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Abstract

Learning discriminative features from very few labeled
samples to identify novel classes has received increasing at-
tention in skeleton-based action recognition. Existing works
aim to learn action-specific embeddings by exploiting either
intra-skeleton or inter-skeleton spatial associations, which
may lead to less discriminative representations. To address
these issues, we propose a novel Parallel Attention Interac-
tion Network (PAINet) that incorporates two complementary
branches to strengthen the match by inter-skeleton and intra-
skeleton correlation. Specifically, a topology encoding mod-
ule utilizing topology and physical information is proposed
to enhance the modeling of interactive parts and joint pairs
in both branches. In the Cross Spatial Alignment branch, we
employ a spatial cross-attention module to establish joint
associations across sequences, and a directional Average
Symmetric Surface Metric is introduced to locate the closest
temporal similarity. In parallel, the Cross Temporal Align-
ment branch incorporates a spatial self-attention module to
aggregate spatial context within sequences as well as applies
the temporal cross-attention network to correct misalignment
temporally and calculate similarity. Extensive experiments
on three skeleton benchmarks, namely NTU-T, NTU-S, and
Kinetics, demonstrate the superiority of our framework and
consistently outperform state-of-the-art methods.

1. Introduction
Skeleton-based action recognition [48, 2] has attracted

increasing attention in recent years, which is a predominant
topic in many fields ranging from human-robot interaction to
virtual reality, due to its action-focusing nature and compact-
ness [6]. However, how to identify novel actions still remains
an open issue. To overcome this problem, more and more
works have focused on few-shot action recognition, which
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Figure 1: In classifying the samples with similar appearances,
the intra-sample representations exhibit body-level comprehensive
features, requiring cross-attention to identify subtle differences
between joints. In contrast, for samples with inconsistent motion
patterns, the inter-sample relationships only reveal differences,
necessitating self-attention to enhance the richness of the action.

can alleviate the resulting performance degradation for the
rare category [10, 27, 20, 43, 12]. In particular, these meth-
ods explore both the unlabeled query and labeled support
sets, so as to learn a discriminative feature representation to
match query actions with categories represented by a few
support samples [35, 9].

As shown in Figure 1, current approaches focus on how to
exploit intra-skeleton or inter-skeleton relations while ignor-
ing the complementarity between the two paradigms. They
are prone to failure in challenging scenarios, such as similar
spatial appearances or inconsistent temporal dependencies.
On the one hand, some works try to learn discriminative
features within sequences. For example, [3, 52, 26, 21, 31]
utilize local joint features within the skeleton to capture
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distinct patterns. In particular, [3] proposes a part-aware
spatial region aggregation, and [52] takes the selective sum
of body-part-based local embedding to obtain the individ-
ual representation. On the other hand, some works explore
adjusting local features across sequences to identify sim-
ilarities and differences. For example, [25] leverages the
cross-attention mechanism to activate their spatial informa-
tion, and [40] achieves optimal alignment in the temporal
and camera viewpoint spaces between query and support.

Even though significant progress has been achieved, we
still argue that considering either the dependency within se-
quences or the association between sequences is inadequate,
which necessitates aligning the above samples in parallel.
As shown in Figure 1 (a), when classifying samples with
similar appearances, such as take off headphone and take
off glass, subtle differences in the spatial position of hand
and elbow joints assist in identifying. The interaction be-
tween sequences can amplify class-specific information by
prioritizing the distinguishing joints, thereby requiring only
optimal temporal set matching to identify. For another, when
classifying samples with inconsistent motion patterns in Fig-
ure 1 (b), such as wave up, the elbow and torso joints have
distant paths within two graphs but share a solid seman-
tic connection. In such cases, it is necessary to enhance
instance-specific information through context aggregation
within sequences. With the enrichment of action features,
temporally adaptive interactions between sequences can fur-
ther improve the alignment.

Motivated by this, we propose a novel few-shot skeleton-
based action recognition framework, termed as Parallel
Attention Interaction Network (PAINet). We argue that
adapting both inter-skeleton and intra-skeleton local joint
features are indispensable ways to perfect spatial match-
ing. Compared to previous works, our approach involves
the alignment of the spatial and temporal domains within
two parallel branches, enabling complementary attention
to informative regions in the skeleton sequence. Specif-
ically, we propose a topology encoding module utilizing
topology and physical information to enhance the model-
ing of interactive parts and joint pairs in both branches. In
the Cross Spatial Alignment branch, we employ a spatial
cross-attention module to build associations of joints across
sequences. Afterward, we introduce a directional average
symmetric surface metric, which considers all possible pairs
of subsequences and selects the pair with maximum similar-
ity. In the Cross Temporal Alignment branch, we propose
a spatial self-attention module to aggregate spatial context
within sequences. Subsequently, we follow the video-based
approach TRX [27] and aggregate the aligned distances by
temporal cross-attention matcher. Our contributions can be
summarized as follows:

• We propose a novel PAINet for few-shot skeleton-based
action recognition, which mitigates challenges posed by

similar spatial appearances and inconsistent temporal
dependencies during matching.

• We further design a topology encoding module to cap-
ture the co-movement between joints and body parts, as
well as the intrinsic semantic relations between joints.
Also, a directional average symmetric surface metric is
proposed to discover the closest temporal relation.

• Extensive experimental results on NTU-T, NTU-S, and
Kinetics demonstrate that our model significantly out-
performs the state-of-the-art methods.

2. Related Work
Skeleton-based Action Recognition. With the prosperity

of skeleton-based action recognition in recent years, early
methods such as RNNs or CNNs [22, 34, 16, 8, 50] model
skeleton sequences as consecutive vectors or pseudo-images
to recognize, ignoring the human body’s intrinsic topology.
To mitigate this, GCN-based approaches [45, 32] consider
the human skeleton as a graph and interleave spatial and
temporal modeling separately. Recently, most follow-up
works [23, 4, 33, 37, 5] adopt a learnable topology and de-
sign high-order or multi-scale adjacency matrices to boost
flexibility, limited by the connectivity of handcrafted graphs.
Transformer-based approaches [28, 7, 29] utilize spatial and
temporal self-attention to attend joint relations, which has
sufficient potential to improve modeling capacity but lacks
generalizable and intuitive priors. Our method utilizes the
common advantages and powerful representation capabilities
of theirs to obtain embeddings with rich context information.

Few-shot Action Recognition. Most of the mainstream
few-shot methods [41, 44] focus on exploring good met-
rics to compute the distances between the query and sup-
port actions for recognition. Existing works can be divided
into video-based and skeleton-based methods. Video-based
methods have made significant progress by devising sophis-
ticated matching criteria, and complex multi-level feature
associations [40, 38, 43, 18, 12, 24]. In contrast, skeletons
have efficient node semantics and a more coherent spatio-
temporal motion pattern, free from background clutter. [40]
encodes body joints into temporal blocks and then simul-
taneously performs temporal and view-point alignment by
the advanced variant of Dynamic Time Warping (DTW).
DASTM [25] proposes a novel spatial matching strategy by
adaptively disentangling and activating representations of
skeleton joints. Different from previous schemes, we employ
parallel attention interaction strategies that complementarily
focus on spatially and temporally action-critical regions.

Set Matching. The purpose of set matching in the few-
shot setting is to compare the similarity between the feature
space of the query and the support. DTW [15] utilizes dy-
namic programming to calculate the optimal match between
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Figure 2: Illustration of our proposed method on a 2-way 2-shot task. X-Branch represents feature extraction from various inputs. The
body part pattern and joint semantic associations are obtained by the Joint-Part Relation module and Joint-Semantic Relation module in
two parallel branches, respectively. The spatial interactive frame-level feature is obtained by Spatial Cross Attention. The spatial enriched
frame-level feature is obtained by Spatial Self Attention. After acquiring all frame-pair-based temporal tuples through tuple partition, the
shortest distance D(q, c) and query-specific distance T (q, c) are obtained by Temporal Set Metric and Temporal Cross Matcher, respectively.

two sequences which may vary in speed. Earth Mover’s
Distance (EMD) [46] generates the optimal matching flows
between dense image representations that have the mini-
mum matching cost. Hausdorff distance [13] formulates the
longest distance as the similarity between sets, the greatest of
all the distances from one set to the closest point in the other
set. Among them, average symmetric surface distance [11]
is a vital alternative to handle set matching. This paper intro-
duces the directional average symmetric surface distance as
a distance match metric between temporal sequences.

3. Method

Our proposed Parallel Attention Interaction Network
(PAINet) pipeline is presented in Figure 2. The embedding
network with an early-fusion mechanism is employed to ex-
tract the features of query and support sequences (Section
3.1). To align spatial and temporal information, we propose
the Cross spatial alignment and the Cross temporal align-
ment branches to exploit inter-skeleton and intra-skeleton
semantic information. Specifically, under joint-part relation
and joint-semantic relation modules, we obtain body-part
patterns and joint semantic associations from the embedded
feature (Section 3.2). Subsequently, we first perform the spa-
tial cross-attention and spatial self-attention on the obtained
feature to strengthen action-specific spatial relations across
and within the skeleton and then obtain frame-level skeleton
features by global average pooling (Section 3.3 and 3.4).
Next, in the Cross spatial alignment branch, we introduce
a directional average symmetric surface metric measuring
the closest distance to obtain D(q, c) for class c. In the
Cross temporal alignment branch, we follow the temporal
cross-attention matcher aggregating query-specific temporal

distance to obtain T (q, c) (Section 3.5) for class c. Finally,
the distance prediction of the query input and loss L in two
parallel branches are summed to classify (Section 3.6).

3.1. Problem Formulation

Few-shot learning aims to learn a model with strong gen-
eralization, which can classify unlabeled query sequences
Q into support sets S represented by only a few actions per
class. We randomly sample the training eposide T from the
dataset. Each T includes a support set S and a query set Q.
Notably, the support set S = {Xs

1 ,X
s
2 , . . . ,X

s
NK} includes

N different classes and K samples for each class, which is
called the N -way K-shot problem. Xs

i ∈ RT×V×C is the
i-th sample in support set, where T , V and C denotes its
frame length, number of joints, and channel, respectively.
For simplicity, we discuss the process for classifying a query
sample’s Q = {Xq}.

As shown in Figure 2, we apply a general spatiotemporal
graph convolution network [45, 32, 23] with a multi-model
early-fusion mechanism to extract feature representations
for each skeleton sequence, obtaining support features F s =
{F s

11,F
s
12, ...,F

s
NK} and the query feature F q .

3.2. Topology Encoding

On the one hand, we consider empirical body grouping
and the relation of human parts to facilitate joint-to-part
interactions. On the other hand, we incorporate the physical
significance of each joint to enhance joint-to-joint semantic
association [47].

Joint-Part Relation. Based on the coherence of the body
movements, focusing on the movement of corresponding
joints is insufficient. The movement of human body parts
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Figure 3: The proposed Joint-Part Relation sub-module used in
Topology Encoding block.

carries crucial co-movement information, i.e., the interac-
tions between joints and parts convey rich kinematic infor-
mation. Based on the physical skeleton structure and human
topology prior [36], we first split each skeleton into P = 5
body parts, i.e., left arm, right arm, left leg, right leg, and
torso, and then divide V joints into corresponding body parts.
As shown in Figure 3, we propose a part-based allocation
matrix Apart ∈ RP×V , and each column is a one-hot vec-
tor representing the part each joint belongs to. To facilitate
information interaction between joints and body parts for
modeling their co-movement, we devise a Joint-Part Rela-
tion sub-block, which is flexible to capture distinct collab-
orative patterns F part from F = {F q,F s

1 ,F
s
2 , . . . ,F

s
NK}

for skeleton-level action feature and calculated as:

Q = FW1,K = ÂpartFW2,V = ÂpartFW3,

F part = Softmax(
QKT
√
C

)V .
(1)

where
√
C is a scaling factor. Âpart = D−

1
2 (Apart+I)D−

1
2 ,

D is the diagonal degree matrix of (Apart + I), W1, W2

and W3 denote linear layers.
Joint-Semantic Relation. Considering each physical

joint plays a unique semantic role and thus has a specific
relation to others [47]. Therefore, it is beneficial to consider
the human skeleton’s physical information. As joint type in-
formation is helpful for learning effective adjacent matrices,
such as the relation between head and hand, we expect the re-
lation of joint semantics to participate in the spatial matching
process. Each joint pair within or across the skeleton is hence
assigned a trainable parameter scalar, i.e., Bsm ∈ RV×V .
Combined with pre-defined adjacency matrix A in human
skeleton topology, we propose Esm = A+Bsm to represent
joint-wise bias within or across skeletons. Such bias aims to
model the inherent joint pair relation.
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Figure 4: (a) In the pair of query sample and support sample, the
spatial cross-attention block per frame. (b) In the comparison of
the query sample and all support samples of class c, the temporal
cross matcher block on frame pair-based tuples.

3.3. Spatial Cross Attention

Cross-attention can adjust the importance of self-joints ac-
cording to the joint representations of the compared skeleton.
Compared to directly using Euclidean distance to measure
the distance between all joint representations, cross-attention
in spatial matching helps to locate the discriminative regions
of actions with similar appearances. As shown in Figure 2,
query graph representation F q ∈ RT×V×C and support
graph representation F s ∈ RNK×T×V×C are spatially in-
teracted to each other using topology encoding related cross-
attention mechanism, aiming to emphasize the action-critical
region. Considering the asymmetry of cross-attention, the
same pair of representations F q←s and F s←q have different
joint association positions and strengths, which means more
flexibility for adaptive change.

Cross spatial attention from support to query is drawn in
Figure 4 (a). Combined with above collaborative joint-part
feature Xpart and joint-semantic bias Esm across skeleton,
we define the cross-attention process as:

Qq = F qW q
1 , K

s = F sW q
2 + F part

s , V q = F qW q
3 ,

Aq←s = Softmax(
Qq(Ks)T

√
C

+Esm
q←s),

F q←s = GAP(FFN (Aq←sV q)) .
(2)

where W q
1 , W q

2 , W q
3 ∈ RC×C are linear projection weights

and FFN denotes feed forward network. Finally, global
average pooling GAP(·) over the spatial joints is used to
obtain frame-level feature F q←s ∈ RNK×T×C of the query.
Similarly, the above formula can also calculate the support
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representation F s←q ∈ RNK×T×C .

3.4. Spatial Self Attention

Although the skeleton features obtained by the embed-
ding module are interacted by graph convolution, the internal
associations of joints per frame contain much action informa-
tion that has not yet been discovered. To this end, we employ
topology encoding related self-attention to enable the joint
features to aggregate remaining spatial contexts, as shown
in Figure 2. We define W g

1 , W g
2 , W g

3 ∈ RC×C represent
weight matrix and F = {F q,F s} ∈ R(1+NK)×T×V×C .
The Qg,Kg,V g are generated by different linear projec-
tions, which are computed as follows:

Qg = FW g
1 ,K

g = FW g
2 + F part,V g = FW g

3 . (3)

Then we can obtain a self-attention matrix and reweighted
embedding as follows:

Ag = Softmax

(
Qg(Kg)T

√
C

+Esm
)
,

G = GAP(FFN (AgV g)) .

(4)

where FFN here is used to produce a more spatially refined
output with three-layer joint-wise convolution. The resulting
joint-level representation can highlight important parts and
distinguish complete motion patterns. Likewise, we use
global average pooling to obtain frame-level feature G ∈
R(1+NK)×T×C of query and support.

3.5. Temporal Relation Match

We consider that several subsequences can represent the
temporal semantic information of action, including various
speeds and locations within sequence [27]. Therefore, the
temporal similarity between query and support sequences
can be characterized by matching all their subsequences.
In practice, we use all frame pair-based subsequences to
describe the information of the overall sequence. For exam-
ple, with si ∈ RC as the ith frame representation, a frame
pair (si, sj) ∈ R2C represents a certain aspect of temporal
semantics, 1 ≤ i < j ≤ T .

Temporal Set Metric. For each pair of query feature
F q←s and support feature F s←q that are spatially aligned
with each other in Cross spatial alignment branch, we can
transform them using the above tuple partitioning method.
By traversing all frame pair-based combinations, we can
get feature sequence tuple F̂ q←s ∈ RNK×T ′×2C and
F̂ s←q ∈ RNK×T ′×2C , where T ′ = T (T − 1)/2 repre-
sents the number of frame pairs. Next, all features in the
query set Q are averaged for sample number K in each class
to form Ĥq←s ∈ R(N×(1×T ′)×2C . The feature in support
set S form representation Ĥs←q ∈ RN×(K×T ′)×2C , where
sample diversity in each class are preserved.

By utilizing spatially aligned features, we can identify
the most temporally correlated locations for action match-
ing. To calculate the distance between Ĥq←s

c and Ĥs←q
c

for class c, we consider performing exhaustive pair-to-pair
comparisons in the temporal dimension to seek the optimal
local match for each frame pair. And then, we average the
optimal local distance for all frame pairs, which is robust to
misaligned instances. Motivated by the set matching strategy,
we develop a flexible directional average symmetric surface
metric [11, 51] into the few-shot action recognition field. In
contrast to the bi-directional distance between query and
support [42], we only learn the one-way distance from each
query to multiple support representations, thereby avoiding
the noise introduced from more support subsequences to
the query. Based on spatially aligned features and temporal
tuple partition, Eq. (5) can automatically find the best tem-
poral correspondencies D(q, c) between query q and class c,
which is given by:

D(q, c) =
1

T ′

∑
ĥq

i∈Ĥq←s

(
min

ĥs
j∈Ĥs←q

∥ĥq
i − ĥs

j∥

)
. (5)

It is worth noting that directional average symmetric sur-
face metric does not involve parametric design and relies on
the feature obtained by the spatial cross-attention module.

Temporal Cross Matcher. Based on enriched frame-
level feature G, we consider utilizing temporal cross-
attention to mitigate temporal misalignment globally. In
our work, we followed the [38], which matched each query
sub-sequence with all sub-sequences in the support set to
construct a query-specific class prototype.

Specifically, we first globally exchange and integrate
frame-wise and channel-wise features with Temporal-
Channel Mixer [39] as follows:

U = GT + σ
(
LN(GT)WT

)
,

Z = UT + σ
(
LN(UT)WC

)
,

(6)

where σ(·) denotes the GELU activation function and LN(·)
denotes layer normlization. WT and WC are two-layer
MLP in temporal and channel dimensions, respectively.
Next, we adopt tuple partition method to obtain Ẑq and
Ẑs. As shown in Figure 4 (b), temporal cross-attention be-
tween query and support of class c is used to calculate the
query-specific class prototypes Ẑs←q,c via an aggregation
of all possible sub-sequences in the support set. Similar to
spatial cross-attention, the correspondence between query
pair and support pair of support sequence k in class c is
calculated as:

Ac
k = Softmax

(
LN
(
Ẑs,c

k W t
1

)
LN
(
ẐqW t

1

))
,

Ẑs←q,c =
∑
k

Ac
k(Ẑ

s,c
k W t

2), Ẑq,c = W t
2Ẑ

q.
(7)
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Backbones ST-GCN 2s-AGCN MS-G3D

Methods NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics NTU-T NTU-S Kinetics

ProtoNet [35] 71.2/81.1 73.3/84.3 37.4/46.8 68.1/81.9 72.8/84.2 38.4/50.5 70.1/82.3 73.6/85.3 39.5/50.0
DTW [15] 74.0/81.0 73.5/81.5 39.2/47.9 70.8/81.2 71.5/82.5 40.9/50.8 72.4/81.3 73.9/83.2 40.6/50.0
NGM [10] 71.8/81.4 75.7/84.2 39.1/48.6 72.2/83.2 73.2/85.9 40.9/49.8 73.5/83.1 76.9/86.7 40.8/50.7
DropEdge [30] 67.3/77.9 70.7/78.6 38.9/48.2 70.1/80.5 72.6/83.1 39.9/50.2 68.7/80.9 69.5/80.2 39.4/50.1
PairNorm [49] 72.9/81.8 72.8/81.4 39.3/48.6 70.0/80.0 70.8/80.3 40.9/50.4 71.0/81.6 70.8/82.5 40.7/50.6
DASTM [25] 75.1/83.0 76.2/85.5 39.3/48.9 73.3/83.8 74.0/86.8 40.8/50.9 75.0/84.9 76.3/87.3 41.1/51.1

PAINet 82.4/90.8 84.6/92.7 42.4/53.4 78.8/89.9 82.9/91.5 43.2/53.8 81.3/90.9 84.2/92.3 42.5/54.1

Table 1: Experimental results with three different backbones on 5-way 1-shot and 5-way 5-shot benchmarks of NTU-S, NTU-T, and Kinetics.
The best accuracy(%) is highlighted. The left column represents 1-shot accuracy, while the right column represents 5-shot accuracy.

