [49]

ignore such circumstances. (3) To demonstrate the superior-

ity of our proposed sparse instance, we do not use extra social

interaction and map information, while MANTRA [28] use

extra map information and MemoNet [49] use social inter-

action information. Despite this, we also achieve the best

performance compared with the above two methods, which

indicates the superiority of our method.

3. Our Method

As aforementioned, traditional goal-conditioned methods

ignore the intermediate process and instance-conditioned

methods ignore the stochasticity of pedestrian motions,

which leads to performance degradation. In this section,

we present a sparse-instance-conditioned network (SICNet)

to close this gap. Our SICNet adopts a two-stage training

strategy. In the first stage, we learn the sparse instance,

which is used to reconstruct the future trajectory jointly with

the observed trajectory. Meanwhile, an external memory

is trained to store and retrieve the sparse instance. In the

second stage, we refine the retrieved sparse instances from

the external memory through a refinement module with a re-

finement loss to reduce the recall errors. In addition, we use

the cluster mechanism to remove redundancy of the retrieved

sparse instances further during inference.

3.1. Problem Formulation

The objective of pedestrian trajectory prediction is to

predict possible future trajectory coordinates based on the

observed trajectories. For each target pedestrian, given an

observed trajectory X = {(xt, yt)}
Tobs

t=1 , where (xt, yt) is

the 2D coordinate at time t, we aim to predict the future tra-

jectory coordinates Y = {(xt, yt)}
Tpred

t=Tobs+1
. Note that mul-

timodal pedestrian trajectory prediction requires the model

to predict K future trajectories {Yi}
K
i=1 to account for multi-

modality, while only one future trajectory (ground truth) is

provided for training in the dataset.

3.2. Sparse Instance Representation

In the first training stage, we generate the sparse instance

features to represent future modalities and store them by

memory mechanism. As shown in Figure 3, we first train

the encoder-decoder with a reconstruction loss in this stage.

Then we train the memory module to store the sparse in-

stances generated during reconstruction.

Feature Encoder. As the trajectory is a temporal se-

quence, we use two LSTM [56] blocks to build the past

encoder fp(·) and the future encoder fy(·), respectively. The

hidden states of the two encoders are used as their corre-

sponding features, as follows:

Fp = fp(X),

Fy = fy(Y ),
(1)

where Fp ∈ R
1×d is the past feature extracted from the

observed trajectory X , and Fy ∈ R
1×d is the future feature

extracted from the future trajectory Y . d is the dimension of

hidden state in LSTM.

Sparse Instance. When inputting an observed trajectory,

we want to obtain the corresponding sparse instance of its

future modality so that we can construct future trajectories

jointly using the observed trajectory and the sparse instance.
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train the sparse instance by reconstructing the future trajectory.
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Figure 4. The second stage of the training process. In this stage,

we refine the retrieved sparse instances from memory through the

memory refinement module to reduce the recall errors.

Hence, we first learn an instance mask from the past feature

Fp through an MLP layer, as follows:

Fm = ϕ(Fp, θM ),

M = I(δ(Fm) ≤ µ)),
(2)

where ϕ(·, ·) denotes the MLP layer. θM is a learnable pa-

rameter. Fm is the learned feature which is used to construct

the mask. M denotes the instance mask. δ(·) is sigmoid

function to map Fm to the mask value [0, 1]. I is an indica-

tor function which equals 0 if the inequality holds, otherwise

1. µ is the mask threshold. Compared with directly masking

instances, masking instances in the high-level feature dimen-

sion is more efficient and effective. Hence we generate the

sparse instance Fins in the feature level dimension, as:

Fins = Fy ⊙M, (3)

where ⊙ denotes the element-wise multiplication.

Feature Decoder. The sparse instance feature should

be representative enough for the future trajectory. In addi-

tion, our goal is to predict the future trajectory based on

the observed trajectory conditioned on the sparse instance.

Therefore, we use an LSTM [56] decoder to reconstruct the

future trajectory with the combination of the past feature and

the sparse instance feature, as follows:

Yr = fd(Fp ⊕ Fins), (4)

where fd(·) is the decoder implemented by an LSTM block,

⊕ is a concatenation operation, and Yr is the reconstructed

future trajectory. The trajectory ℓ2-norm loss is used as the

reconstruction loss, as:

L1 = ∥Y − Yr∥2, (5)

where || · ||2 denotes the ℓ2-norm distance.

