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Temporal action localization is a challenging task for video understanding. Most previous methods pro-
cess each proposal independently and neglect the reasoning of proposal-proposal and proposal-context
relations. We argue that the supplementary information obtained by exploiting these relations can en-
hance the proposal representation and further boost the action localization. To this end, we propose
a dual relation network to model both proposal-proposal and proposal-context relations. Concretely, a
proposal-proposal relation module is leveraged to learn discriminative supplementary information from
relevant proposals, which allows the network to model their interaction based on appearance and geo-
metric similarities. Meanwhile, a proposal-context relation module is employed to mine contextual clues
by adaptively learning from the global context outside of region-based proposals. They effectively lever-
age the inherent correlation between actions and the long-term dependency with videos for high-quality
proposal refinement. As a result, the proposed framework enables the model to distinguish similar ac-
tion instances and locate temporal boundaries more precisely. Extensive experiments on the THUMOS14
dataset and ActivityNet v1.3 dataset demonstrate that the proposed method significantly outperforms re-
cent state-of-the-art methods.
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1. Introduction

Temporal Action Localization (TAL) aims to localize the tem-
poral starts and ends of some specific action categories in an
untrimmed video. It serves as a fundamental tool for several prac-
tical applications such as intelligent surveillance [1-3], video sum-
marization [4,5], and action retrieval [6-8]. Therefore, it has re-
ceived widespread attention from academia and industry in recent
years. This task is very challenging due to the complex spatio-
temporal backgrounds, ambiguous temporal boundaries, and large
variations in person appearance, camera viewpoint and action du-
ration.

Recent TAL methods [9-11] mainly adopt a two-stage pipeline
and have significantly pushed forward the state-of-the-art perfor-
mance. Temporal action proposals are first generated via top-down
anchors [9,12] or bottom-up mechanisms [10,13,14]. Then each pro-
posal is classified to an action category and regressed towards
more precise action boundaries.

Despite the recent progress, most previous methods are lim-
ited in two aspects: (1) they process each action proposal indepen-
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dently of the other proposals, and (2) context in a video is ignored
to a large extent. Here the “context” refers to the temporal region
outside an action instance. Different from action proposals, context
may not correspond to any semantic categories. We argue that re-
lation reasoning based on the interactions between proposals and
their dependency on context is critical for precise temporal action
localization.

As illustrated in Fig. 1, action proposals are usually imperfect
because they may cover much background or incomplete action
instances. Therefore, leveraging information beyond each individ-
ual action proposal is necessary to improve action localization per-
formance. Modeling the relation between relevant proposals can
provide supportive cues to discriminate action categories exhibit-
ing similar appearances or motion patterns because some action
categories co-occur more frequently than others. Processing rele-
vant proposals jointly also provides a chance to suppress redun-
dant predictions and false positives. In addition, proposal-context
relations are complementary to proposal-proposal relations. On the
one hand, the context contains scene information that is useful for
action classification but may be omitted in action proposals. For
example, frames of a swimming pool will reinforce our belief that
the action is more likely to be diving than gymnastics. On the other
hand, the context includes cues, e.g., scene switching, that can help
localize ambiguous temporal boundaries.
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Fig. 1. Illustration of our motivation. The relation between action proposals within a video provides useful clues to discriminate similar action categories and helps suppress
redundant action instances and false positives. An untrimmed video contains relevant contextual information for proposal classification or regression and irrelevant context

information that adversely affects network learning.

To address the aforementioned issues, we introduce an archi-
tecture, termed dual relation network, for TAL. It consists of two
core components, i.e., a Proposal-Proposal Relation Module (PPRM)
and a Proposal-Context Relation Module (PCRM). PPRM performs
relation reasoning based on the interactions between proposals.
Specifically, it enriches the features of each proposal by taking into
account the features of its relevant proposals throughout the whole
video. The relatedness between a pair of proposals is measured by
both their appearance and geometry similarities. PCRM performs
relation reasoning based on the dependency of each proposal on
the global context. Instead of simply extending the temporal win-
dow of each proposal, PCRM adaptively selects relevant context in-
formation from the whole video to capture both short-term and
long-term dependency relations between proposals and context.
Both modules can be easily incorporated into prior TAL methods
and trained end-to-end via standard classification and localization
losses.

Experimental results on two benchmark datasets, ie., THU-
MOS14 [15] and ActivityNet v1.3 [16], demonstrate that our
method outperforms recent state-of-the-art methods. Our quanti-
tative and qualitative ablation studies show that the proposed two
relation modules effectively contribute to suppressing false posi-
tives and improving temporal localization accuracy.

The main contributions of this paper are summarized as fol-
lows.

« We propose a dual relation network for TAL. To the best of our
knowledge, this is the first work that unifies proposal-proposal
relation reasoning and proposal-context relation reasoning to
facilitate TAL. Experimental evaluations show that the two re-
lations are complimentary and critical.

« We propose a proposal-proposal relation module (PPRM), which
can effectively perform relation reasoning among relevant pro-
posals based on their appearance and geometry similarities.

« We propose a proposal-context relation module (PCRM), which
can adaptively aggregate both short-term and long-term con-
text from the whole video to enrich the proposal features.

« Our method achieves state-of-the-art performance on THU-
MOS14 and ActivityNet v1.3 datasets.

This paper is organized as follows. In Section 2, we briefly re-
view the related work. Section 3 presents the framework of the
proposed method. The experiments are presented in Section 4. Fi-
nally, we conclude in Section 5.

