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a b s t r a c t 

Video anomaly detection is a promising yet challenging task, where only normal events are observed in 

the training phase. Without any explicit classification boundary between normal and abnormal events, 

anomaly detection can be turned into an outlier detection problem by regarding any event that does not 

conform to the normal patterns as an anomaly. Most of the existing works mainly focus on improving 

the representation of normal events, while ignore the relationship between normal and abnormal events. 

Besides, the lack of restrictions on classification boundaries also leads to performance degradation. To ad- 

dress the above problems, we design a novel autoencoder-based Memory-Augmented Appearance-Motion 

Network (MAAM-Net), which consists of a novel end-to-end network to learn appearance and motion fea- 

ture of a given input frame, a fused memory module to build a bridge for normal and abnormal events, 

a well-designed margin-based latent loss to relieve the computation costs, and a pointed Patch-based 

Stride Convolutional Detection (PSCD) algorithm to eliminate the degradation phenomenon. Specifically, 

the memory module is embedded between the encoder and decoder, which serves as a sparse dictionary 

of normal patterns, therefore it can be further employed to reintegrate abnormal events during inference. 

To further distort the reintegration quality of abnormal events, the margin-based latent loss is leveraged 

to enforce the memory module to select a sparse set of critical memory items. Last but not least, the 

simple yet effective detection method focuses on patches rather than the overall frame responses, which 

can benefit from the distortion of abnormal events. Extensive experiments and ablation studies on three 

anomaly detection benchmarks, i.e., UCSD Ped2, CUHK Avenue, and ShanghaiTech, demonstrate the ef- 

fectiveness and efficiency of our proposed MAAM-Net. Notably, we achieve superior AUC performances 

on UCSD Ped2 (0.977), CHUK Avenue (0.909), and ShanghaiTech (0.713). The code is publicly available at 

https://github.com/Owen- Tian/MAAM- Net . 

© 2023 Published by Elsevier Ltd. 
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. Introduction 

Video anomaly detection aims to identify abnormal events that 

o not conform to normal event patterns [1–3] . It exhibits signifi- 

ant importance and necessity when applied in video surveillance 

4,5] , and thus has received widespread attention from the com- 

unity in recent years. 

Since abnormal events rarely occur in real-life scenarios and 

lso manual labeling is labor-intensive and time-consuming, it is 

xtremely difficult to collect enough training samples of abnormal 

vents. Therefore, it is intractable for conventional classification 

ethods to handle the anomaly detection problem due to severely 
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mbalanced samples. Naturally, it necessitates the model to be able 

o identify anomalies solely based on normal events as supervision. 

xisting works [6,7] address this problem mainly by training a net- 

ork that can leverage normal events to portrait the feature distri- 

ution of normal events. During the inference phase, the distance 

etween the unknown inputs and the learned distribution becomes 

he key criterion to identify anomalies. According to the number 

f input frames, these works can be divided into two categories: 

) reconstruction-based methods [8,9] take a single frame as in- 

ut and output the corresponding reconstruction result, and the 

econstruction error is used to identify anomalies; 2) prediction- 

ased methods [10,11] take multiple previous frames to predict the 

ubsequent frame or directly predict the optical flow from a sin- 

le frame, where the prediction error, i.e., the difference between 

he prediction and the ground-truth, is exploited to compute the 

nomaly score. 

https://doi.org/10.1016/j.patcog.2023.109335
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2023.109335&domain=pdf
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mailto:lewang@xjtu.edu.cn
mailto:tianjunwen@stu.xjtu.edu.cn
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mailto:shyern@stu.xjtu.edu.cn
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Fig. 1. Visualization of some detection results. The four columns are the original input, normalized appearance reconstruction difference, flow prediction difference and 

fusion difference, respectively. The difference is normalized to [0,1]. Abnormal events are enclosed by red box and false alarms are enclosed by green box. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The majority of current methods [12,13] adopt the autoencoder 

ramework [9] to reconstruct or predict frames from the training 

amples. During inference, abnormal events are expected to incur 

 much larger error than normal events. However, this assumption 

oes not always hold in practice. The absence of constraints on the 

elationship between normal and abnormal events will inevitably 

ead to missing detections. What’s worse, the lack of boundary re- 

triction makes the model prone to misclassify hard positive sam- 

les from the true negatives, e.g., distinguish a skateboarder from 

 quick walker. These ambiguities severely degrade the anomaly 

etection accuracy. 

This paper presents a novel hybrid network, Memory- 

ugmented Appearance-Motion Network (MAAM-Net), which si- 

ultaneously utilizes frame reconstruction and flow prediction to 

ackle the aforementioned challenges. For the relationship between 

ormal and abnormal events, the memory module in the pro- 

osed MAAM-Net uses the normal events to reintegrate unknown 

vents. Since abnormal events usually exhibit anomalous shapes 

nd speeds, it is difficult to be integrated with normal events. Thus 

he memory module can act as a destroyer for abnormal events 

nd a re-integrator for normal events in the feature space. 

For the challenge of lacking boundary restriction, we further in- 

roduce a new margin-based latent loss, where we set a margin 

etween the differences of the encoded feature and its reintegra- 

ion. The latent loss forces the memory module to choose the min- 

mal yet crucial items for the reintegration. Thus, the computation 

osts brought by the dissimilar items decrease significantly. Mean- 

hile, the abnormal events are much more difficult to reintegrate 

ith fewer items, incurring a much larger reconstruction error. 

What’s more, since the abnormal events usually appear in local 

egions, we argue that the previous frame-level detection methods 

ay miss an abnormal event occurring within a small image re- 

ion. As illustrated in Fig. 1 , we can see that the abnormal region

enclosed by the red box) is much smaller than the entire frame. 

hus, we propose a patch-based detection method that uses the 

aximal local generative error from the fusion of the appearance 

nd motion branches as the anomaly score of a given frame. 

Our MAAM-Net is composed of an encoder, a memory module, 

n appearance decoder and a motion decoder, where the memory 

odule is embedded between the encoder and each of the de- 

oders as a sparse dictionary to store the diverse patterns of nor- 

al events. Given a video frame, the frame features are extracted 

y the encoder. Then, we reintegrate the encoded features by fus- 

ng them with the similarity weighted items of the memory mod- 

s

2 
le. Finally, the reintegrated feature will be fed into the appearance 

nd motion decoders to reconstruct the input frame and predict 

he corresponding optical flow. In the testing phase, the proposed 

atch-based detection method can jointly generate an appearance 

rror map and a motion error map, which are then fused to gener- 

te the final anomaly score. As shown in Fig. 1 , the fusion results

f appearance and motion branches can highlight the abnormal re- 

ion (in the first row) and eliminate the possible false detection of 

 single branch (in the second row). 

We conduct extensive experiments and ablation studies on 

hree benchmarks: i.e., UCSD Ped2, CUHK Avenue, and Shang- 

aiTech datasets. The state-of-the-art results demonstrate the ef- 

ectiveness and efficiency of our method. To the best of our knowl- 

dge, this is the first work that combines the appearance-motion 

utoencoder with a memory module for video anomaly detection. 

n summary, the main contributions of this paper can be high- 

ighted as follows: 

• A memory-augmented appearance-motion network (MAAM- 

Net) is proposed for video anomaly detection. 
• A margin-based latent loss is introduced to improve the spar- 

sity and generalization of normal patterns in the memory mod- 

ule, ensuring the high contrast between normal and abnormal 

events while reducing the computational cost. 
• A patch-based detection method is proposed to highlight the 

local response of abnormal events and suppress the response 

of normal events. 
• Extensive experimental results compared with competing 

methods and ablative studies validate the efficacy of our pro- 

posed method. 

The rest of this paper is organized as follows. Section 2 re- 

iews related works in anomaly detection and memory network. In 

ection 3 , we present the MAAM-Net in detail, including the prob- 

em formulation, the network architecture, the loss functions, and 

he patch-based detection method. The experimental results and 

iscussions are presented in Section 4 . Section 5 draws the conclu- 

ion. Section 6 presents the limitation of our method and future 

ork. 

. Related work 

.1. Anomaly detection 

Most previous works [12,14] define anomaly detection as an un- 

upervised problem since data of abnormal events are unavailable 
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n the training stage. They mainly adopt generative methods to de- 

ect anomalies by fully learning the regularities of normal events. 

lenty of works take advantage of the generative adversarial net- 

ork (GAN) [9] framework and use an auxiliary discriminator to 

lay the role of the novelty detector [6,8,9,11,12,14–16] . Doshi et al. 

15] propose an online method in surveillance videos with asymp- 

otic bounds on the false alarm rate. Sabokrou et al. [9] take ad- 

antage of the denoising-GAN by using the noisy input frames. Ab- 

ormalGAN [12] reverses the generative target by using the mo- 

ion feature to reconstruct the appearance feature and vice versa. 

ANomaly [14] uses an extra CNN to encode the reconstructed 

rame to correct the reconstruction. Furthermore, Perera et al. 

8] use two extra discriminators, i.e., a visual discriminator and 

 latent discriminator, to supervise the reconstruction. Chen et al. 

16] introduce a noise-modulated adversarial learning method. Ac- 

intoae et al. [17] merge a self-supervised multi-task model with 

ycleGAN to tackle this problem. However, the auxiliary discrim- 

nator brings instability and additional computation costs to the 

raining stage. In addition, Liu et al. [11] propose a future frame 

rediction framework which uses multiple previous frames to pre- 

ict the subsequent single one. Nguyen et al. [6] simplify the pre- 

ious work and integrate the model into a united framework. They 

ry to stabilize the GAN training process by adding more supervi- 

ion. Motivated by Liu et al. [11] and Nguyen et al. [6] , we also

egard the motion feature as an important component. 

Moreover, as a few works [1,2,7,10,18,19] notice that a single fea- 

ure distribution is insufficient to describe the patterns of various 

ormal events, they argue that the model needs to better portrait 

he diversity of normal events. Abati et al. [18] use the normal 

vents to train an autoregressive density estimation network. They 

eed multiple frames as the input to train the network. Object- 

entric autoencoder [7] directly uses the one-versus-rest strategy 

o classify normal events in feature space, the key difference is that 

he input is not the whole frame, but the object extracted from the 

rame in advance. Luo et al. [1] introduce the sparse coding and 

mbed it into sRNN [20] to learn a dictionary for normal events. Yu 

t al. [21] propose a localization based reconstruction model with 

 self-paced refinement scheme to detect anomalies, and Wang 

t al. [22] design a pretext task, i.e., solving spatio-temporal jig- 

aw puzzles, while they both need to extract a large number of 

bjects of interest in advance. What’s more, MemAE [2] introduces 

 memory module to store the sparse features of normal events 

nd use them to reintegrate the anomalies, which needs 3D con- 

olution layers. Park et al. [10] significantly decrease the capacity 

f the memory module, but they require to manually update the 

arameters of the memory module. Moreover, Cai et al. [19] pro- 

ose an appearance-motion memory consistent network to model 

he consistency between the appearance and motion of regular 

ideos, and Liu et al. [23] design the network of multi-level mem- 

ry modules in an autoencoder with skip connections to memorize 

ormal patterns for optical flow reconstruction, while they both 

equire a sequence of frames as the input. The difference in the 

eature space thus becomes an additional criteria to improve the 

erformance. 

However, the main weakness of the above methods is the im- 

alance between inference speed and accuracy. The work most 

elated to ours is MemAE [2] , which stores the normal patterns 

hrough a memory module. It employs 3D convolutional layers to 

nd the internal correlation of temporal sequence, while we simply 

se the optical flow features to describe the motion information 

ith 2D convolutional operation. Moreover, MemAE [2] does not 

pply restrictions on the latent features, leading to large amount 

arameters and poor generalization ability, instead we introduce 

 margin-based latent loss to force the memory module to select 

inimal yet crucial items for reintegration, and thus can improve 

he generalization. Owing to the aforementioned two distinctions, 
3 
e achieve higher performance with a faster inference speed than 

emAE [2] . 

.2. Memory module 

Memory network is initially introduced by Weston et al. [24] . 

t avoids the weakness of LSTM [25] that cannot remember long- 

erm features. However, when the number of training samples 

rows significantly, we need to maintain a much bigger memory 

hich will limit the inference speed, and we argue that the mem- 

ry module will become a simple storage module if the update 

rocess involves human operation. As for the anomaly detection 

orks where the memory is introduced, Luo [13] and Park et al. 

10] use a manual update for the memory module, and they use 

arefully selected hyper-parameters to train the network. Inspired 

y MemAE [2] , we apply the memory module to our model and 

urther introduce a new margin-based latent loss to restrict the 

eature reintegration in the feature space. 

. Proposed method 

In this section, we formulate the anomaly detection task and 

escribe the proposed MAAM-Net in detail. As presented in Fig. 2 , 

he proposed MAAM-Net consists of four major components, i.e., 

n encoder, an augmented memory module, an appearance de- 

oder, and a motion decoder. Given an original video frame I , the 

ncoder first extracts its feature z . The memory module reinte- 

rates a feature vector ˆ z by retrieving the most relevant items in 

he memory M . Then, the reintegrated feature vector ˆ z is passed 

o the appearance decoder and the motion decoder for video frame 

econstruction and optical flow prediction, respectively. The final 

utputs are the reconstructed frame ˆ I and the corresponding pre- 

icted optical flow 

ˆ F . During training, the encoder and two de- 

oders are jointly optimized to minimize the generative errors be- 

ween the input and each of the corresponding outputs. During in- 

erence, the patch-level weighted summation errors of L 2 distance- 

ased appearance similarity and L 1 distance-based motion similar- 

ty are fused to detect anomalies. 

.1. Problem formulation 

Anomaly detection is generally regarded as an unsupervised 

earning task, as it is solely based on learning normal samples dur- 

ng training. In this paper, we tackle this problem in a generative 

ay. Specifically, for each given input frame I , our objective is to 

enerate a reconstructed frame ̂  I and predict its optical flow 

ˆ F with 

he next frame. During inference, we aim to generate a frame-level 

nomaly prediction y ∈ { 0 , 1 } for each testing frame, where 0 indi-

ates normal event and 1 denotes abnormal event. This is accom- 

lished by assigning an anomaly score for each testing frame, and 

hen classifying each of the testing samples by thresholding the 

nomaly score with a threshold τ . Here, we use the difference be- 

ween the input frame I and the reconstructed frame ˆ I together 

ith the difference between the original optical flow F and the 

redicted optical flow 

ˆ F to determine the anomaly score of a test- 

ng frame. Meanwhile, the spatial location of the abnormal events 

an be localized in the frame using the pixel-wise error responses. 

.2. Memory-augmented appearance-motion network 

.2.1. Encoder and decoders 

The encoder contains five sub-blocks, and the detailed architec- 

ure is given in Table 1 . Each sub-block consists of three layers: a 

onvolutional layer, a batch normalization layer [26] , and a ReLU 

ctivation [27] . After the encoding procedure f e (·) , we obtain an 

ncoded feature vector z = f e (I ) . 
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Fig. 2. Overview of our proposed MAAM-Net. It consists of fours components: an encoder, a memory module, an appearance decoder, and a motion decoder. The encoder 

extracts the subspace latent feature z from the input frame I . The memory module M stores the sparse features of normal events and uses them to reintegrate ̂  z , according 

to the similarity with z . Finally, by decoding the reintergrated ̂  z , the appearance decoder outputs the reconstructed frames ̂  I and the motion decoder outputs an optical flow 

ˆ F predicting the motion between I t and I t+1 . 

Table 1 

The detailed network structure. It consists of four components, in- 

cluding an encoder, a memory module, an appearance decoder, and 

a motion decoder. N represents the memory capacity. 

Stage Type Filters Stride 

Encoder Conv. 3 × 3 × 64 1 

BN + ReLU 

Conv. 3 × 3 × 128 2 

BN + ReLU 

Conv. 3 × 3 × 256 2 

BN + ReLU 

Conv. 3 × 3 × 512 2 

BN + ReLU 

Conv. 3 × 3 × 512 2 

BN + ReLU 

Memory Initialize, Train and Test [ N,512] 

App./Mot. 

Decoder 

Deconv. 3 × 3 × 256 2 

BN + Dropout(0.3) + ReLU 

Deconv. 3 × 3 × 256 2 

BN + Dropout(0.3) + ReLU 

Deconv. 3 × 3 × 128 2 

BN + Dropout(0.3) + ReLU 

Deconv. 3 × 3 × 64 2 

BN + Dropout(0.3) + ReLU 

Conv. 3 × 3 × (3/2) 1 
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The appearance and motion decoders both contain a set of sub- 

locks with an additional output convolutional layer, as presented 

n Table 1 . Each sub-block contains four layers, i.e., a convolution- 

ranspose-2d layer, a batch normalization layer [26] , a dropout 

dropout ratio p drop = 0 . 3 ) layer [28] , and a ReLU activation [27] .

he final convolutional layer is used to reproduce the inputs by 

djusting the number of output channels. Except for the differ- 

nce between the number of output channels in the final convo- 

utional layer (3 for the appearance decoder, 2 for the motion de- 

oder), the motion decoder shares the same structure with the ap- 

earance decoder. The ground truth optical flow is extracted from 

djacent video frames by FlowNet2 [29] . For each video, the last 

rame is excluded to ensure sample consistency. Since we use a 

emory module to isolate the encoding and decoding stages, the 

kip-connection [6] is not used, because it may impair the learn- 

ng of the memory module. Taking the reintegrated 

ˆ z as input, the 

ppearance decoder f app reconstructs the original input frame I as 
 

 = f app ( ̂ z ) , and the motion decoder f mot predicts the correspond- 

ng optical flow as ˆ F = f mot ( ̂ z ) . 
4 
.2.2. Memory module 

The memory module is realized as a matrix M ∈ R 

N×C , where 

is the memory capacity and C is the channel number of the 

ncoded feature z , which is used as a query to retrieve a set 

f similar items. The encoded feature z is organized as a matrix 

 ∈ R 

B ×H×W ×C , where B , H, and W are the batch size, height, and

idth of the network input after the encoder module. The memory 

odule thus acts as a sparse dictionary to store the crucial rep- 

esentations of normal patterns during training. Inspired by Gong 

t al. [2] , we use the set of similar items from the memory module

o reintegrate the encoded feature through the following processes. 

First, we compute the similarities (e.g., cosine similarity) be- 

ween the encoded feature z and all memory items M = { m i } N i =1 
:

 i = 

z � m i 

‖ z ‖‖ m i ‖ 

, (1) 

here s i is the i th element of the similarity vector s ∈ R 

N . Such a

imilarity vector s is then normalized with softmax over all ele- 

ents, and obtain the normalized i th element as ˜ s i . Then, the re- 

undant items are filtered out by subtracting a threshold λ as ˆ s i : 

 

 i = 

exp ( s i ) ∑ N 
j=1 exp 

(
s j 
) , (2) 

ˆ 
 i = 

max ( ̃  s i − λ, 0) ·˜ s i 
| ̃  s i − λ| + ε

, (3) 

here ε is a small positive constant to avoid division by zero. We 

mpirically observe that the threshold λ ∈ [1 /N, 3 /N] can lead to 

onsiderable results. This process ensures the selected items are 

rucial and representative. After that, we normalize the similar 

ector to a unit weight vector, where each item is computed as 

 i = ˆ s i / 
∑ N 

j=1 ̂  s j . Finally, we reintegrate ˆ z , which has the same di- 

ension as z , through the normalized weights w and memory M : 

ˆ 
 = w 

� M . (4) 

The goal of memory module is to leverage the features from 

ighly correlated items, so as to reintegrate the encoded feature in 

he training process. Our memory module is constantly updated at 

ach iteration, which can dynamically and adaptively capture the 

obust patterns of normal events. When it comes to the testing 

hase, the memory items with higher similarity can be taken to 

eintegrate both normal and abnormal events, in which a higher 

eintegration error can be achieved for the abnormal event, and a 
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Table 2 

Comparison with state-of-the-art methods on three 

benchmarks in AUC performance. Numbers in bold 

means the best results in the target dataset and the 

underlined numbers indicate the second-best results. 

Method Ped2 Avenue SHTech 

ConvAE [3] 0.900 0.702 0.609 

AbnormalGAN [12] 0.935 – –

ConvLSTM-AE [13] 0.881 0.770 –

TSC [1] 0.910 0.806 0.680 

sRNN [1] 0.922 0.817 0.680 

Zhao et al. [39] 0.912 0.771 –

Liu et al. [11] 0.954 0.851 0.728 

Nguyen et al. [6] 0.962 0.869 –

MemAE [2] 0.941 0.833 0.712 

Abati et al. [18] 0.954 – 0.725 

RIAD [40] 0.925 0.889 –

LRCCDL [37] 0.827 0.887 –

FSCN [38] 0.928 0.855 –

NM-GAN [16] 0.963 0.886 0.853 

Chang et al. [30] 0.962 0.860 0.733 

Park et al. [10] 0.902 0.828 0.698 

Ours (w/o memory) 0.947 0.895 0.681 

Ours 0.977 0.909 0.713 

Table 3 

Comparison with state-of-the-art methods on three 

benchmarks in EER performance. Numbers in bold 

mean the best results in the target dataset, and the 

underlined numbers indicate the second-best results. 

Method Ped2 Avenue SHTech 

Sabokrou et al. [9] 13% – –

LRCCDL [37] 9.44% – –

FSCN [38] 12.5% 20.7% –

NM-GAN [16] 6.0% 15.3 % 17.0% 

Ours 6.3% 14.6% 33.9% 

w
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ower reintegration error can be generated for the normal event. In 

ummary, the memory module can further improve the ability of 

ur MAAM-Net in distinguishing abnormal and normal events. 

.3. Training loss 

.3.1. Generative loss 

We constrain the difference between the input and the gener- 

ted outputs to better portrait the normal patterns with a gen- 

rative loss. The loss function includes an appearance loss of the 

ppearance branch and a motion loss of the motion branch. The 

ppearance loss measures the similarity between the original in- 

ut frame I and its reconstruction result ˆ I . Following [1,2,6,11] , L 2 
istance is used to compute the pixel-wise difference: 

 app = ‖ I − ˆ I ‖ 2 . (5) 

he motion loss measures the difference ( L 1 distance) of original 

ptical flow F and the predicted optical flow 

ˆ F : 

 mot = ‖ F − ˆ F ