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a b s t r a c t 

Temporal action localization is a challenging task for video understanding. Most previous methods pro- 

cess each proposal independently and neglect the reasoning of proposal-proposal and proposal-context 

relations. We argue that the supplementary information obtained by exploiting these relations can en- 

hance the proposal representation and further boost the action localization. To this end, we propose 

a dual relation network to model both proposal-proposal and proposal-context relations. Concretely, a 

proposal-proposal relation module is leveraged to learn discriminative supplementary information from 

relevant proposals, which allows the network to model their interaction based on appearance and geo- 

metric similarities. Meanwhile, a proposal-context relation module is employed to mine contextual clues 

by adaptively learning from the global context outside of region-based proposals. They effectively lever- 

age the inherent correlation between actions and the long-term dependency with videos for high-quality 

proposal refinement. As a result, the proposed framework enables the model to distinguish similar ac- 

tion instances and locate temporal boundaries more precisely. Extensive experiments on the THUMOS14 

dataset and ActivityNet v1.3 dataset demonstrate that the proposed method significantly outperforms re- 

cent state-of-the-art methods. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Temporal Action Localization (TAL) aims to localize the tem- 

oral starts and ends of some specific action categories in an 

ntrimmed video. It serves as a fundamental tool for several prac- 

ical applications such as intelligent surveillance [1–3] , video sum- 

arization [4,5] , and action retrieval [6–8] . Therefore, it has re- 

eived widespread attention from academia and industry in recent 

ears. This task is very challenging due to the complex spatio- 

emporal backgrounds, ambiguous temporal boundaries, and large 

ariations in person appearance, camera viewpoint and action du- 

ation. 

Recent TAL methods [9–11] mainly adopt a two-stage pipeline 

nd have significantly pushed forward the state-of-the-art perfor- 

ance. Temporal action proposals are first generated via top-down 

nchors [9,12] or bottom-up mechanisms [10,13,14] . Then each pro- 

osal is classified to an action category and regressed towards 

ore precise action boundaries. 

Despite the recent progress, most previous methods are lim- 

ted in two aspects: (1) they process each action proposal indepen- 
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ently of the other proposals, and (2) context in a video is ignored 

o a large extent. Here the “context” refers to the temporal region 

utside an action instance. Different from action proposals, context 

ay not correspond to any semantic categories. We argue that re- 

ation reasoning based on the interactions between proposals and 

heir dependency on context is critical for precise temporal action 

ocalization. 

As illustrated in Fig. 1 , action proposals are usually imperfect 

ecause they may cover much background or incomplete action 

nstances. Therefore, leveraging information beyond each individ- 

al action proposal is necessary to improve action localization per- 

ormance. Modeling the relation between relevant proposals can 

rovide supportive cues to discriminate action categories exhibit- 

ng similar appearances or motion patterns because some action 

ategories co-occur more frequently than others. Processing rele- 

ant proposals jointly also provides a chance to suppress redun- 

ant predictions and false positives. In addition, proposal-context 

elations are complementary to proposal-proposal relations. On the 

ne hand, the context contains scene information that is useful for 

ction classification but may be omitted in action proposals. For 

xample, frames of a swimming pool will reinforce our belief that 

he action is more likely to be diving than gymnastics . On the other 

and, the context includes cues, e.g. , scene switching, that can help 

ocalize ambiguous temporal boundaries. 

https://doi.org/10.1016/j.patcog.2022.108725
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108725&domain=pdf
mailto:lewang@xjtu.edu.cn
https://doi.org/10.1016/j.patcog.2022.108725
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Fig. 1. Illustration of our motivation. The relation between action proposals within a video provides useful clues to discriminate similar action categories and helps suppress 

redundant action instances and false positives. An untrimmed video contains relevant contextual information for proposal classification or regression and irrelevant context 

information that adversely affects network learning. 
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To address the aforementioned issues, we introduce an archi- 

ecture, termed dual relation network , for TAL. It consists of two 

ore components, i.e. , a Proposal-Proposal Relation Module (PPRM) 

nd a Proposal-Context Relation Module (PCRM). PPRM performs 

elation reasoning based on the interactions between proposals. 

pecifically, it enriches the features of each proposal by taking into 

ccount the features of its relevant proposals throughout the whole 

ideo. The relatedness between a pair of proposals is measured by 

oth their appearance and geometry similarities. PCRM performs 

elation reasoning based on the dependency of each proposal on 

he global context. Instead of simply extending the temporal win- 

ow of each proposal, PCRM adaptively selects relevant context in- 

ormation from the whole video to capture both short-term and 

ong-term dependency relations between proposals and context. 

oth modules can be easily incorporated into prior TAL methods 

nd trained end-to-end via standard classification and localization 

osses. 

Experimental results on two benchmark datasets, i.e. , THU- 

OS14 [15] and ActivityNet v1.3 [16] , demonstrate that our 

ethod outperforms recent state-of-the-art methods. Our quanti- 

ative and qualitative ablation studies show that the proposed two 

elation modules effectively contribute to suppressing false posi- 

ives and improving temporal localization accuracy. 

The main contributions of this paper are summarized as fol- 

ows. 

• We propose a dual relation network for TAL. To the best of our 

knowledge, this is the first work that unifies proposal-proposal 

relation reasoning and proposal-context relation reasoning to 

facilitate TAL. Experimental evaluations show that the two re- 

lations are complimentary and critical. 

• We propose a proposal-proposal relation module (PPRM), which 

can effectively perform relation reasoning among relevant pro- 

posals based on their appearance and geometry similarities. 

• We propose a proposal-context relation module (PCRM), which 

can adaptively aggregate both short-term and long-term con- 

text from the whole video to enrich the proposal features. 
2 
• Our method achieves state-of-the-art performance on THU- 

MOS14 and ActivityNet v1.3 datasets. 

This paper is organized as follows. In Section 2 , we briefly re- 

iew the related work. Section 3 presents the framework of the 

roposed method. The experiments are presented in Section 4 . Fi- 

ally, we conclude in Section 5 . 