2. Related work
2.1. Temporal action localization

The objective of TAL is to identify the temporal boundaries of
action instances from an untrimmed video. It is expected that TAL
results can cover ground truth action instances under certain tem-
poral intersection-over-union (tloU) thresholds with high recall as
well as high precision. Current mainstream methods [12-14] adopt
a two-stage pipeline, where a set of initial action proposals are
generated, then classified and refined to more precise temporal lo-
cations.

Current proposal generation methods can be roughly divided
into two categories, namely top-down and bottom-up methods.
Top-down methods [9,12] generate proposals with predefined an-
chors, but they lack the ability to precisely determine the tempo-
ral boundaries of proposals or generate proposals with flexible du-
ration. Bottom-up methods [13,14] generate action proposals with
frame-level probability sequences, i.e., start, actionness, and end
probability sequences, then connect start and end points to gen-
erate dense proposals. For proposal refinement, top-down methods
refine action proposals with a distance loss. Some recent bottom-
up methods [14,17,18] train a confidence map for accurate scoring.
In addition, several recent methods [11,19] incorporate the graph
convolution network (GCN) into TAL to exploit snippet-snippet or
proposal-proposal relations.

The work most related to ours is P-GCN [11]. It constructs an
action proposal graph to model the interactions between propos-
als and performs relation reasoning with a GCN. Our dual relation
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network differs from P-GCN in two aspects. First, while P-GCN es-
tablishes an edge between two proposals only if they have a high
tloU, the proposed PPRM models the relation between each pro-
posal and all other proposals in a video and considers both their
geometry (i.e., duration) and appearance similarities as well as fea-
ture channel interaction. Second, the proposed PCRM automatically
finds relevant snippets for each proposal within the entire video
and uses them as global context to update the proposal features,
which is neglected by P-GCN. The experimental results show that
our proposed method outperforms P-GCN by a large margin on
two datasets. In addition, the model size of our network is smaller
than that of P-GCN.

Other existing methods [18-20] share similar insight as us and
model context for TAL. Concretely, BSN [10] and BMN [17] use the
temporal extension operation or the 1D convolution operation to
obtain limited local context. Gao et al. [21] directly squeeze the
global temporal information through average pooling as the global
context, which ignores the long-term dependencies between ac-
tions and the context, and may introduce noise. G-TAD [19] for-
mulates video snippets as graph nodes and updates all snippets
features via a GCN to classify nodes and score predefined temporal
anchors. TCANet [20] updates each snippet of the video by incorpo-
rating its local and global temporal relationships. Then, a proposal
generator obtains the candidate proposal feature from the encoded
video feature to further predict the confidence score and regress
boundaries. Both G-TAD and TCANet share the same motivation to
integrate the rich context for each snippet by snippet-snippet rela-
tions and arrange anchors or proposals based on the encoded video
feature.

We argue that they share the following drawbacks. (1) Model-
ing all snippet-snippet relations might include redundant informa-
tion into proposals or anchors refinement. (2) Snippet-snippet rela-
tions aim to improve the temporal receptive field of each anchor or
proposal to contain more temporal information, while they ignore
the temporal dependencies between actions and the global con-
text. By contrast, the proposal-context interactions are specific to
each proposal and are more flexible to search for supportive clues
for proposals of different qualities. BSN++ [18] adopts a nested U-
shaped encoder-decoder with a larger temporal receptive field to
exploit the rich context for accurate boundary prediction. However,
directly upsampling the output of the classification networks can-
not recover the degraded temporal information caused by down-
sampling, which harms precise temporal localization. In addition,
all aforementioned methods focus on temporal action proposal
generation. They pay more attention to producing reliable confi-
dence scores or achieve accurate boundary prediction using the
context.

By contrast, our method aims to improve the representation of
imperfect action proposals by incorporating the complementary in-
formation from homogeneous relationships between proposals and
heterogeneous relations between proposals and the context, driven
by the classification task and the localization task, respectively.

2.2. Relation reasoning

Relation reasoning means effectively selecting and integrating
information based on the relations between visual entities. It has
been widely used in natural language processing [22] and com-
puter vision tasks [23,24]. Su et al. [25] propose a unified frame-
work named as PCG-TAL, which builds upon a two-granularity and
two-stream pipeline. It can leverage cross-granularity and cross-
stream complementary information obtained by message passing
between anchor-based features and frame-based features as well
as between RGB stream and flow stream to generate better ac-
tion segments. Chen et al. [26] introduce a relation attention mod-
ule to model relations among proposals for temporal action local-
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ization. Specifically, the relation attention module could capture
the relationship between proposals via a pair-wise relation func-
tion, which in spirit is similar to the self-attention mechanism.
Sun et al. [27] propose to exploit informative video segments by
learning video segment weights for temporal action localization,
where the learned weights represent the importance of video seg-
ments in recognizing actions and predicting temporal boundaries.
Huang et al. [28] introduce a location-aware graph convolutional
network (L-GCN) to model the interaction between objects for
the video question answering task. It constructs a fully-connected
graph where each node is an object and the edges between nodes
represent their relationship. Each node also encodes both spatial
and temporal object location information. Pan et al. [29] design
an Actor-Context-Actor Relation Network (ACAR-Net), which de-
duces indirect relations between multiple actors and the context
for spatio-temporal action localization.

Additionally, the self-attention mechanism, e.g, Trans-
former [22] and the non-local network [30], has been widely
used to model relations for static images or sequence data. It
models the bidirectional relations between homogeneous enti-
ties. By contrast, our context reasoning block aims to model the
unidirectional relation between heterogeneous entities, i.e., from
contextual snippets to an action proposal. Zhu et al. [31] propose
a cross-layer attention model to aggregate multi-layer features
into a single global video representation through weighting
global context at different scales for action recognition. In con-
trast, our proposal-context relation module aims to weight each
video snippet in the video using the attention mechanism to
obtain a context-aware feature for action proposal refinement.
Wu et al. [32] propose a dual attention matching module to
better model the whole event for event localization task, where
it encodes local temporal information by a global cross-check
mechanism. Multiple knowledge representation (MKR) [33] is a
new tool to exploit data relations at multiple sources. Our dual
relation network has similar spirits to MKR, where we consider
and leverage two types of desirable properties of actions, i.e.,
appearance and geometry features to facilitate the TAL task. Our
proposed method is a specific application of MKR.

3. Dual relation network

In this section, we introduce the proposed Dual Relation Net-
work (DRN), which consists of two modules, ie., a Proposal-
Proposal Relation Module (PPRM) and a Proposal-Context Rela-
tion Module (PCRM). As shown in Fig. 2, PPRM consists of two
blocks, i.e., a Proposal Reasoning Block and a Feature Reasoning
Block. They reason the relation between proposals from the tem-
poral and semantic perspectives, respectively. PPRM is designed to
obtain discriminative information from relevant proposals for ac-
tion recognition. PCRM aims to capture supplementary information
from the global context for boundary regression.

3.1. Notation and preliminaries

We follow previous action proposal generation meth-
ods [10,17] to build our model upon snippet-level features of
input videos. As illustrated in Fig. 2, our dual relation network
takes an untrimmed video as input, and outputs a category label,
a confidence score, and the temporal boundaries of each action
instance. Specifically, given an untrimmed video, we encode each
successive fixed-length frame with a pre-trained feature extrac-
tor (e.g., the I3D network [34]), and denote the output feature
sequence as X:{xt}L], where T is the number of snippets,
and x; € RP is the feature vector of the t-th snippet, with D
representing the channel dimension.
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Fig. 2. Architecture Overview. The input is a sequence of snippet-level features. We first generate dense candidate proposals based on the video feature sequence. Then
candidate proposals are fed into the Proposal-Proposal Relation Module and the Proposal-Context Relation Module respectively, and both relation modules can automatically
integrate the relation features for each proposal. Finally, the refined proposals are post-processed for action classification and localization.

For each video, ¥ = {Yn|Yn = (. (ts,n,te’n))}’,;’:1 is the set of
action proposals of interest generated by an existing proposal gen-
erator (e.g., BSN [10]), where t;, and t., denote the start and end
time of the n-th proposal, respectively. N denotes the number of
proposals. The feature vector of the n-th proposal, ie., f, € R?, is
obtained through temporal pooling across the snippet-level fea-
tures within the start and end time of the proposal.

We proceed to leverage the proposal-proposal relation module
(PPRM) and the proposal-context relation module (PCRM) to enrich
the proposal features. Finally, the enriched features of each pro-
posal are employed for action classification and temporal boundary
regression. We detail the proposed PPRM and PCRM below.

3.2. Proposal-proposal relation module

As discussed above, reasoning based on the relations among
relevant proposals not only helps distinguish action categories
with similar appearances or motion patterns, but also provides
a chance to suppress redundant action instances and false pos-
itives. The proposal-proposal relation module (PPRM) consists of
two blocks: the proposal reasoning block and the feature reasoning
block. PPRM first augments the features of each proposal by taking
into account the features of all relevant proposals across the whole
video. Then, the feature reasoning block further promotes discrim-
inative feature channels while suppressing the minor ones.

Proposal Reasoning Block. Given N proposals, we measure their
pairwise relatedness by computing an appearance similarity matrix
§% ¢ RN*N and a geometry similarity matrix S8 ¢ RN<N:

frf,
R L - 1)

(1€ 111 £
min ( ten —tsn tem — tm> @)

te,m - ts.m ’ te,n - tS,fl

4
Sn,m

where S¢ . and S5, denote the elements at the n-th row and the
m-th column of the appearance similarity matrix and the geom-
etry similarity matrix in Eq. (1) and Eq. (2), respectively. || - ||
denotes the L, norm. The appearance similarity matrix S? contains
the cosine similarity scores between each pair of proposal feature
vectors. The geometry similarity matrix S8 comprises the duration
similarity scores between proposals based on the assumption that
relevant proposals tend to be similar in terms of their temporal
scales. Then, a weighted summation of S and S% produces the fi-
nal similarity matrix S € RN*N:

S=AS"+ (1 - A1)S8, (3)

where A is a hyper-parameter controlling the relative importance
between the appearance and geometry similarities. We update the
features of the n-th proposal by integrating N proposal features. As
a result, the updated features of the n-th proposal, denoted as f5,
can be computed by

1 N
f?l = m ,.,,2::1 Sn,mWSfmv (4)

where S, is an element of S and represents the relation weight
between the n-th proposal and the m-th proposal, and W e RPxP
is the weight matrix of a linear projection layer. Note that the bias
term is omitted for simplicity.

Feature Reasoning Block. We use the proposal reasoning block to
explicitly model the subtle interactions between related proposals.
To encourage the network to focus on discriminative features, we
subsequently feed the updated proposal features to a feature rea-
soning block for high-order supportive information. In particular,
to model the interdependent relations between channels, our in-
spiration originates from Hu et al. [35]. The features of the n-th
proposal are updated as

P = Wif, + £ © 0 (Wex - ReLU(Wq£5)), (5)

where o (-) is the sigmoid activation function and © is element-
wise multiplication. Wy € RP*P, Wyq € RP*(P/1) and Wey € RP/M*D
are weights of three linear projection layers, respectively. r is a pre-
defined integer for the feature reasoning block. This block performs
feature reasoning among each relevant proposal to adaptively acti-
vate informative features. In other words, it could adaptively eval-
uate the importance of each semantic feature and assign appropri-
ate weights to it, so as to suppress the noise information within
the proposal.

Finally, a softmax-activated fully-connected layer with C+1
output channels is used to classify the feature vector of each
proposal f2°, and output the category prediction result § € R&+1,
where C+ 1 denotes the number of action categories with an ad-
ditional background category.

Discussion. PPRM takes full advantage of the desirable proper-
ties of actions, i.e., appearance, and geometry features to learn re-
lations between all relevant proposals. By contrast, P-GCN [11] only
considers proposals with high overlaps and near distance to
model their relations via a GCN. In short, PPRM builds proposal-
proposal relations from both the temporal and semantic perspec-
tives through the two blocks. Therefore, PPRM can explore and in-
tegrate supportive information for action proposal refinement as
much as possible.
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Fig. 3. Context reasoning block is responsible for reasoning the coupling relation between the proposal and global context through the interaction between proposal feature
and video feature in two streams. Finally, a context-aware feature is obtained for each proposal.

3.3. Proposal-context relation module

The untrimmed videos contain meaningful contextual infor-
mation and meaningless noise background. Several previous TAL
methods [10,14,36] classify and locate a sparse set of proposals
based on region-wise features, but they neglect any available con-
text information. The valid context should be beneficial for both
action classification and localization. Even though several existing
methods [13,36] use CNNs to capture proposal context, they still
suffer from a limited receptive field or limited short-term temporal
information. Therefore, we propose the proposal-context relation
module (PCRM) to perform reasoning based on the relations be-
tween the proposal and the global context. It can automatically re-
trieve the regions most related to the proposal, and thus can iden-
tify and integrate useful contextual information for accurate local-
ization.

As illustrated in Fig. 3, we introduce a context reasoning block
as the relation reasoning operator to model the temporal depen-
dencies between the proposal and the whole video and incorpo-
rate it into PCRM. The proposed PCRM takes as input proposal fea-
tures {fn}’rL] and a sequence of snippet features {xt}tT=1. We first
calculate the affinity between the proposal and each time step
of the video sequence in the embedding space. We then gener-
ate context-aware features through the long-range affinity and use
them to augment the original proposal feature.

For each proposal, we first calculate an attention weight a;
based on the relation between the proposal features f, and each
of the snippet-level features x;:

o exp (fT W7 Wex:)
- 25:1 exp (fIWSWch) ’

ag

(6)

where W;, W € RP*D are learnable parameters. To make the
model focus on video snippets most relevant to the proposal, the
feature of the n-th proposal is updated by linearly aggregating
snippet-level features with the attention weights:

T
fgc = wpfn + Wpe Z arWeXe, (7)
t=1

where Wpc € RP*P is a learnable parameter. Therefore, the pro-
posed PCRM adaptively captures supportive contextual information
from long-range context and filters background noise by generat-
ing snippet-level attention weights. Furthermore, PCRM can better
refine the region-wise proposal locations by embedding valid con-
textual information.

Finally, with the context-enhanced features of each proposal f£°,
we use a fully-connected (FC) layer with two-dimensional output
to predict the start time t; and end time t,, and use another FC
layer with a sigmoid activation to predict the completeness score
c of the proposal, indicating whether the proposal is complete or
not.

Discussion. The relation reasoning between proposals and the
context aims to supplement missing action evolution information
for imperfect action proposals, and it also provides indicative de-
tails for boundaries regression, e.g., shot switching. G-TAD [19] up-
dates all snippets features of the video via a GCN and uses them
to classify and regress predefined anchors. It aims to improve the
temporal receptive field of each anchor through snippet-snippet
relations and neglects the temporal dependencies between action
instances and the global context. Besides, modeling all snippet-
snippet relations might introduce redundant information for pro-
posals refinement. Our PCRM is specific to each proposal and is
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more flexible to search for supportive clues for proposals of differ-
ent qualities.

Summary. Our dual relation network aims to improve the repre-
sentation of imperfect action proposals by incorporating the com-
plementary information from homogeneous relations between pro-
posals and heterogeneous relations between proposals and the
context, driven by the classification task and the localization task,
respectively.

3.4. Network optimization

During the training process, the above two relation reasoning
modules PPRM and PCRM are jointly trained in an end-to-end
manner. The overall loss £ of the proposed dual relation network
consists of a classification loss L, a regression loss Lreg, and a
completeness 10sS Lcom:

N
L= Z Leis (Y, yn)

n=1

N ~ ~
+a Y Vg —11Lreg(bs.ns tens Esin, ten) (8)

n=1

N
+B Y Leom(cn, En),

n=1

where fs 5, fe,,, are the target start and end time for the nth pro-
posal, respectively. §, € R“1 is a one-hot target category label vec-
tor, while @ and B are weight hyper-parameters of the regres-
sion loss and the completeness loss, respectively. 1 is the indica-
tor function. ¢, € {0, 1} is the completeness label of the n-th pro-
posal. The classification loss £ employs a standard cross entropy
loss. The completeness loss Lcom employs the online hard example
mining hinge loss [37]. The regression loss Lreg employs a sum of
smooth Ly losses [38] between the target start/end time and pre-
dicted start/end time:

[:reg(ts» Le, ESa Z:e) = sLl (t57 Es) + SL1 (t€7 Ee)» (9)

where S, (-, -) denotes the smooth Ly loss.

3.5. Inference phase

Proposal Generation. We use the boundary-based method, e.g.,
BSN [10] or BMN [17], as the proposal generator to produce a
dense action proposal set.

Proposal Refinement. Each proposal obtains supplementary in-
formation by reasoning the interaction between proposals and
the temporal dependencies between proposals and videos. Subse-
quently, the regression branch predicts offsets and refines the tem-
poral locations of each action proposal. The classification branch
predicts the action category of the candidate proposal, and the
completeness branch predicts its completeness score. For each pro-
posal, we define its category label as its top-1 action category
from its corresponding classification prediction ¥, and its confi-
dence score as the product of its top-1 classification score and
completeness score.

Proposal Retrieval. Given candidate proposals with confidence
scores, we adopt Soft-NMS (soft non-maximum suppression) to
suppress redundant proposals with high overlaps in the post-
processing stage.

4. Experiments and discussions
4.1. Datasets and metrics

THUMOS14 [15] includes 413 untrimmed videos over 20 hours
from 20 action categories. It is very challenging since each video
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has more than 15 action instances, and 71% of frames are occupied
by background items. Following convention [14], we use the 200
videos in the validation set for training, and evaluate on the 213
videos in the testing set.

ActivityNet v1.3 [16] is another popular benchmark for action
localization. We evaluate our method on ActivityNet v1.3. It con-
tains 19,994 untrimmed videos from 200 action categories, which
are divided into training, validation, and testing sets by a ratio of
2:1: 1. Following the common practice [14,39], we use the train-
ing set for training and the validation set for evaluation. We com-
pare our method with state-of-the-art methods on the THUMOS14
and ActivityNet v1.3 datasets, and we conduct ablation studies on
the THUMOS14 dataset.

Evaluation Metrics. To evaluate the proposed method, we
use mean average precision (mAP) under different temporal
intersection-over-union (tloU) thresholds. We take the official eval-
uation code provided by ActivityNet to evaluate the performance of
TAL on the two datasets. Specially, the tloU thresholds are chosen
from [0.1:0.1:0.7] and {0.5,0.75,0.95} for THUMOS14 and Ac-
tivityNet v1.3, respectively. On THUMOS14, we also report average
mAP at tloU thresholds from 0.1 to 0.5 and from 0.3 to 0.7, with
a step size of 0.1. On ActivityNet v1.3, we report average mAP over
10 different tloU thresholds [0.5 : 0.05 : 0.95].

4.2. Implementation details

For the feature extractor, we adopt the 13D network [34] pre-
trained on Kinetics [40] to extract RGB features and optical flow
features from 16 consecutive frames, respectively. The features are
extracted from the global average pooling layer as 1024 dimen-
sional vectors. We use BSN [10] as the proposal generator on THU-
MOS14. For ActivityNet v1.3, we adopt BSN [10] and BMN [17].
Note that for a fair comparison with previous works, we do not
fine-tune the feature extraction backbone or the proposal gener-
ator. Particularly, we combine our proposals by BMN [17] with
video-level classification results from [41] on ActivityNet v1.3, as
in [20]. For each proposal, we obtain its feature through tempo-
ral Rol pooling [38] across the snippet-level features within the
start and end time of the proposal and map it to the same chan-
nels as the video feature. As for the video features, we use lin-
ear interpolation to obtain global context features of 100 snip-
pets for THUMOS14 and ActivityNet v1.3. For boundary regres-
sion, we predict the offset of the center coordinate and the du-
ration of each proposal instead of directly predicting its start and
end time.

During the training stage, we set the mini-batch size to 32 on
the THUMOS14 dataset and 64 on the ActivityNet v1.3 dataset. For
PPRM, we select 10 proposals with high similarity both in appear-
ance and geometry to reduce computation. We train the model for
60 epochs with the SGD optimizer, set the initial learning rate to
0.01, and reduce it by a factor of 10 for every 15 epochs. All hyper-
parameters are determined by empirical grid search, ie., A = 0.5,
r=2,a =1, and B = 0.5. For post-processing, Soft-NMS with tloU
thresholds of 0.2 and 0.4 are used to remove duplicate proposals in
experiments on THUMOS14 and ActivityNet v1.3, respectively. We
combine the predicted results of RGB and Flow streams by a ra-
tio of 5:6 to generate the final predictions, where the Soft-NMS
threshold is set to 0.3.

4.3. Comparison with state-of-the-art methods

ActivityNet v1.3. We compare our method with 13 state-of-
the-art methods and their variants, and report the mAP at differ-
ent tloU thresholds as well as the average mAP at tloU thresholds
0.5:0.05:0.95 in Table 1. For fair comparison, we report the ex-
perimental results with different backbones, 13D [34] and TSN [45],
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Table 1
Temporal action localization results on ActivityNet v1.3. The “Avg” column denotes
the average mAP at tloU thresholds from 0.5 to 0.95, with a step size of 0.05.

mAP@tloU (%) Avg (%)
Method Year Backbone ——————————

0.5 0.75 0.95 0.5:0.05:0.95
BSN [10] 2018 TSN 46.45 2996 8.02 30.03
BMN [17] 2019 TSN 50.07 3478 8.29 33.85
G-TAD [19] 2020 TSN 50.36 34.60 9.02 34.09
BSN+ [18] 2021 TSN 51.27 3570 833 34.88
Ours [BSN] - TSN 51.75 3597 7.05 34.50
Ours [BMN] - TSN 5348 3721 754 3542
TAL [36] 2018 13D 3823 1830 130 20.22
P-GCN [11] 2019 13D 4290 28.14 247 2699
BU-MR [14] 2020 13D 43.47 33.91 9.21 30.12
TCANet [20] 2021 13D 5191 3492 746 3443
AFSD [42] 2021 13D 5240 3530 650 34.40

2021 13D 56.01 35.19 355 34.23

ContextLoc [43]
VSGN [44] 2021 13D 52.38 36.01 837 35.07
Ours [BSN] - 13D 52.84 36.10 632 3592
Ours [BMN] - 13D 56.10 3992 695 37.83

respectively. Particularly, our method achieves the highest average
mAP result (as shown in the “Avg” column) compared with pre-
vious methods. Although this dataset is huge and complex, our
proposed method further improves the mAP at tloU of 0.75 from
39.13% (TCANet [20]) to 39.92%, and the average mAP from 37.56%
to 37.83%. These results clearly indicate the efficacy of the relation
reasoning capability of our method in complex scenarios.

Notably, compared to P-GCN [11] and ContextLoc [43], which
also belong to the proposal refinement-based method, our method
significantly outperforms them by a large margin on average mAP,
where we adopt the same proposals generated by BSN [10].

THUMOS14. We report the performances of our method with
different backbones and other 16 state-of-the-art methods in
Table 2, where the tloU thresholds are set from 0.1 to 0.7. Clearly,
our proposed method achieves significant improvements against
all other state-of-the-art methods. At tloU thresholds from 0.1 to
0.5, the mAP scores of our method are clearly higher than that
of the previous best method P-GCN [11]. In addition, we compare
the average mAP at tloU from 0.1 to 0.5 and the average mAP
at tloU from 0.3 to 0.7 with previous state-of-the-art methods.
Our method reaches 67.26% and 53.80% respectively, which outper-
forms the previous best performance (P-GCN [11], AFSD [42]). This
demonstrates that our proposed dual relation network has signifi-
cant advantages.

Model size. The number of parameters of our full network, in-
cluding PPRM and PCRM, is 4.2M. P-GCN [11], our main competi-
tor, consists of 4.6M parameters. Thus, our superior performance is
not caused by additional learnable parameters.

4.4. Ablation studies

To investigate the contribution of each component in our pro-
posed method, we conduct comprehensive ablation studies by
comparing it with its variants with certain components changed
or removed.

Effectiveness of reasoning modules. To verify the effectiveness
of our proposed PPRM and PCRM, we present the experimen-
tal results of different combinations of the relation modules
on the THUMOS14 dataset in Table 3 and the ActivityNet v1.3
dataset in Table 4. The baseline network is constructed by re-
moving both PPRM and PCRM. By default, we adopt BSN as
the proposal generator. Compared with the baseline, the com-
bination of PPRM and PCRM significantly improves the mAP at
all tloU thresholds from 0.1 to 0.7 on THUMOS14. For Activi-
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tyNet v1.3, PPRM and PCRM achieve significant performance im-
provements. Adequate experiments reveal that the relation fea-
tures obtained by the two reasoning modules can indeed im-
prove the performance. Conecretely, compared with PCRM, PPRM
has a clearer contribution to the mAP at tloU from 0.5 to 0.7
on THUMOS14, while PCRM improves the mAP at tloU from 0.1
to 0.3 more significantly than PPRM. This phenomenon demon-
strates that the two reasoning modules complement the proposal
features.

Impact of the reasoning blocks in PPRM. Our proposed PPRM
consists of two building blocks, namely the proposal reasoning
block and the feature reasoning block. They reason the relation
features between proposals from the temporal and semantic per-
spectives, respectively. We conduct ablation studies to quantita-
tively measure their impacts. As shown in Table 5, either individ-
ual block improves the mAP at all thresholds, and their combi-
nation further boosts the performance. This indicates that these
two blocks are complementary, and both are important to our
PPRM.

Effects of different proposal generators. We present the TAL re-
sults on THUMOS14 by combing our proposed dual relation net-
work with different proposal generation methods in Table 6. The
results show that our method significantly improves the perfor-
mance combined with different state-of-the-art proposal genera-
tion methods. Therefore, our proposed dual relation network is
flexible and versatile, which can adapt to different TAL frameworks.

Precision-Recall on THUMOS14. We draw the per-category
Precision-Recall (PR) curves obtained by different variants of our
proposed method in Fig. 4, where we denote the overall frame-
work dual relation network as DRN. Clearly, the red categories-wise
PR curve indicates that our method can improve precision and re-
call for most categories (i.e., higher in the y-axis), and thus a larger
area is enclosed by the PR curve, x and y axis (i.e., Average Preci-
sion, AP).

Moreover, compared with the baseline, PPRM and PCRM have
their respective advantages in different action categories, and have
their own contributions to the overall framework performance.
Specifically, for actions that are not obvious in appearance (e.g.,
Diving and Cricket Bowling), PPRM improves the representation
of each proposal by reasoning the subtle relation between the
proposals, and enhances the discrimination of proposals. For ac-
tions that rely on contextual information (e.g., Golf Swing and Pole
Vault), PCRM enriches the feature of each proposal by reasoning
the interaction between the region-wise proposal and the long-
range context, and achieves more precise localization. In general,
our proposed dual relation network can achieve the best perfor-
mance in most scenarios.

Duration similarity or IoU similarity. We use the duration similar-
ity between action proposals instead of their loU as the geometry
similarity. Unlike objects in an image, whose sizes depend on their
distances to the camera, action instances of the same category in
natural videos tend to have similar durations, e.g., Basketball Dunk
and Cliff Diving. Thus, we use the duration to measure the pro-
posal’s geometric similarity across the entire video. By contrast,
IoU only considers overlapping proposals. We conduct an ablation
experiment to compare the effects of the two geometric similar-
ities on THUMOS14. Table 7 indicates that duration outperforms
IoU.

Analysis of performance improvements. In order to further ex-
plore sources of performance improvements, we conduct addi-
tional experiments in terms of AR@AN for evaluating the action
boundary. As illustrated in Table 8, it can be observed that our
method can improve the average recall of action boundaries com-
pared with other state-of-the-art methods. It indicates that the
performance improvement comes from more accurate boundary
prediction.
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Table 2
Temporal action localization results on THUMOS14. The two “Avg” columns denote the average mAP at tloU thresholds from 0.1
to 0.5 and at tloU thresholds from 0.3 to 0.7, with a step size of 0.1.
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mAP@tloU (%) Avg (%) Avg (%)
Method Year Backbone
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.1:0.5  0.3:0.1:0.7
BSN [10] 2018 TSN - - 535 450 369 284 200 - 36.76
MGG [13] 2019 TSN - - 539 468 374 295 213 - 37.78
BMN [17] 2019 TSN - - 56.0 474 388 29.7 20.5 - 38.48
G-TAD [19] 2020 TSN - - 545 476 402 30.8 234 - 39.30
ActionDBG [39] 2020 TSN - - 57.8 494 398 30.2 217 - 39.78
BSN+ [18] 2021 TSN - - 599 495 413 319 228 - 41.08
Ours - TSN 698 64.0 619 522 442 335 240 5842 43.16
TAL [36] 2018 13D 59.8 57.1 53.2 485 42.8 338 20.8 52.28 39.82
P-GCN [11] 2019 13D 69.5 67.8 63.6 578 49.1 - - 61.56 -
BU-MR [14] 2020 13D - - 53.9 50.7 454 380 28.5 - 43.30
TCANet [20] 2021 13D - - 60.6 532 446 368 26.7 - 44.38
AFSD [42] 2021 13D - - 67.3 624 555 437 311 - 52.00
ContextLoc [43] 2021 13D - - 68.3 63.8 543 418 26.2 - 50.88
VSGN [44] 2021 13D - - 66.7 604 524 410 304 50.18
Ours - 13D 73.0 719 692 647 575 469 308 67.26 53.80
100 51 BaseballPitch 100 Dunk 100 Billiards 10 CleanAndJerk
50 50?\W 50 50}%2%
0 0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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100 100 100 100
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0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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~— 100 100 100 100
g
g 50 50 % 50 50 B
'§ 0 %:‘\. 0 o 0
=W 0 20 40 60 80 100 80 100 0 20 40 60 80 100 0 20 40 60 80 100
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Fig. 4. Per category Precision-Recall (PR) curves on the THUMOS14 testing set. The PR curve is plotted at tloU threshold 0.7. The area enclosed by the PR curve is Average
Precision (AP) of each category. DRN is short for the dual relation network.

Table 3

Ablation study of the proposal-proposal relation module (PPRM) and the proposal-
context relation module (PCRM) on THUMOS14.

mAP@tloU (%) Avg (%)
PPRM PCRM
0.1 0.2 03 0.4 0.5 0.6 0.7 0.1:0.1:0.7
69.7 692 65.7 609 532 415 280 555
v 708 699 664 620 558 438 299 569
v 722 71.0 67.1 617 549 421 285 56.8
v v 73.0 719 69.2 647 575 469 308 59.1

4.5. Visualization

Visualization of the Proposal-Proposal Relation. Our PPRM builds
proposal-proposal relations from both the temporal and seman-
tic perspectives through two blocks, a proposal relation reasoning

Table 4

Ablation study of the proposal-proposal relation module
(PPRM) and the proposal-context relation module (PCRM) on
ActivityNet v1.3.

mAP@tloU (%) Avg (%)
PPRM  PCRM
0.5 0.75 095  0.5:0.05:0.95
49.30 34.65 491 33.71
v 50.15 3572 583 3490
v 51.06 3526 514 34.12
v v 52.84 36.10 632 35.92

block (PRB) and a feature reasoning block (FRB). PRB first augments
the features of each proposal by taking into account features of all
relevant proposals across the whole video. Then, FRB further pro-
motes discriminative feature channels while suppressing the minor
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Fig. 5. Visualization of the Proposal-Proposal Relation. PPRM aims to capture discriminative supplementary information from relevant proposals for action recognition

through the proposal reasoning block and the feature reasoning block..

Table 5
Ablation study of the proposal reasoning block (PRB) and the feature reasoning
block (FRB) on THUMOS14.

mAP@tloU (%) Avg (%)

PRB FRB

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1:0.1:0.7

722 710 67.1 61.7 549 421 28.5 56.8

v 727 716 687 640 570 454 30.1 58.5
v 726 719 682 623 557 430 298 576

v v 730 719 692 647 575 469 308 59.1

Table 6
Comparison of different proposal generators on THUMOS14 .
mAP@tloU (%) Avg (%)
Model
0.3 0.4 0.5 0.6 0.7 0.3:0.1:0.7
w/ BSN [10] 69.2 647 575 469 308 538
w/ ContextLoc [43] 703 659 582 46,5 294 54.1
w/ VSGN [44] 69.5 662 574 482 325 548
Table 7

Comparison of different geometric similarities on THUMOS14.

mAP@tloU (%)