Memory Architecture. The key idea of the memory

module is to use the encoding of the observed trajectory as a

memory key to retrieve possible sparse instances and jointly

generate the multimodal predictions. To store the sparse

instances generated during the reconstruction process, we

first randomly initializes two memory banks, i.e., the past

memory bank Mp ∈ R
m×d, and the instance memory bank

Mi ∈ R
m×d to store the past and the sparse instance features

obtained from the reconstruction process, respectively. m

denotes the storage size of the memory bank, and d is the

dimension of the memory item. To combine the past and

sparse instance features, the items in these two memory

banks are aligned. Specifically, for the j-th past feature in

Mp[j], there is a unique sparse instance feature in Mi[j]
corresponding to it.

Memory Update. Due to the abundant similar trajecto-

ries in the dataset, it brings high redundancy to store all of

them in the memory bank. Hence we need to remove modal-

ity redundancy by memory updating process. Moreover, tra-

ditional memory mechanism [16] updates the memory bank

with the stored items’ labels, while such labels are not pro-

vided in trajectory prediction to distinguish trajectories with

different modalities. Therefore, we design an unsupervised

memory update strategy based on the distance between the

stored and current items, as shown in Figure 5. Inspired by

[16], an additional mark memory bank A ∈ R
m×1 tracks the

age of items stored in memory without being used. All items

in A are initialized to 1 and aligned to their corresponding

items in Mp and Mi. Given a pair of inputs (Fp,Fins), we

first calculate the feature similarities between Fp and each

item in Mi. Then, the k-th (k ∈ {1, ...,m}) item Mp[k] with

the highest similarity is used to retrieve the corresponding

sparse instance feature, i.e., Mi[k], through the one-to-one

architecture of memory banks.

Specifically, the distance D between Fins and Mi[k] is

defined as:

D = ∥Mi[k]− Fins∥2. (6)

We compare D with a threshold ξ to judge whether Fins

and Mi[k] have the same modality. When D > ξ, which

means that Fins and Mi[k] have different modalities. Hence

we update Mp, Mi with the oldest age (i.e., corresponding

A with the maximum value) by Fp, Fins, respectively, as

follows:

Mi[s]← Fins, Mp[s]← Fp, A[s]← 0, (7)

where s is the index with the oldest age. Since the s-th item

in the past memory bank has been updated, the s-th item in A

is set to 0 to prevent the newly added item from overwriting

it. When D ≤ ξ, which means that Fins and Mi[k] have the

same modality. Hence we only update Mp[k] to approach
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Fp by taking the normalized average of Mp[k] and Fp, as:

Mp[k]←
Fp +Mp[k]

∥Fp +Mp[k]∥
, A[k]← 0. (8)

Thus, we can retrieve the sparse instance feature Mi[k] eas-

ily, when we receive the past feature similar to Fp. Since

the k-th item in the past memory bank has been updated, the

k-th item in A is set to 0 to prevent the newly added item

from covering it. All values in A will add the same constant

after an epoch.

3.3. Memory Refinement

The input observed trajectory encoding could be unfa-

miliar to the well-trained memory, which could be caused

by: (1) modality loss due to removing redundancy during

the memory update process; (2) the input modality does not

exist in the train set. Such unfamiliarity could lead to the

recalled sparse instance not matching the input trajectory. To

reduce such recall errors, we design a memory refinement

module with a refinement loss in the second training stage,

as shown in Figure 4.

We first consider the difference between the past feature

Fp and its corresponding closest past memory item Mp[k]
with the same modality. To avoid extra optimization sim-

ilar to Eq. (8), we do not optimize Fp to approach Mp[k]
again but encode the difference between Fp and Mp[k] as

an additional deviation feature Fv , which is formulated as:

Fv = ϕ(Fp ⊕Mp[k], θV ), (9)

where θV is a learnable parameter, and ⊕ is the concatena-

tion operation. Then, the retrieved sparse instance feature is

refined as Fr, as follows:

Fr = ψ(Fv ⊕Mi[k], θR), (10)

where ψ(·, ·) is a linear projection with a learnable parameter

θR, Fr is the refined sparse instance feature. In this case, the

model can give a reasonable sparse instance considering the

difference between the input observed feature and the stored

observed feature in the memory bank. The loss function of

the memory refinement module is:

L2 = ∥Fins − Fr∥2. (11)

Finally, the past feature Fp is concatenated with the re-

finement feature Fr to predict the future trajectory. Con-

cretely, we use the pre-trained decoder fd(·) in the first stage

to achieve the prediction, as follows:

Ŷ = fd(Fp ⊕ Fr), (12)

where Ŷ is the predicted future trajectory.