. Related work 

.1. Temporal action localization 

The objective of TAL is to identify the temporal boundaries of 

ction instances from an untrimmed video. It is expected that TAL 

esults can cover ground truth action instances under certain tem- 

oral intersection-over-union (tIoU) thresholds with high recall as 

ell as high precision. Current mainstream methods [12–14] adopt 

 two-stage pipeline, where a set of initial action proposals are 

enerated, then classified and refined to more precise temporal lo- 

ations. 

Current proposal generation methods can be roughly divided 

nto two categories, namely top-down and bottom-up methods. 

op-down methods [9,12] generate proposals with predefined an- 

hors, but they lack the ability to precisely determine the tempo- 

al boundaries of proposals or generate proposals with flexible du- 

ation. Bottom-up methods [13,14] generate action proposals with 

rame-level probability sequences, i.e. , start, actionness, and end 

robability sequences, then connect start and end points to gen- 

rate dense proposals. For proposal refinement, top-down methods 

efine action proposals with a distance loss. Some recent bottom- 

p methods [14,17,18] train a confidence map for accurate scoring. 

n addition, several recent methods [11,19] incorporate the graph 

onvolution network (GCN) into TAL to exploit snippet-snippet or 

roposal-proposal relations. 

The work most related to ours is P-GCN [11] . It constructs an 

ction proposal graph to model the interactions between propos- 

ls and performs relation reasoning with a GCN. Our dual relation 



K. Xia, L. Wang, S. Zhou et al. Pattern Recognition 129 (2022) 108725 

n

t

t

p

g

t

fi

a

w

o

t

t

m

t

o

g

c

t

m

f

a

r

g

v

b

i

t

f

i

t

t

p

t

t

e

f

s

e

d

n

s

a

g

d

c

i

f

h

b

2

i

b

p

w

t

s

b

a

t

u

i

t

t

S

l

w

m

H

n

t

g

r

a

a

d

f

f

u

m

t

u

c

a

i

g

t

v

o

W

b

i

m

n

r

a

a

p

3

w

P

t

b

B

p

o

t

f

3

o

i

t

a

i

s

t  

s

a  

r

etwork differs from P-GCN in two aspects. First, while P-GCN es- 

ablishes an edge between two proposals only if they have a high 

IoU, the proposed PPRM models the relation between each pro- 

osal and all other proposals in a video and considers both their 

eometry ( i.e. , duration) and appearance similarities as well as fea- 

ure channel interaction. Second, the proposed PCRM automatically 

nds relevant snippets for each proposal within the entire video 

nd uses them as global context to update the proposal features, 

hich is neglected by P-GCN. The experimental results show that 

ur proposed method outperforms P-GCN by a large margin on 

wo datasets. In addition, the model size of our network is smaller 

han that of P-GCN. 

Other existing methods [18–20] share similar insight as us and 

odel context for TAL. Concretely, BSN [10] and BMN [17] use the 

emporal extension operation or the 1D convolution operation to 

btain limited local context. Gao et al. [21] directly squeeze the 

lobal temporal information through average pooling as the global 

ontext, which ignores the long-term dependencies between ac- 

ions and the context, and may introduce noise. G-TAD [19] for- 

ulates video snippets as graph nodes and updates all snippets 

eatures via a GCN to classify nodes and score predefined temporal 

nchors. TCANet [20] updates each snippet of the video by incorpo- 

ating its local and global temporal relationships. Then, a proposal 

enerator obtains the candidate proposal feature from the encoded 

ideo feature to further predict the confidence score and regress 

oundaries. Both G-TAD and TCANet share the same motivation to 

ntegrate the rich context for each snippet by snippet-snippet rela- 

ions and arrange anchors or proposals based on the encoded video 

eature. 

We argue that they share the following drawbacks. (1) Model- 

ng all snippet-snippet relations might include redundant informa- 

ion into proposals or anchors refinement. (2) Snippet-snippet rela- 

ions aim to improve the temporal receptive field of each anchor or 

roposal to contain more temporal information, while they ignore 

he temporal dependencies between actions and the global con- 

ext. By contrast, the proposal-context interactions are specific to 

ach proposal and are more flexible to search for supportive clues 

or proposals of different qualities. BSN++ [18] adopts a nested U- 

haped encoder-decoder with a larger temporal receptive field to 

xploit the rich context for accurate boundary prediction. However, 

irectly upsampling the output of the classification networks can- 

ot recover the degraded temporal information caused by down- 

ampling, which harms precise temporal localization. In addition, 

ll aforementioned methods focus on temporal action proposal 

eneration. They pay more attention to producing reliable confi- 

ence scores or achieve accurate boundary prediction using the 

ontext. 

By contrast, our method aims to improve the representation of 

mperfect action proposals by incorporating the complementary in- 

ormation from homogeneous relationships between proposals and 

eterogeneous relations between proposals and the context, driven 

y the classification task and the localization task, respectively. 

.2. Relation reasoning 

Relation reasoning means effectively selecting and integrating 

nformation based on the relations between visual entities. It has 

een widely used in natural language processing [22] and com- 

uter vision tasks [23,24] . Su et al. [25] propose a unified frame- 

ork named as PCG-TAL, which builds upon a two-granularity and 

wo-stream pipeline. It can leverage cross-granularity and cross- 

tream complementary information obtained by message passing 

etween anchor-based features and frame-based features as well 

s between RGB stream and flow stream to generate better ac- 

ion segments. Chen et al. [26] introduce a relation attention mod- 

le to model relations among proposals for temporal action local- 
3 
zation. Specifically, the relation attention module could capture 

he relationship between proposals via a pair-wise relation func- 

ion, which in spirit is similar to the self-attention mechanism. 

un et al. [27] propose to exploit informative video segments by 

earning video segment weights for temporal action localization, 

here the learned weights represent the importance of video seg- 

ents in recognizing actions and predicting temporal boundaries. 

uang et al. [28] introduce a location-aware graph convolutional 

etwork (L-GCN) to model the interaction between objects for 

he video question answering task. It constructs a fully-connected 

raph where each node is an object and the edges between nodes 

epresent their relationship. Each node also encodes both spatial 

nd temporal object location information. Pan et al. [29] design 

n Actor-Context-Actor Relation Network (ACAR-Net), which de- 

uces indirect relations between multiple actors and the context 

or spatio-temporal action localization. 