Afterward, the distances T (q, c) between sub-sequences of
query Q and their corresponding query-specific class proto-
types of support are averaged, which obtains the distance of
the query to class c as follows:

T (q, c) =
1

T ′

∑
t∈T ′

∥Ẑq,c
t − Ẑs←q,c

t ∥. (8)

3.6. Training

For the distances D(q, ·) and T (q, ·) obtained by the
above two alignment branches, which take the negative dis-
tance for each class as logit. Then, given the ground-truth
labels y ∈ RN , we use the softmax function to obtain the
class probability followed by a standard cross-entropy loss.
With Lcs and Lct representing the cross-spatial and cross-
temporal alignment loss respectively, our model is trained
by:

L = Lcs(−D(q, ·), y) + λLct(−T (q, ·), y), (9)

where λ is a constant weight. We use the weighted sum of
the above two negative distances during inference, and the
query is assigned to the closest category.

4. Experiment
4.1. Datasets

NTU RGB+D 120 [21] dataset is currently the largest
3D skeleton-based action recognition dataset that contains
114,480 skeleton sequences of 120 action classes. Each
skeleton sequence contains the 3D spatial coordinates of 25
joints detected by the depth sensor. Our experiments use 120
action classes, including 80, 20, and 20 classes as training,
validation, and test classes. Following, we randomly use 60
samples and 30 samples for each category, denoted as two
subsets “NTU-S” and “NTU-T”, respectively.
Kinetics [14] is a large-scale video clip that covers more
than 400 human action classes, which includes human-object
interactions and human-human interactions. The publicly
available Openpose [1] toolbox estimates the location of 2D

spatial coordinates on every frame of the clips as the initial
joint feature. In this experiment, we only use the first 120
actions with 100 samples per class provided by [25]. The
number of training/validation/test partitions is identical to
NTU RGB+D 120.

4.2. Evaluation

We evaluate the 5-way 1-shot and 5-way 5-shot action
recognition tasks and report the average accuracy over 500
randomly selected episodes from the test stage. We use the
variant of DASTM [25] as the baseline, which uses spatial
activation as the spatial alignment and the DTW strategy as
the temporal alignment. Our method is consistent with the
baseline without using any pre-trained model and additional
auxiliary datasets for few-shot learning.

4.3. Implementation Details

Spatial-temporal backbones. We utilize typical ST-
GCN [45], 2s-AGCN [32], and MS-G3D [23] as the back-
bones with an early-fusion mechanism to encode skeletal
action sequences. The early fusion module utilizes raw skele-
ton data to generate multi-modality data, i.e., joint, bone, and
velocity. Concretely, the input branches for different modal-
ities are implemented by three stacked layers of backbone
for complete feature embedding.
Experimental configuration. We adopt the same data-
preprocessing procedure as introduced in [25]. During the
training and testing stage, the sampled frame number T is
set to 50 and 30 per skeleton sequence. We optimize the
PAINet model with Adam [17] optimizer, where the initial
learning rate is 0.01. For each epoch, we randomly sample
1,000 episodes for training and 500 episodes for validation
to ensure sufficient generalization. The model is trained
for 100 epochs, and the final performance is reported as the
average of 10 epochs in the test stage. To ensure convincing
results, each experiment is repeated 3 times to obtain the
mean accuracy and standard deviation. All experiments are
conducted with one GeForce RTX 3090 GPU.
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Method Early-fusion SCA∗ TSM∗ SSA† TCM TCA† Accuracy(%)

Baseline 75.1

Cross Spatial Alignment

– – ✓ – – – 78.5
– ✓ ✓ – – – 79.2
✓ ✓ ✓ – – – 80.1
✓ ✓ ✓ – ✓ – 79.3

Cross Temporal Alignment

– – – – – ✓ 78.6
✓ – – – – ✓ 78.9
✓ – – – ✓ ✓ 80.8
✓ – – ✓ ✓ ✓ 81.8

PAINet ✓ ✓ ✓ ✓ ✓(T) ✓ 82.4

Table 2: Ablation study of the effect of the modules in our framework. The baseline is constructed by cross attention activation and temporal
alignment DTW. Among them, SCA denotes Spatial Cross Attention, TSM denotes Temporal Set Metric, SSA denotes Spatial Self Attention,
TCM denotes Temporal-Channel Mixer, TCA denotes Temporal Cross Attention Matcher. ∗ and † indicate that the module belongs to Cross
spatial alignment and Cross temporal alignment, respectively.

4.4. State-of-the-art Comparison

As shown in Table 1, we conduct experiments using three
backbones on three mainstream datasets under a 5-way 1-
shot and 5-way 5-shot setting. Specifically, our model signif-
icantly outperforms the SOTA approach on the NTU-series
datasets and achieves decent improvements on the noisy Ki-
netics dataset. Furthermore, PAINet achieves considerable
performance improvements on the NTU-S dataset with more
complex action categories, demonstrating its better general-
ization. Compared to having the human body structure as
the default connection, the multi-layer stacked self-attention
structure in 2s-AGCN will lead to over-smooth representa-
tions after the message passes through different joints [25].
Besides, MS-G3D achieves comparable results to ST-GCN,
indicating that directly adopting complex graph convolution
networks will not lead to better generalization, proving the
potential of simple spatial-temporal graph convolution.

4.5. Ablation Study

For convenience, all ablation experiments are achieved
on the NTU-T dataset using STGCN as the backbone.
Impact of proposed contributions. As shown in Table 2,
our model outperforms the baseline on separate alignment
branches with temporal relation match, demonstrating that
temporal tuple partition and align strategy can solve in-
consistent temporal dependency. Besides, performance on
the parallel branch also dramatically benefits from spatial
cross-attention between query and support and spatial self-
attention within each input. Secondly, the temporal chan-
nel mixer module improves under the cross-temporal align-
ment branch while negatively impacting the cross-spatial
alignment branch. We argue that spatial cross-attention per-
forms frame-by-frame spatial alignment between query and
support, and mixing subsequent adjacent frames will cause
the previous alignment to fail. Thirdly, merging parallel

Spatial Aggregation 1-shot(%) 5-shot(%)

Self-Att 81.9 90.3
Mask Self-Att 81.6 90.0

Mask ST Self-Att 80.9 89.2
Channel-Specific Att 80.8 89.3

Self-Att + JP 82.2 90.6
Self-Att + JP + JS 82.4 90.8

Table 3: Impact of varying spatial aggregation mechanisms within
skeleton. Mask Self-Att refers to randomly masking several joints
on specific frames. ST Self-Att denotes the aggregation of spa-
tial joints across some frames with the slide window mechanism.
Channel-specific Att refers to channel-dependent attention pat-
terns. JP and JS refers to joint-part and joint-semantic relation.

branches can complementarily focus on temporal and spatial
action-critical regions. Additional results on loss functions,
different motion modes, computational complexity, and effi-
ciency can be found in the supplementary materials.
Impact of spatial joints aggregation. We present the im-
pact of varying spatial aggregation mechanisms in Table 3.
The mask strategy enables the model to learn random skele-
tal associations and improve the generalization ability [19].
However, skeletons have evident sparse distribution and se-
mantic associations, and random masks hence affect mean-
ingful spatial interactions between joints. We consider the
spatial-temporal interaction of joints using sliding temporal
windows [23]. Although the masking mechanism here is
utilized to reduce the spread of redundant messages, which
fails to distinguish beneficial messages. In this field, channel-
specific attention [4] serves as an effective data-driven way
of dynamic joint aggregation. To learn multi-channel mo-
tion patterns, however, multiple stacked layers make the
joints over-smoothed and less discriminative than before [25].
Thereby, under the topology encoding module, employing
self-attention for frame-wise spatial aggregation achieves
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Temporal Metric Temporal Set 1-shot(%) 5-shot(%)

Euclidean

frame-based

79.2 86.9
DTW 79.6 87.5
EMD 80.1 88.1

Hungarian 81.6 89.5
DASSM 81.3 89.4

Hungarian pair-based 80.5 89
DASSM 82.4 90.8

Table 4: Comparison of various temporal set metrics in Cross
spatial alignment branch. Earth Mover’s Distance (EMD) and
Hungarian algorithm are reimplemented to measure the distance
between query and support.

action class DASTM Ours

brush hair 0.41 0.63(+0.22)
hopping 0.53 0.94(+0.41)

take off headphone 0.69 0.91(+0.22)
apply cream on hand 0.73 0.93(+0.2)

high-five 0.78 0.93(+0.15)

Table 5: Major performance gains obtained by our model over
DASTM[25] on test categories.

the best generalization performance and sufficient flexibility.
Impact of temporal set metric. Table 4 shows a per-
formance comparison when integrating different temporal
match algorithms in our Cross Spatial Alignment branch.
For the frame-based partition, the sequence retains the origi-
nal order information and has less semantic content. Besides,
given noisy datasets [14], skeleton information on a single
frame can not be effectively distinguished, and the optimal
path will be severely disturbed. For the pair-based sub-
sequence, the directional average symmetric surface metric
represents the most semantic overlap relationship between
each pair of query and all subsequences of the support cate-
gory. However, the Hungarian algorithm needs a threshold to
set the status of the matching object and one-to-one matching
is not suitable for matching between subsequences.

4.6. Visualization

In Figure 5, we present a visualization of embeddings be-
fore and after adaptation. Generally, due to limited samples
in meta-training, it is difficult for few-shot models to form
accurate clusters without explicit regularization. We observe
that after applying our alignment strategy on based repre-
sentation, embeddings of the query are clustered compactly
relative to the corresponding support representation.

4.7. Performance gains

In Table 5, we observe that our framework achieves gain
above 20% for classes such as brush hair, hopping, take off
headphone and apply cream on hand. Cross spatial align-

(a) Base t-SNE for 5 classes (b) Base t-SNE for 10 classes

(c) Adaptive t-SNE for 5 classes (d) Adaptive t-SNE for 10 classes

Figure 5: t-SNE of features on NTU-T dataset for N-way 1-shot
setting. The top row shows base features after global average
pooling following the backbone whereas the bottom row shows
adaptive features after the parallel alignment branch. Dots and
numbers denote query features and support features, respectively.

ment enhances the discrimination of important joint features
for actions determined by local joint motions, such as take
off headphone. And for action hopping, which depends on
the temporal context and temporal subsequences, Cross tem-
poral alignment can align temporal discriminative features.