Clustering. We adopt the clustering mechanism during

inference to further remove the modality redundancy of the

retrieved sparse instances. By retrieving C (C >> k) sparse

instances corresponding to the past trajectory from the well-

trained memory, we can generate C refined sparse instances

through the refinement network. Then we cluster the C

refined sparse instances into K multimodal proposals. The

clustered multimodal proposals will guide the multimodal

trajectory prediction instead of sparse instances in inference.

Ablation studies verify the effectiveness of this post-process.

3.4. Model Training & Inference

Training. SICNet is trained by a two-stage strategy. In

the first stage, we train the encoders fp(·), fy(·) and the

decoder fd(·) in the sparse instance representation module

with the reconstruction loss L1. Then we use the memory

mechanism to store the sparse instances generated during

the reconstruction process. In the second stage, we fix the

parameters of fp(·), fy(·) and fd(·), and train the memory

refinement module with the refinement loss L2.

Inference. We aim to predict K trajectories to cover the

multimodality of future trajectories. During inference, we

select the top-C past memory items by feature similarity and

then retrieve corresponding C sparse instance items from

the instance memory bank, where C >> K is to improve

the prediction diversity. Then we obtained C refinement

sparse instances through the memory refinement module.

Subsequently, the C sparse instance items are clustered into

K multimodal proposals. Finally, we feed the combination

of the past feature and multimodal proposals into the decoder

to generate K predicted future trajectories.

4. Experiments and Discussions

4.1. Experimental Setting

Evaluation Datasets. We evaluate our proposed method

on two benchmark datasets, i.e., ETH-UCY [31, 21] and

Stanford Drone Dataset (SDD) [33]. ETH-UCY is the most

commonly used pedestrian trajectory prediction dataset cap-

tured in the bird’s eye view. It contains five subsets, where

the ETH [31] includes ETH and HOTEL subsets, and the
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Method Venue/Year Input ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social LSTM [1] CVPR2016 P+S 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17 0.72/1.54

Social GAN [13] CVPR2018 P+S 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21

SoPhie [34] CVPR2019 P+S 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15

MANTRA [28] CVPR2020 P+S 0.48/0.88 0.17/0.33 0.37/0.81 0.27/0.58 0.30/0.67 0.32/0.65

PECNet [27] ECCV2020 P+S 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

SGCN [37] CVPR2021 P+S 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65

AgentFormer [54] ICCV2021 P+S 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39

PCCSNet [41] ICCV2021 P 0.28/0.54 0.11/0.19 0.29/0.60 0.21/0.44 0.15/0.34 0.21/0.42

CAGN [8] AAAI2022 P+S 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43

SIT [36] AAAI2022 P+S 0.39/0.62 0.14/0.22 0.27/0.47 0.19/0.33 0.16/0.29 0.23/0.38

MemoNet [49] CVPR2022 P+S 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35

Ours - P 0.27/0.45 0.11/0.16 0.26/0.46 0.19/0.33 0.13/0.26 0.19/0.33

Table 1. Comparison with state-of-the-art methods on ETH-UCY in ADE/FDE. P and S indicate inputting the observed history points and

social interaction information, respectively. All methods input the observed 8 time steps and output the predicted 12 time steps. Bold

indicates the best performance. Underline indicates the second best performance. The Lower the better.

Method Venue/Year Input ADE/FDE

Social LSTM [1] CVPR2016 P+S 31.19/56.97

Social GAN [13] CVPR2018 P+S 27.23/41.44

SoPhie [34] CVPR2019 P+S 16.27/29.38

MANTRA [28] CVPR2020 P+S 8.96/17.76

PECNet [27] ECCV2020 P+S 9.96/15.88

PCCSNet [41] ICCV2021 P 8.62/16.16

CAGN [8] AAAI2022 P+S 9.42/15.93

SIT [36] AAAI2022 P+S 9.13/15.42

MemoNet [49] CVPR2022 P+S 8.56/12.66

Ours - P 8.44/13.65

Table 2. Comparison with state-of-the-art methods on SDD in

ADE/FDE. P and S indicate inputting the observed history points

and social interaction information, respectively. All methods input

the observed 8 time steps and output the predicted 12 time steps.

The Lower the better.

UCY [21] includes UNIV, ZARA1, and ZARA2 subsets. On

ETH-UCY, we use the leave-out-one method for training on

four subsets and testing on the other one following previous

efforts [40, 54, 36]. SDD [33] is a large pedestrian trajectory

prediction dataset also captured in bird’s eye view. It con-

tains 20 scenes of more than 10,000 trajectories collected

from college campuses and is much larger than ETH-UCY.

On SDD, we use a prior train-test split for training and test-

ing according to previous methods [13, 27, 36]. We observe

the historical trajectories of 8 time steps and predict the

subsequent 12 time steps on both ETH-UCY and SDD.

Evaluation Metrics. Following previous methods [49,

36, 8, 41, 27], we employ two commonly used metrics, i.e.,

Average Displacement Error (ADE) and Final Displacement

Error (FDE), to evaluate the trajectory prediction perfor-

mance. ADE measures the average ℓ2-norm distance be-

tween all points of the ground truth and predicted trajectory.

FDE measures the ℓ2-norm distance between the destination

points of the ground truth and predicted trajectory. We use

the best-of-20 metrics following previous methods [49, 41].

Implementation Details. In our experiments, the two

encoders are all 3-layer BiLSTM [56] architecture with

hidden sizes of 48. The decoder is 3-layer BiLSTM [56]

architecture with hidden size of 96. The dimensions of

θM , θV and θR are set to 48, 48 and 96, respectively. The

parameter µ of mask threshold is 0.2. The parameter ξ in

memory training is 0.0001. The Adam optimizer is used to

train our model by 100 epochs with a learning rate of 0.0005,

decaying by 0.5 with an interval of 50.

4.2. Quantitative Analysis

On ETH-UCY. As shown in Table 1, we compare our

method with eleven state-of-the-art methods on the ETH-

UCY dataset in past six years. Among them, MemoNet [49],

PECNet [27], and CAGN [8] are goal-conditioned methods.

MANTRA [28] and PCCSNet [41] are instance-conditioned

methods. SoPhie [34], SGCN [37] and AgentFormer [54]

generate multimodal trajectories by latent variables. The

experiment results show that generating multimodal predic-

tions by goals or instance is better than by latent variables.

Moreover, the results indicate that our method signif-

icantly outperforms all the competing methods on both

ETH and UCY. Compared with the previous best method

MemoNet [49], our method further improves the perfor-

mance on ADE and FDE. Meanwhile, Compared with the

other instance-conditioned methods, PCCSNet [41], and

MANTRA [28], our method also achieve the best perfor-

mance. The underlying reason could be that our method

captures the effective intermediate process compared with
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Method K=15 K=10 K=5

PECNet [27] 10.66/17.85 11.79/21.00 14.49/28.08

PCCSNet [41] 9.27/17.62 10.36/20.12 12.57/24.74

CAGN [8] 10.01/17.49 11.06/19.89 13.85/26.87

MemoNet [49] 9.62/15.36 11.26/19.64 14.43/27.45

Ours 9.13/15.31 10.27/18.13 12.82/23.96

Table 3. Experiments on different best-of-K predictions on SDD in

ADE/FDE. The lower the better.

Method SI REF CL ADE/FDE

Baseline 0.46/0.94

(1) ✓ ✓ 0.25/0.50

(2) ✓ ✓ 0.27/0.56

(3) ✓ ✓ 0.22/0.39

(4) ✓ ✓ ✓ 0.19/0.33

Table 4. Ablation study of each component of our method on ETH-

UCY dataset in ADE/FDE. The lower the better.

the goal-conditioned methods and is more flexible compared

with the instance-conditioned methods.

To show the superiority of our method more clearly, we

do not use extra information, such as social interaction and

map information, as previous approaches. Nevertheless, our

method still achieves the best performance, clearly demon-

strating the superiority of our method using sparse instance.

On SDD. We compare our method with nine state-of-the-

art methods on the SDD dataset in Table 2. For ADE, our

method outperforms all the competing methods. For FDE,

our method also achieves comparable performance with the

best method MemoNet [49] and exceeds all other methods.

The results manifest that the sparse instance representation

can comprehensively describe the trajectory multimodal-

ity rather than goal-conditioned methods and thus achieves

competitive performance. We speculate that our method

underperforms MemoNet [49] on FDE because the sparse

instance benefits more on the whole trajectory prediction

(i.e., ADE) than goal prediction (i.e., FDE).

4.3. Ablation Study

Different Best-of-K Predictions. Previous methods

commonly use best-of-K (usually K = 20) as the quan-

tified metric of multimodal trajectory prediction. To further

validate the adaptability and effectiveness of our proposed

sparse instance representation, we conduct an experiment on

various best-of-K predictions with K = 5, 10, 15 on SDD.

We compare our method with the top three performance goal-

conditioned methods, i.e., MemoNet [49], CAGN [8] and

PECNet [27] and the best performance instance-conditioned

method PCCSNet [41]. As shown in Table 3, our method

µ 0 0.1 0.2 0.3 0.4 0.5

ADE 0.21 0.21 0.19 0.20 0.20 0.21

FDE 0.34 0.33 0.33 0.33 0.34 0.37

µ 0.6 0.7 0.8 0.9 1.0 -

ADE 0.25 0.28 0.26 0.24 0.21 -

FDE 0.45 0.54 0.48 0.43 0.38 -

Table 5. Ablation study of different mask threshold values on the

ETH-UCY dataset. The lower the better.

0.17

0

0.19

0.21

0.23

~

0.32

0

0.34

0.36

0.38

~

Goal Instance Sparse Instance

ADE

FDE

ADE FDE

Figure 6. Experiments of the sparse instance analysis on the ETH-

UCY dataset. We replace our proposed sparse instance with the

goal and instance for the multimodal prediction.

achieves significant performance on all experimental set-

tings. Interestingly, our method surpasses the previous best

method MemoNet [49] when K = 5, 10, 15, despite under-

performing MemoNet [49] when K = 20 in Table 2. It

shows the adaptability of our method of using the sparse

instance, which also performs significantly with a small K.

Contribution of Each Component. We divide our pro-

posed SICNet into three components, i.e., the sparse instance

representation (SI), the memory refinement module (REF),

and the clustering post-process (CL). Ablation experiments

of different combinations of the three components are eval-

uated on the ETH-UCY dataset. As shown in Table 4, all

of the three components contribute to the performance im-

provement, which demonstrates their effectiveness.

Analysis of Mask Threshold. As shown in Table 5, we

conduct experiments for different mask threshold values µ

on the ETH-UCY dataset. It indicates that the performance

will decrease when the mask threshold value µ is too small

or too large. When µ = 0, the mask is useless and the

whole instance is reserved, thus causing the stochasticity

loss. When µ = 1, it denotes the whole instance is masked,

thus causing no guidance information for the multimodal

prediction. When µ = 0.2, it achieves the best performance.

Analysis of Sparse Instance. As shown in Table 6, we

replace the sparse instance in SICNet with goal-conditioned

and instance-conditioned representations on the ETH-UCY

dataset. Experiment results show that using the sparse in-

stance achieves the best performance, which indicates the
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LittleHyangCoupa Quad

Observation Ground Truth PECNet Ours

Figure 7. Qualitative comparison of our method with the goal-conditioned method PECNet [27] on the SDD dataset. Given the observed

trajectories, we illustrate the ground truth paths and predicted trajectories by SICNet and the goal-conditioned method PECNet [27] for four

different scenes. It shows our prediction is closer to the ground truth than PECNet [27], especially for the intermediate process.

Observation Ground Truth PCCSNet Ours

ZARA1UNIVETH ZARA2

Figure 8. Qualitative comparison of our method with the instance-conditioned method PCCSNet [41] on the ETH-UCY dataset. Given

the observed trajectories, we illustrate the ground truth paths and predicted trajectories by SICNet and the instance-conditioned method

PCCSNet [41] for four different scenes. It shows our prediction is closer to the ground truth than PCCSNet [41].

superiority of our method compared with goal-conditioned

and instance-conditioned approaches.

4.4. Qualitative Analysis

We compare the visualized trajectories with the well-

accepted goal-conditioned method PECNet [27] on SDD

in Figure 7, and the instance-conditioned method PCC-

SNet [41] on ETH-UCY in Figure 8. As shown in Figure 7,

trajectories in Coupa show that our method achieves more

precise trajectory predictions than PECNet. Trajectories in

Little and Quad show that both PECNet and our method

can predict destinations close to the ground truth, while

our method can predict more precise intermediate trajec-

tories due to our proposed sparse instance representation.

Trajectories in Hyang show that our method can also give

better predictions, although the ground truth trajectories are

irregular. The results verify the superiority of our method

compared with goal-conditioned methods. Moreover, as

shown in Figure 8, the visualization results show that our

prediction is closer to the ground truth than PCCSNet [41],

which indicates the superiority of our SICNet compared with

the instance-conditioned approaches.

5. Conclusion

In this paper, we present a simple yet effective sparse-

instance-conditioned network for pedestrian multimodal tra-

jectory prediction, which leverages sparse instances to guide

multimodal prediction. Moreover, we propose a memory

refinement module to reduce recall errors when meeting

unfamiliar trajectories during inference. Extensive experi-

ments show that our method performs better than previous

methods, and ablation studies demonstrate that our sparse-

instance-conditioned method can generate multimodal pre-

dictions more accurately and adaptively compared with goal-

conditioned and instance-conditioned approaches.
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