Additionally, the self-attention mechanism, e.g. , Trans- 

ormer [22] and the non-local network [30] , has been widely 

sed to model relations for static images or sequence data. It 

odels the bidirectional relations between homogeneous enti- 

ies. By contrast, our context reasoning block aims to model the 

nidirectional relation between heterogeneous entities, i.e. , from 

ontextual snippets to an action proposal. Zhu et al. [31] propose 

 cross-layer attention model to aggregate multi-layer features 

nto a single global video representation through weighting 

lobal context at different scales for action recognition. In con- 

rast, our proposal-context relation module aims to weight each 

ideo snippet in the video using the attention mechanism to 

btain a context-aware feature for action proposal refinement. 

u et al. [32] propose a dual attention matching module to 

etter model the whole event for event localization task, where 

t encodes local temporal information by a global cross-check 

echanism. Multiple knowledge representation (MKR) [33] is a 

ew tool to exploit data relations at multiple sources. Our dual 

elation network has similar spirits to MKR, where we consider 

nd leverage two types of desirable properties of actions, i.e. , 

ppearance and geometry features to facilitate the TAL task. Our 

roposed method is a specific application of MKR. 

. Dual relation network 

In this section, we introduce the proposed Dual Relation Net- 

ork (DRN), which consists of two modules, i.e. , a Proposal- 

roposal Relation Module (PPRM) and a Proposal-Context Rela- 

ion Module (PCRM). As shown in Fig. 2 , PPRM consists of two 

locks, i.e. , a Proposal Reasoning Block and a Feature Reasoning 

lock. They reason the relation between proposals from the tem- 

oral and semantic perspectives, respectively. PPRM is designed to 

btain discriminative information from relevant proposals for ac- 

ion recognition. PCRM aims to capture supplementary information 

rom the global context for boundary regression. 

.1. Notation and preliminaries 

We follow previous action proposal generation meth- 

ds [10,17] to build our model upon snippet-level features of 

nput videos. As illustrated in Fig. 2 , our dual relation network 

akes an untrimmed video as input, and outputs a category label, 

 confidence score, and the temporal boundaries of each action 

nstance. Specifically, given an untrimmed video, we encode each 

uccessive fixed-length frame with a pre-trained feature extrac- 

or ( e.g. , the I3D network [34] ), and denote the output feature

equence as X = { x t } T t=1 , where T is the number of snippets, 

nd x t ∈ R 

D is the feature vector of the t-th snippet, with D

epresenting the channel dimension. 
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Fig. 2. Architecture Overview. The input is a sequence of snippet-level features. We first generate dense candidate proposals based on the video feature sequence. Then 

candidate proposals are fed into the Proposal-Proposal Relation Module and the Proposal-Context Relation Module respectively, and both relation modules can automatically 

integrate the relation features for each proposal. Finally, the refined proposals are post-processed for action classification and localization. 
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For each video, � = { ψ n | ψ n = ( f n , (t s,n , t e,n ) ) } N n =1 is the set of 

ction proposals of interest generated by an existing proposal gen- 

rator ( e.g. , BSN [10] ), where t s,n and t e,n denote the start and end

ime of the n -th proposal, respectively. N denotes the number of 

roposals. The feature vector of the n -th proposal, i.e. , f n ∈ R 

D , is

btained through temporal pooling across the snippet-level fea- 

ures within the start and end time of the proposal. 

We proceed to leverage the proposal-proposal relation module 

PPRM) and the proposal-context relation module (PCRM) to enrich 

he proposal features. Finally, the enriched features of each pro- 

osal are employed for action classification and temporal boundary 

egression. We detail the proposed PPRM and PCRM below. 

.2. Proposal-proposal relation module 

As discussed above, reasoning based on the relations among 

elevant proposals not only helps distinguish action categories 

ith similar appearances or motion patterns, but also provides 

 chance to suppress redundant action instances and false pos- 

tives. The proposal-proposal relation module (PPRM) consists of 

wo blocks: the proposal reasoning block and the feature reasoning 

lock. PPRM first augments the features of each proposal by taking 

nto account the features of all relevant proposals across the whole 

ideo. Then, the feature reasoning block further promotes discrim- 

native feature channels while suppressing the minor ones. 

Proposal Reasoning Block . Given N proposals, we measure their 

airwise relatedness by computing an appearance similarity matrix 

 

a ∈ R 

N×N and a geometry similarity matrix S g ∈ R 

N×N : 

 

a 
n,m 

= 

f � n f m 

‖ f n ‖‖ f m 

‖ 

, (1) 

 

g 
n,m 

= min 

(
t e,n − t s,n 

t e,m 

− t s,m 

, 
t e,m 

− t s,m 

t e,n − t s,n 

)
, (2) 

here S a n,m 

and S 
g 
n,m 

denote the elements at the n -th row and the

 -th column of the appearance similarity matrix and the geom- 

try similarity matrix in Eq. (1) and Eq. (2) , respectively. ‖ · ‖ 
enotes the L 2 norm. The appearance similarity matrix S a contains 

he cosine similarity scores between each pair of proposal feature 

ectors. The geometry similarity matrix S g comprises the duration 

imilarity scores between proposals based on the assumption that 

elevant proposals tend to be similar in terms of their temporal 

cales. Then, a weighted summation of S a and S g produces the fi- 

al similarity matrix S ∈ R 

N×N : 

 = λS a + (1 − λ) S g , (3) 
4 
here λ is a hyper-parameter controlling the relative importance 

etween the appearance and geometry similarities. We update the 

eatures of the n -th proposal by integrating N proposal features. As 

 result, the updated features of the n -th proposal, denoted as f s n ,

an be computed by 

 

s 
n = 

1 

N − 1 

N ∑ 

m =1 

S n,m 

W S f m 

, (4) 

here S n,m 

is an element of S and represents the relation weight 

etween the n -th proposal and the m -th proposal, and W S ∈ R 

D ×D 

s the weight matrix of a linear projection layer. Note that the bias 

erm is omitted for simplicity. 