5. Conclusion
We propose an effective Parallel Attention Interaction

Network (PAINet) for few-shot skeleton-based action recog-
nition, aiming to learn discriminative representations for
novel actions by intra- and inter-relations learning. Besides,
we develop a topology encoding module to improve skele-
ton embedding and a directional average symmetric surface
metric for robust matching. Experimental results on the
mainstream benchmark datasets have shown the benefits of
our method.
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Cordelia Schmid. PoTion: Pose motion representation for
action recognition. In CVPR, pages 7024–7033, 2018. 1

[7] Haodong Duan, Jiaqi Wang, Kai Chen, and Dahua Lin. DG-
STGCN: Dynamic spatial-temporal modeling for skeleton-
based action recognition. arXiv preprint arXiv:2210.05895,
2022. 2

[8] Haodong Duan, Yue Zhao, Kai Chen, Dian Shao, Dahua Lin,
and Bo Dai. Revisiting skeleton-based action recognition. In
CVPR, pages 2959–2968, 2021. 2

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In ICCV, pages 1126–1135, 2017. 1

[10] Michelle Guo, Edward Chou, De-An Huang, Shuran Song,
Serena Yeung, and Li Fei-Fei. Neural graph matching net-
works for fewshot 3d action recognition. In ECCV, pages
653–669, 2018. 1, 6

[11] Tobias Heimann, Bram Van Ginneken, Martin A Styner, Yulia
Arzhaeva, Volker Aurich, Christian Bauer, Andreas Beck,
Christoph Becker, Reinhard Beichel, György Bekes, et al.
Comparison and evaluation of methods for liver segmentation
from ct datasets. IEEE T-MI, 28(8):1251–1265, 2009. 3, 5

[12] Yifei Huang, Lijin Yang, and Yoichi Sato. Compound pro-
totype matching for few-shot action recognition. In ECCV,
pages 351–368, 2022. 1, 2

[13] Daniel P Huttenlocher, Gregory A. Klanderman, and
William J Rucklidge. Comparing images using the hausdorff
distance. IEEE T-PAMI, 15(9):850–863, 1993. 3

[14] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 6, 8

[15] Eamonn J Keogh and Michael J Pazzani. Derivative dynamic
time warping. In SDM, 2001. 2, 6

[16] Tae Soo Kim and Austin Reiter. Interpretable 3D human
action analysis with temporal convolutional networks. In
CVPRW, pages 1623–1631, 2017. 2

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2014. 6

[18] Shuyuan Li, Huabin Liu, Rui Qian, Yuxi Li, John See,
Mengjuan Fei, Xiaoyuan Yu, and Weiyao Lin. TA2N: Two-
stage action alignment network for few-shot action recogni-
tion. In AAAI, pages 1404–1411, 2022. 2

[19] Chen Liu, Yanwei Fu, Chengming Xu, Siqian Yang, Jilin
Li, Chengjie Wang, and Li Zhang. Learning a few-shot em-
bedding model with contrastive learning. In AAAI, pages
8635–8643, 2021. 7

[20] Huabin Liu, Weixian Lv, John See, and Weiyao Lin. Task-
adaptive spatial-temporal video sampler for few-shot action
recognition. In ACM MM, pages 6230–6240, 2022. 1

[21] Jun Liu, Amir Shahroudy, Mauricio Perez, Gang Wang, Ling-
Yu Duan, and Alex C Kot. NTU RGB+D 120: A large-scale
benchmark for 3d human activity understanding. IEEE T-
PAMI, 42(10):2684–2701, 2019. 1, 6

[22] Jun Liu, Gang Wang, Ling-Yu Duan, Kamila Abdiyeva, and
Alex C Kot. Skeleton-based human action recognition with
global context-aware attention lstm networks. IEEE T-IP,
27(4):1586–1599, 2017. 2

[23] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang,
and Wanli Ouyang. Disentangling and unifying graph convo-
lutions for skeleton-based action recognition. In CVPR, pages
143–152, 2020. 2, 3, 6, 7

[24] Wenyang Luo, Yufan Liu, Bing Li, Weiming Hu, Yanan Miao,
and Yangxi Li. Long-short term cross-transformer in com-
pressed domain for few-shot video classification. In IJCAI,
pages 1247–1253, 2022. 2

[25] Ning Ma, Hongyi Zhang, Xuhui Li, Sheng Zhou, Zhen Zhang,
Jun Wen, Haifeng Li, Jingjun Gu, and Jiajun Bu. Learning
spatial-preserved skeleton representations for few-shot action
recognition. In ECCV, pages 174–191, 2022. 2, 6, 7, 8

[26] Kunyu Peng, Alina Roitberg, Kailun Yang, Jiaming Zhang,
and Rainer Stiefelhagen. Delving deep into one-shot skeleton-
based action recognition with diverse occlusions. IEEE T-MM,
25(3):1489 – 1504, 2023. 1

[27] Toby Perrett, Alessandro Masullo, Tilo Burghardt, Majid
Mirmehdi, and Dima Damen. Temporal-relational crosstrans-
formers for few-shot action recognition. In CVPR, pages
475–484, 2021. 1, 2, 5

[28] Chiara Plizzari, Marco Cannici, and Matteo Matteucci. Spa-
tial temporal transformer network for skeleton-based action
recognition. In ICPR, pages 694–701, 2021. 2

[29] Helei Qiu, Biao Hou, Bo Ren, and Xiaohua Zhang. Spatio-
temporal tuples transformer for skeleton-based action recog-
nition. arXiv preprint arXiv:2201.02849, 2022. 2

[30] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang.
DropEdge: Towards deep graph convolutional networks on
node classification. In ICLR, 2020. 6

[31] Fumiaki Sato, Ryo Hachiuma, and Taiki Sekii. Prompt-guided
zero-shot anomaly action recognition using pretrained deep
skeleton features. In CVPR, pages 6471–6480, 2023. 1

[32] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. Two-
stream adaptive graph convolutional networks for skeleton-
based action recognition. In CVPR, pages 12026–12035,
2019. 2, 3, 6

1387



[33] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. AdaSGN:
Adapting joint number and model size for efficient skeleton-
based action recognition. In ICCV, pages 13413–13422, 2021.
2

[34] Chenyang Si, Wentao Chen, Wei Wang, Liang Wang, and
Tieniu Tan. An attention enhanced graph convolutional LSTM
network for skeleton-based action recognition. In CVPR,
pages 1227–1236, 2019. 2

[35] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In NIPS, pages 4080–4090,
2017. 1, 6

[36] Yi-Fan Song, Zhang Zhang, Caifeng Shan, and Liang Wang.
Stronger, faster and more explainable: A graph convolutional
baseline for skeleton-based action recognition. In ACM MM,
pages 1625–1633, 2020. 4

[37] Yukun Su, Guosheng Lin, and Qingyao Wu. Self-supervised
3d skeleton action representation learning with motion con-
sistency and continuity. In ICCV, pages 13328–13338, 2021.
2

[38] Anirudh Thatipelli, Sanath Narayan, Salman Khan,
Rao Muhammad Anwer, Fahad Shahbaz Khan, and Bernard
Ghanem. Spatio-temporal relation modeling for few-shot
action recognition. In CVPR, pages 19958–19967, 2022. 2, 5

[39] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. MLP-
Mixer: An all-MLP architecture for vision. In NeurIPS, pages
24261–24272, 2021. 5

[40] Lei Wang and Piotr Koniusz. Temporal-viewpoint transporta-
tion plan for skeletal few-shot action recognition. In ACCV,
pages 4176–4193, 2022. 2

[41] Xiang Wang, Shiwei Zhang, Zhiwu Qing, Changxin Gao,
Yingya Zhang, Deli Zhao, and Nong Sang. MoLo: Motion-
augmented long-short contrastive learning for few-shot action
recognition. In CVPR, pages 18011–18021, 2023. 2

[42] Xiang Wang, Shiwei Zhang, Zhiwu Qing, Mingqian Tang,
Zhengrong Zuo, Changxin Gao, Rong Jin, and Nong Sang.
Hybrid relation guided set matching for few-shot action recog-
nition. In CVPR, pages 19948–19957, 2022. 5

[43] Jiamin Wu, Tianzhu Zhang, Zhe Zhang, Feng Wu, and Yong-
dong Zhang. Motion-modulated temporal fragment alignment
network for few-shot action recognition. In CVPR, pages
9151–9160, 2022. 1, 2

[44] Jiazheng Xing, Mengmeng Wang, Yong Liu, and Boyu Mu.
Revisiting the spatial and temporal modeling for few-shot
action recognition. In AAAI, pages 3001–3009, 2023. 2

[45] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial tempo-
ral graph convolutional networks for skeleton-based action
recognition. In AAAI, pages 7444–7452, 2018. 2, 3, 6

[46] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen.
DeepEMD: Differentiable earth mover’s distance for few-shot
learning. IEEE T-PAMI, 45(5):5632–5648, 2022. 3

[47] Pengfei Zhang, Cuiling Lan, Wenjun Zeng, Junliang Xing,
Jianru Xue, and Nanning Zheng. Semantics-guided neural net-
works for efficient skeleton-based human action recognition.
In CVPR, pages 1112–1121, 2020. 3, 4

[48] Zhengyou Zhang. Microsoft kinect sensor and its effect. IEEE
T-MM, 19(2):4–10, 2012. 1

[49] Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling over-
smoothing in gnns. In ICLR, 2020. 6

[50] Huanyu Zhou, Qingjie Liu, and Yunhong Wang. Learning
discriminative representations for skeleton based action recog-
nition. In CVPR, pages 10608–10617, 2023. 2

[51] Zhi-Qiang Zhou and Bo Wang. A modified hausdorff distance
using edge gradient for robust object matching. In ICSIP,
pages 250–254, 2009. 5

[52] Anqi Zhu, Qiuhong Ke, Mingming Gong, and James Bai-
ley. Adaptive local-component-aware graph convolutional
network for one-shot skeleton-based action recognition. In
WACV, pages 6038–6047, 2023. 1, 2

1388