Method
0.1 0.2 0.3 0.4 0.5 0.6 0.7

IoU 721 709 678 629 554 434 297
Duration 730 719 692 64.7 575 469 308

Table 8
Comparison results on THUMOS14 in terms of
AR@AN.
AR@AN
Method
@50 @100 @200
BSN [10] 3746  46.06  53.23
BMN [17] 3936 47.72 5484
MGG [13] 39.93 4775  54.65
ContextLoc [43]  41.20 49.82  57.46
VSGN [44] 40.58 4923  56.10
Ours 42.60 5026 56.74

ones. In order to more intuitively show how they work, we con-
duct some visualization examples of PRB and FRB through class
activation maps (CAM), as shown in Fig. 5. Concretely, PRB mod-
els proposal-proposal relation based on their similarity scores cal-
culated by appearance similarity and geometric similarity. We can
observe that the relevant proposals often belong to the same cate-
gory of actions. Thereafter, modeling these relevant proposals with
high similarity scores can effectively explore supportive informa-
tion of an action instance, e.g., jump of “Diving” and run-up of
“Javelin Throw”. FRB further activates discriminative feature chan-
nels and integrates these useful information to help temporal ac-
tion localization. It can be observed by the heatmaps that our PRB

Table 9
Ablation study of the hyper-parameter K on
THUMOS14.

mAP@tloU (%)

0.3 0.4 0.5 0.6 0.7

1 679  62.1 554 43.0 295
5 687 635 569 452 300
10 692 647 575 469 308
15 696 645 572 466 304

and FRB can capture discriminative semantic features for proposal
refinement.

Visualization of the Proposal-Context Relation. To intuitively un-
derstand the contribution of PCRM to action localization, we visu-
alize dependencies between action proposals (red) and the global
context (blue) on THUMOS14, as shown in Fig. 6. We partition
the quality of action proposals by their extent of overlapping with
the actual action. Specially, high-quality proposals (left) have a
high IoU with action instances and have sufficient information for
boundaries regression without additional supplementary informa-
tion. Medium-quality proposals (e.g., they cover only the contin-
uation and end of actions. (middle)) can leverage their neighbor-
hood context to supplement the missing information for boundary
refinement. Low-quality proposals (right), which are frequent and
unavoidable, can only glimpse a small part of the action evolution
because the missing content is not discriminative. Therefore, they
can flexibly capture other action evolution feature from the global
context to supplement boundary details and further achieve accu-
rate location.

Analysis of the computation of PPRM. The relevant proposals with
high similarity could provide supportive cues to reduce the uncer-
tainty of actions from imperfect predictions. However, it is redun-
dant to consider all relevant proposals in PPRM, since they are of-
ten overlapped temporally. As a result, we take K relevant propos-
als with high similarity both in appearance and geometry for PPRM
in the experiment. We evaluate the impact of different numbers of
relevant proposals on the performance in Table 9. It can be ob-
served that a small number of action proposals are sufficient to
effectively model the relationship between the relevant proposals
while reducing the computational burden. Moreover, we also cal-
culate the computation time of the two similarity matrixes S¢ and
S8 in each iterative process as 0.00157s and 0.00036s, respectively.
Therefore, these two similarity matrices do not cost a lot of com-
putation.

Qualitative results. To further demonstrate the effectiveness of
our method, we present some example TAL results on both THU-
MOS14 and ActivityNet v1.3 datasets in Fig. 7. For ease of compari-
son, the ground truth and the results obtained by our method with
and without the two reasoning modules are all presented. These
results clearly show that the refined temporal boundaries produced
by our full method better correspond to the ground truth, and the
confidence is more reliable than the baseline model. It manifests
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Fig. 6. Visualization of the Proposal-Context Relation. The horizontal axis of the histogram represents the snippet index within a video sequence, and the vertical axis
represents the response value of each video snippet. The red solid lines represent temporal locations of action proposals to be updated and their corresponding visual
content. The blue solid lines represent the informative context and the corresponding visual content obtained by PCRM. The black solid lines and the red dotted lines

represent the ground truth and refined action proposals by PCRM, respectively.

Ground Truth

Baseline 1.1s  Score: 0.78 10.5s 20.2s

Ours 0.6s  Score:0.85  9.0s 22.1s
Ground Truth

Baseline 1.0s Score: 0.36

Ours 2.5s Score: 0.50 9.0s

Score: 0.69
Score: 0.75  27.0s

27.6s 31.5s Score: 0.57 35.6s

31.7s Score: 0.84 30.0s

17.4s

18.6s Score: 0.54 34.0s

21.0s Score: 0.65 32.2s

Fig. 7. Qualitative results. We show qualitative detection results on THUMOS14 (top) and ActivityNet v1.3 (bottom).

that our proposed method can recognize and localize the action
instances more accurately, benefiting from the relation reasoning.

5. Conclusion

In this paper, we introduce a dual relation network for tempo-
ral action localization, which incorporates a proposal-proposal rela-
tion module and a proposal-context relation module. The proposal-
proposal relation module processes action proposals simultane-
ously through interaction based on their appearance and geom-
etry similarities, while the proposal-context relation module can
efficiently encode temporal inter-dependencies between proposals
and the global context. The two relation reasoning modules can
jointly learn representative features by adaptively aggregating the
proposal relation feature and context relation feature together to
facilitate action localization. Our network is lightweight and inter-
pretable, which also verifies the effectiveness of modeling action
relations in CNN-based detection. Extensive experimental evalua-
tions demonstrate that our method outperforms the state-of-the-
art methods on the THUMOS14 and ActivityNet v1.3 datasets. Es-
pecially, it also could be a promising solution for spatio-temporal
action localization, and we leave it for our future work.
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