Feature Reasoning Block . We use the proposal reasoning block to 

xplicitly model the subtle interactions between related proposals. 

o encourage the network to focus on discriminative features, we 

ubsequently feed the updated proposal features to a feature rea- 

oning block for high-order supportive information. In particular, 

o model the interdependent relations between channels, our in- 

piration originates from Hu et al. [35] . The features of the n -th

roposal are updated as 

 

pp 
n = W r f n + f s n � σ ( W ex · ReLU ( W sq f 

s 
n ) ) , (5) 

here σ (·) is the sigmoid activation function and � is element- 

ise multiplication. W r ∈ R 

D ×D , W sq ∈ R 

D ×(D/r) and W ex ∈ R 

(D/r) ×D 

re weights of three linear projection layers, respectively. r is a pre- 

efined integer for the feature reasoning block. This block performs 

eature reasoning among each relevant proposal to adaptively acti- 

ate informative features. In other words, it could adaptively eval- 

ate the importance of each semantic feature and assign appropri- 

te weights to it, so as to suppress the noise information within 

he proposal. 

Finally, a softmax-activated fully-connected layer with C + 1 

utput channels is used to classify the feature vector of each 

roposal f 
pp 
n , and output the category prediction result ˆ y ∈ R 

C+1 , 

here C + 1 denotes the number of action categories with an ad- 

itional background category. 

Discussion. PPRM takes full advantage of the desirable proper- 

ies of actions, i.e. , appearance, and geometry features to learn re- 

ations between all relevant proposals. By contrast, P-GCN [11] only 

onsiders proposals with high overlaps and near distance to 

odel their relations via a GCN. In short, PPRM builds proposal- 

roposal relations from both the temporal and semantic perspec- 

ives through the two blocks. Therefore, PPRM can explore and in- 

egrate supportive information for action proposal refinement as 

uch as possible. 
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Fig. 3. Context reasoning block is responsible for reasoning the coupling relation between the proposal and global context through the interaction between proposal feature 

and video feature in two streams. Finally, a context-aware feature is obtained for each proposal. 
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.3. Proposal-context relation module 

The untrimmed videos contain meaningful contextual infor- 

ation and meaningless noise background. Several previous TAL 

ethods [10,14,36] classify and locate a sparse set of proposals 

ased on region-wise features, but they neglect any available con- 

ext information. The valid context should be beneficial for both 

ction classification and localization. Even though several existing 

ethods [13,36] use CNNs to capture proposal context, they still 

uffer from a limited receptive field or limited short-term temporal 

nformation. Therefore, we propose the proposal-context relation 

odule (PCRM) to perform reasoning based on the relations be- 

ween the proposal and the global context. It can automatically re- 

rieve the regions most related to the proposal, and thus can iden- 

ify and integrate useful contextual information for accurate local- 

zation. 

As illustrated in Fig. 3 , we introduce a context reasoning block 

s the relation reasoning operator to model the temporal depen- 

encies between the proposal and the whole video and incorpo- 

ate it into PCRM. The proposed PCRM takes as input proposal fea- 

ures { f n } N n =1 and a sequence of snippet features { x t } T t=1 . We first

alculate the affinity between the proposal and each time step 

f the video sequence in the embedding space. We then gener- 

te context-aware features through the long-range affinity and use 

hem to augment the original proposal feature. 

For each proposal, we first calculate an attention weight a t 
ased on the relation between the proposal features f n and each 

f the snippet-level features x t : 

 t = 

exp 

(
f � n W 

� 
p W c x t 

)
∑ T 

τ=1 exp 

(
f � n W 

� 
p W c x τ

) , (6) 
5 
here W p , W c ∈ R 

D ×D are learnable parameters. To make the 

odel focus on video snippets most relevant to the proposal, the 

eature of the n -th proposal is updated by linearly aggregating 

nippet-level features with the attention weights: 

 

pc 
n = W p f n + W pc 

T ∑ 

t=1 

a t W c x t , (7) 

here W pc ∈ R 

D ×D is a learnable parameter. Therefore, the pro- 

osed PCRM adaptively captures supportive contextual information 

rom long-range context and filters background noise by generat- 

ng snippet-level attention weights. Furthermore, PCRM can better 

efine the region-wise proposal locations by embedding valid con- 

extual information. 

Finally, with the context-enhanced features of each proposal f 
pc 
n , 

e use a fully-connected (FC) layer with two-dimensional output 

o predict the start time t s and end time t e , and use another FC

ayer with a sigmoid activation to predict the completeness score 

of the proposal, indicating whether the proposal is complete or 

ot. 

Discussion . The relation reasoning between proposals and the 

ontext aims to supplement missing action evolution information 

or imperfect action proposals, and it also provides indicative de- 

ails for boundaries regression, e.g. , shot switching. G-TAD [19] up- 

ates all snippets features of the video via a GCN and uses them 

o classify and regress predefined anchors. It aims to improve the 

emporal receptive field of each anchor through snippet-snippet 

elations and neglects the temporal dependencies between action 

nstances and the global context. Besides, modeling all snippet- 

nippet relations might introduce redundant information for pro- 

osals refinement. Our PCRM is specific to each proposal and is 
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ore flexible to search for supportive clues for proposals of differ- 

nt qualities. 

Summary . Our dual relation network aims to improve the repre- 

entation of imperfect action proposals by incorporating the com- 

lementary information from homogeneous relations between pro- 

osals and heterogeneous relations between proposals and the 

ontext, driven by the classification task and the localization task, 

espectively. 

.4. Network optimization 

During the training process, the above two relation reasoning 

odules PPRM and PCRM are jointly trained in an end-to-end 

anner. The overall loss L of the proposed dual relation network 

onsists of a classification loss L cls , a regression loss L reg , and a

ompleteness loss L com 

: 

 = 

N ∑ 

n =1 

L cls (y n , ̂  y n ) 

+ α
N ∑ 

n =1 

1 { ̂ c n =1 } L reg (t s,n , t e,n , ̂  t s,n , ̂  t e,n ) 

+ β
N ∑ 

n =1 

L com 

(c n , ̂  c n ) , 

(8) 

here ˆ t s,n , ˆ t e,n are the target start and end time for the n th pro-

osal, respectively. ˆ y n ∈ R 

C+1 is a one-hot target category label vec- 

or, while α and β are weight hyper-parameters of the regres- 

ion loss and the completeness loss, respectively. 1 is the indica- 

or function. ˆ c n ∈ { 0 , 1 } is the completeness label of the n -th pro-

osal. The classification loss L cls employs a standard cross entropy 

oss. The completeness loss L com 

employs the online hard example 

ining hinge loss [37] . The regression loss L reg employs a sum of 

mooth L 1 losses [38] between the target start/end time and pre- 

icted start/end time: 

 reg (t s , t e , ̂  t s , ̂  t e ) = S L 1 
(
t s , ̂  t s 

)
+ S L 1 

(
t e , ̂  t e 

)
, (9) 

here S L 1 (·, ·) denotes the smooth L 1 loss. 

.5. Inference phase 

Proposal Generation . We use the boundary-based method, e.g. , 

SN [10] or BMN [17] , as the proposal generator to produce a 

ense action proposal set. 

Proposal Refinement . Each proposal obtains supplementary in- 

ormation by reasoning the interaction between proposals and 

he temporal dependencies between proposals and videos. Subse- 

uently, the regression branch predicts offsets and refines the tem- 

oral locations of each action proposal. The classification branch 

redicts the action category of the candidate proposal, and the 

ompleteness branch predicts its completeness score. For each pro- 

osal, we define its category label as its top-1 action category 

rom its corresponding classification prediction 

ˆ y , and its confi- 

ence score as the product of its top-1 classification score and 

ompleteness score. 

Proposal Retrieval . Given candidate proposals with confidence 

cores, we adopt Soft-NMS (soft non-maximum suppression) to 

uppress redundant proposals with high overlaps in the post- 

rocessing stage. 

. Experiments and discussions 

.1. Datasets and metrics 

THUMOS14 [15] includes 413 untrimmed videos over 20 hours 

rom 20 action categories. It is very challenging since each video 
6 
as more than 15 action instances, and 71% of frames are occupied 

y background items. Following convention [14] , we use the 200 

ideos in the validation set for training, and evaluate on the 213 

ideos in the testing set. 

ActivityNet v1.3 [16] is another popular benchmark for action 

ocalization. We evaluate our method on ActivityNet v1.3. It con- 

ains 19,994 untrimmed videos from 200 action categories, which 

re divided into training, validation, and testing sets by a ratio of 

 : 1 : 1 . Following the common practice [14,39] , we use the train-

ng set for training and the validation set for evaluation. We com- 

are our method with state-of-the-art methods on the THUMOS14 

nd ActivityNet v1.3 datasets, and we conduct ablation studies on 

he THUMOS14 dataset. 

Evaluation Metrics . To evaluate the proposed method, we 

se mean average precision (mAP) under different tem poral 

ntersection-over-union (tIoU) thresholds. We take the official eval- 

ation code provided by ActivityNet to evaluate the performance of 

AL on the two datasets. Specially, the tIoU thresholds are chosen 

rom [0 . 1 : 0 . 1 : 0 . 7] and { 0 . 5 , 0 . 75 , 0 . 95 } for THUMOS14 and Ac-

ivityNet v1.3, respectively. On THUMOS14, we also report average 

AP at tIoU thresholds from 0.1 to 0.5 and from 0.3 to 0.7, with 

 step size of 0.1. On ActivityNet v1.3, we report average mAP over 

0 different tIoU thresholds [0 . 5 : 0 . 05 : 0 . 95] . 

.2. Implementation details 

For the feature extractor, we adopt the I3D network [34] pre- 

rained on Kinetics [40] to extract RGB features and optical flow 

eatures from 16 consecutive frames, respectively. The features are 

xtracted from the global average pooling layer as 1024 dimen- 

ional vectors. We use BSN [10] as the proposal generator on THU- 

OS14. For ActivityNet v1.3, we adopt BSN [10] and BMN [17] . 

ote that for a fair comparison with previous works, we do not 

ne-tune the feature extraction backbone or the proposal gener- 

tor. Particularly, we combine our proposals by BMN [17] with 

ideo-level classification results from [41] on ActivityNet v1.3, as 

n [20] . For each proposal, we obtain its feature through tempo- 

al RoI pooling [38] across the snippet-level features within the 

tart and end time of the proposal and map it to the same chan- 

els as the video feature. As for the video features, we use lin- 

ar interpolation to obtain global context features of 100 snip- 

ets for THUMOS14 and ActivityNet v1.3. For boundary regres- 

ion, we predict the offset of the center coordinate and the du- 

ation of each proposal instead of directly predicting its start and 

nd time. 

During the training stage, we set the mini-batch size to 32 on 

he THUMOS14 dataset and 64 on the ActivityNet v1.3 dataset. For 

PRM, we select 10 proposals with high similarity both in appear- 

nce and geometry to reduce computation. We train the model for 

0 epochs with the SGD optimizer, set the initial learning rate to 

.01, and reduce it by a factor of 10 for every 15 epochs. All hyper-

arameters are determined by empirical grid search, i.e. , λ = 0 . 5 ,

 = 2 , α = 1 , and β = 0 . 5 . For post-processing, Soft-NMS with tIoU

hresholds of 0.2 and 0.4 are used to remove duplicate proposals in 

xperiments on THUMOS14 and ActivityNet v1.3, respectively. We 

ombine the predicted results of RGB and Flow streams by a ra- 

io of 5 : 6 to generate the final predictions, where the Soft-NMS 

hreshold is set to 0.3. 

.3. Comparison with state-of-the-art methods 

ActivityNet v1.3 . We compare our method with 13 state-of- 

he-art methods and their variants, and report the mAP at differ- 

nt tIoU thresholds as well as the average mAP at tIoU thresholds 

 . 5 : 0 . 05 : 0 . 95 in Table 1 . For fair comparison, we report the ex-

erimental results with different backbones, I3D [34] and TSN [45] , 
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Table 1 

Temporal action localization results on ActivityNet v1.3. The “Avg” column denotes 

the average mAP at tIoU thresholds from 0.5 to 0.95, with a step size of 0.05. 

Method Year Backbone 

mAP@tIoU (%) Avg (%) 

0.5 0.75 0.95 0.5:0.05:0.95 

BSN [10] 2018 TSN 46.45 29.96 8.02 30.03 

BMN [17] 2019 TSN 50.07 34.78 8.29 33.85 

G-TAD [19] 2020 TSN 50.36 34.60 9.02 34.09 

BSN + [18] 2021 TSN 51.27 35.70 8.33 34.88 

Ours [BSN] - TSN 51.75 35.97 7.05 34.50 

Ours [BMN] - TSN 53.48 37.21 7.54 35.42 

TAL [36] 2018 I3D 38.23 18.30 1.30 20.22 

P-GCN [11] 2019 I3D 42.90 28.14 2.47 26.99 

BU-MR [14] 2020 I3D 43.47 33.91 9.21 30.12 

TCANet [20] 2021 I3D 51.91 34.92 7.46 34.43 

AFSD [42] 2021 I3D 52.40 35.30 6.50 34.40 

ContextLoc [43] 

2021 I3D 56.01 35.19 3.55 34.23 

VSGN [44] 2021 I3D 52.38 36.01 8.37 35.07 

Ours [BSN] - I3D 52.84 36.10 6.32 35.92 

Ours [BMN] - I3D 56.10 39.92 6.95 37.83 
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espectively. Particularly, our method achieves the highest average 

AP result (as shown in the “Avg” column) compared with pre- 

ious methods. Although this dataset is huge and complex, our 

roposed method further improves the mAP at tIoU of 0.75 from 

9 . 13% (TCANet [20] ) to 39 . 92% , and the average mAP from 37 . 56%

o 37 . 83% . These results clearly indicate the efficacy of the relation

easoning capability of our method in complex scenarios. 

Notably, compared to P-GCN [11] and ContextLoc [43] , which 

lso belong to the proposal refinement-based method, our method 

ignificantly outperforms them by a large margin on average mAP, 

here we adopt the same proposals generated by BSN [10] . 

THUMOS14 . We report the performances of our method with 

ifferent backbones and other 16 state-of-the-art methods in 

able 2 , where the tIoU thresholds are set from 0.1 to 0.7. Clearly, 

ur proposed method achieves significant improvements against 

ll other state-of-the-art methods. At tIoU thresholds from 0.1 to 

.5, the mAP scores of our method are clearly higher than that 

f the previous best method P-GCN [11] . In addition, we compare 

he average mAP at tIoU from 0.1 to 0.5 and the average mAP 

t tIoU from 0.3 to 0.7 with previous state-of-the-art methods. 

ur method reaches 67 . 26% and 53 . 80% respectively, which outper- 

orms the previous best performance (P-GCN [11] , AFSD [42] ). This 

emonstrates that our proposed dual relation network has signifi- 

ant advantages. 

Model size. The number of parameters of our full network, in- 

luding PPRM and PCRM, is 4.2M. P-GCN [11] , our main competi- 

or, consists of 4.6M parameters. Thus, our superior performance is 

ot caused by additional learnable parameters. 

.4. Ablation studies 

To investigate the contribution of each component in our pro- 

osed method, we conduct comprehensive ablation studies by 

omparing it with its variants with certain components changed 

r removed. 

Effectiveness of reasoning modules . To verify the effectiveness 

f our proposed PPRM and PCRM, we present the experimen- 

al results of different combinations of the relation modules 

n the THUMOS14 dataset in Table 3 and the ActivityNet v1.3 

ataset in Table 4 . The baseline network is constructed by re- 

oving both PPRM and PCRM. By default, we adopt BSN as 

he proposal generator. Compared with the baseline, the com- 

ination of PPRM and PCRM significantly improves the mAP at 

ll tIoU thresholds from 0.1 to 0.7 on THUMOS14. For Activi- 
7

yNet v1.3, PPRM and PCRM achieve significant performance im- 

rovements. Adequate experiments reveal that the relation fea- 

ures obtained by the two reasoning modules can indeed im- 

rove the performance. Conecretely, compared with PCRM, PPRM 

as a clearer contribution to the mAP at tIoU from 0.5 to 0.7 

n THUMOS14, while PCRM improves the mAP at tIoU from 0.1 

o 0.3 more significantly than PPRM. This phenomenon demon- 

trates that the two reasoning modules complement the proposal 

eatures. 

Impact of the reasoning blocks in PPRM . Our proposed PPRM 

onsists of two building blocks, namely the proposal reasoning 

lock and the feature reasoning block . They reason the relation 

eatures between proposals from the temporal and semantic per- 

pectives, respectively. We conduct ablation studies to quantita- 

ively measure their impacts. As shown in Table 5 , either individ- 

al block improves the mAP at all thresholds, and their combi- 

ation further boosts the performance. This indicates that these 

wo blocks are complementary, and both are important to our 

PRM. 

Effects of different proposal generators . We present the TAL re- 

ults on THUMOS14 by combing our proposed dual relation net- 

ork with different proposal generation methods in Table 6 . The 

esults show that our method significantly improves the perfor- 

ance combined with different state-of-the-art proposal genera- 

ion methods. Therefore, our proposed dual relation network is 

exible and versatile, which can adapt to different TAL frameworks. 

Precision-Recall on THUMOS14 . We draw the per-category 

recision-Recall (PR) curves obtained by different variants of our 

roposed method in Fig. 4 , where we denote the overall frame- 

ork dual relation network as DRN. Clearly, the red categories-wise 

R curve indicates that our method can improve precision and re- 

all for most categories ( i.e. , higher in the y -axis), and thus a larger

rea is enclosed by the PR curve, x and y axis ( i.e. , Average Preci-

ion, AP). 

Moreover, compared with the baseline, PPRM and PCRM have 

heir respective advantages in different action categories, and have 

heir own contributions to the overall framework performance. 

pecifically, for actions that are not obvious in appearance ( e.g. , 

iving and Cricket Bowling), PPRM improves the representation 

f each proposal by reasoning the subtle relation between the 

roposals, and enhances the discrimination of proposals. For ac- 

ions that rely on contextual information ( e.g. , Golf Swing and Pole 

ault), PCRM enriches the feature of each proposal by reasoning 

he interaction between the region-wise proposal and the long- 

ange context, and achieves more precise localization. In general, 

ur proposed dual relation network can achieve the best perfor- 

ance in most scenarios. 

Duration similarity or IoU similarity. We use the duration similar- 

ty between action proposals instead of their IoU as the geometry 

imilarity. Unlike objects in an image, whose sizes depend on their 

istances to the camera, action instances of the same category in 

atural videos tend to have similar durations, e.g. , Basketball Dunk 

nd Cliff Diving. Thus, we use the duration to measure the pro- 

osal’s geometric similarity across the entire video. By contrast, 

oU only considers overlapping proposals. We conduct an ablation 

xperiment to compare the effects of the two geometric similar- 

ties on THUMOS14. Table 7 indicates that duration outperforms 

oU. 

Analysis of performance improvements . In order to further ex- 

lore sources of performance improvements, we conduct addi- 

ional experiments in terms of AR@AN for evaluating the action 

oundary. As illustrated in Table 8 , it can be observed that our 

ethod can improve the average recall of action boundaries com- 

ared with other state-of-the-art methods. It indicates that the 

erformance improvement comes from more accurate boundary 

rediction. 
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Table 2 

Temporal action localization results on THUMOS14. The two “Avg” columns denote the average mAP at tIoU thresholds from 0.1 

to 0.5 and at tIoU thresholds from 0.3 to 0.7, with a step size of 0.1. 

Method Year Backbone 

mAP@tIoU (%) Avg (%) Avg (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.1:0.5 0.3:0.1:0.7 

BSN [10] 2018 TSN - - 53.5 45.0 36.9 28.4 20.0 - 36.76 

MGG [13] 2019 TSN - - 53.9 46.8 37.4 29.5 21.3 - 37.78 

BMN [17] 2019 TSN - - 56.0 47.4 38.8 29.7 20.5 - 38.48 

G-TAD [19] 2020 TSN - - 54.5 47.6 40.2 30.8 23.4 - 39.30 

ActionDBG [39] 2020 TSN - - 57.8 49.4 39.8 30.2 21.7 - 39.78 

BSN + [18] 2021 TSN - - 59.9 49.5 41.3 31.9 22.8 - 41.08 

Ours - TSN 69.8 64.0 61.9 52.2 44.2 33.5 24.0 58.42 43.16 

TAL [36] 2018 I3D 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.28 39.82 

P-GCN [11] 2019 I3D 69.5 67.8 63.6 57.8 49.1 - - 61.56 - 

BU-MR [14] 2020 I3D - - 53.9 50.7 45.4 38.0 28.5 - 43.30 

TCANet [20] 2021 I3D - - 60.6 53.2 44.6 36.8 26.7 - 44.38 

AFSD [42] 2021 I3D - - 67.3 62.4 55.5 43.7 31.1 - 52.00 

ContextLoc [43] 2021 I3D - - 68.3 63.8 54.3 41.8 26.2 - 50.88 

VSGN [44] 2021 I3D - - 66.7 60.4 52.4 41.0 30.4 - 50.18 

Ours - I3D 73.0 71.9 69.2 64.7 57.5 46.9 30.8 67.26 53.80 

Fig. 4. Per category Precision-Recall (PR) curves on the THUMOS14 testing set. The PR curve is plotted at tIoU threshold 0.7. The area enclosed by the PR curve is Average 

Precision (AP) of each category. DRN is short for the dual relation network. 

Table 3 

Ablation study of the proposal-proposal relation module (PPRM) and the proposal- 

context relation module (PCRM) on THUMOS14. 

PPRM PCRM 

mAP@tIoU (%) Avg (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.1:0.7 

69.7 69.2 65.7 60.9 53.2 41.5 28.0 55.5 

� 70.8 69.9 66.4 62.0 55.8 43.8 29.9 56.9 

� 72.2 71.0 67.1 61.7 54.9 42.1 28.5 56.8 

� � 73.0 71.9 69.2 64.7 57.5 46.9 30.8 59.1 

4

p

t

Table 4 

Ablation study of the proposal-proposal relation module 

(PPRM) and the proposal-context relation module (PCRM) on 

ActivityNet v1.3. 

PPRM PCRM 

mAP@tIoU (%) Avg (%) 

0.5 0.75 0.95 0.5:0.05:0.95 

49.30 34.65 4.91 33.71 

� 50.15 35.72 5.83 34.90 

� 51.06 35.26 5.14 34.12 

� � 52.84 36.10 6.32 35.92 

b

t

r

m

.5. Visualization 

Visualization of the Proposal-Proposal Relation . Our PPRM builds 

roposal-proposal relations from both the temporal and seman- 

ic perspectives through two blocks, a proposal relation reasoning 
8 
lock (PRB) and a feature reasoning block (FRB). PRB first augments 

he features of each proposal by taking into account features of all 

elevant proposals across the whole video. Then, FRB further pro- 

otes discriminative feature channels while suppressing the minor 
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Fig. 5. Visualization of the Proposal-Proposal Relation. PPRM aims to capture discriminative supplementary information from relevant proposals for action recognition 

through the proposal reasoning block and the feature reasoning block.. 

Table 5 

Ablation study of the proposal reasoning block (PRB) and the feature reasoning 

block (FRB) on THUMOS14. 

PRB FRB 

mAP@tIoU (%) Avg (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.1:0.7 

72.2 71.0 67.1 61.7 54.9 42.1 28.5 56.8 

� 72.7 71.6 68.7 64.0 57.0 45.4 30.1 58.5 

� 72.6 71.9 68.2 62.3 55.7 43.0 29.8 57.6 

� � 73.0 71.9 69.2 64.7 57.5 46.9 30.8 59.1 

Table 6 

Comparison of different proposal generators on THUMOS14 . 

Model 

mAP@tIoU (%) Avg (%) 

0.3 0.4 0.5 0.6 0.7 0.3:0.1:0.7 

w/ BSN [10] 69.2 64.7 57.5 46.9 30.8 53.8 

w/ ContextLoc [43] 70.3 65.9 58.2 46.5 29.4 54.1 

w/ VSGN [44] 69.5 66.2 57.4 48.2 32.5 54.8 

Table 7 

Comparison of different geometric similarities on THUMOS14. 

Method 

mAP@tIoU (%) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

IoU 72.1 70.9 67.8 62.9 55.4 43.4 29.7 

Duration 73.0 71.9 69.2 64.7 57.5 46.9 30.8 

Table 8 

Comparison results on THUMOS14 in terms of 

AR@AN. 

Method 

AR@AN 

@50 @100 @200 

BSN [10] 37.46 46.06 53.23 

BMN [17] 39.36 47.72 54.84 

MGG [13] 39.93 47.75 54.65 

ContextLoc [43] 41.20 49.82 57.46 

VSGN [44] 40.58 49.23 56.10 

Ours 42.60 50.26 56.74 
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Table 9 

Ablation study of the hyper-parameter K on 

THUMOS14. 

K

mAP@tIoU (%) 

0.3 0.4 0.5 0.6 0.7 

1 67.9 62.1 55.4 43.0 29.5 

5 68.7 63.5 56.9 45.2 30.0 

10 69.2 64.7 57.5 46.9 30.8 

15 69.6 64.5 57.2 46.6 30.4 
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nes. In order to more intuitively show how they work, we con- 

uct some visualization examples of PRB and FRB through class 

ctivation maps (CAM), as shown in Fig. 5 . Concretely, PRB mod- 

ls proposal-proposal relation based on their similarity scores cal- 

ulated by appearance similarity and geometric similarity. We can 

bserve that the relevant proposals often belong to the same cate- 

ory of actions. Thereafter, modeling these relevant proposals with 

igh similarity scores can effectively explore supportive informa- 

ion of an action instance, e.g., jump of “Diving” and run-up of 

Javelin Throw”. FRB further activates discriminative feature chan- 

els and integrates these useful information to help temporal ac- 

ion localization. It can be observed by the heatmaps that our PRB 
9 
nd FRB can capture discriminative semantic features for proposal 

efinement. 

Visualization of the Proposal-Context Relation. To intuitively un- 

erstand the contribution of PCRM to action localization, we visu- 

lize dependencies between action proposals (red) and the global 

ontext (blue) on THUMOS14, as shown in Fig. 6 . We partition 

he quality of action proposals by their extent of overlapping with 

he actual action. Specially, high-quality proposals (left) have a 

igh IoU with action instances and have sufficient information for 

oundaries regression without additional supplementary informa- 

ion. Medium-quality proposals ( e.g. , they cover only the contin- 

ation and end of actions. (middle)) can leverage their neighbor- 

ood context to supplement the missing information for boundary 

efinement. Low-quality proposals (right), which are frequent and 

navoidable, can only glimpse a small part of the action evolution 

ecause the missing content is not discriminative. Therefore, they 

an flexibly capture other action evolution feature from the global 

ontext to supplement boundary details and further achieve accu- 

ate location. 

Analysis of the computation of PPRM . The relevant proposals with 

igh similarity could provide supportive cues to reduce the uncer- 

ainty of actions from imperfect predictions. However, it is redun- 

ant to consider all relevant proposals in PPRM, since they are of- 

en overlapped temporally. As a result, we take K relevant propos- 

ls with high similarity both in appearance and geometry for PPRM 

n the experiment. We evaluate the impact of different numbers of 

elevant proposals on the performance in Table 9 . It can be ob- 

erved that a small number of action proposals are sufficient to 

ffectively model the relationship between the relevant proposals 

hile reducing the computational burden. Moreover, we also cal- 

ulate the computation time of the two similarity matrixes S a and 

 

g in each iterative process as 0.00157 s and 0.00036 s , respectively. 

herefore, these two similarity matrices do not cost a lot of com- 

utation. 

Qualitative results. To further demonstrate the effectiveness of 

ur method, we present some example TAL results on both THU- 

OS14 and ActivityNet v1.3 datasets in Fig. 7 . For ease of compari- 

on, the ground truth and the results obtained by our method with 

nd without the two reasoning modules are all presented. These 

esults clearly show that the refined temporal boundaries produced 

y our full method better correspond to the ground truth, and the 

onfidence is more reliable than the baseline model. It manifests 
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Fig. 6. Visualization of the Proposal-Context Relation. The horizontal axis of the histogram represents the snippet index within a video sequence, and the vertical axis 

represents the response value of each video snippet. The red solid lines represent temporal locations of action proposals to be updated and their corresponding visual 

content. The blue solid lines represent the informative context and the corresponding visual content obtained by PCRM. The black solid lines and the red dotted lines 

represent the ground truth and refined action proposals by PCRM, respectively. 

Fig. 7. Qualitative results. We show qualitative detection results on THUMOS14 (top) and ActivityNet v1.3 (bottom). 
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hat our proposed method can recognize and localize the action 

nstances more accurately, benefiting from the relation reasoning. 

. Conclusion 

In this paper, we introduce a dual relation network for tempo- 

al action localization, which incorporates a proposal-proposal rela- 

ion module and a proposal-context relation module. The proposal- 

roposal relation module processes action proposals simultane- 

usly through interaction based on their appearance and geom- 

try similarities, while the proposal-context relation module can 

fficiently encode temporal inter-dependencies between proposals 

nd the global context. The two relation reasoning modules can 

ointly learn representative features by adaptively aggregating the 

roposal relation feature and context relation feature together to 

acilitate action localization. Our network is lightweight and inter- 

retable, which also verifies the effectiveness of modeling action 

elations in CNN-based detection. Extensive experimental evalua- 

ions demonstrate that our method outperforms the state-of-the- 

rt methods on the THUMOS14 and ActivityNet v1.3 datasets. Es- 

ecially, it also could be a promising solution for spatio-temporal 

ction localization, and we leave it for our future work. 
10 
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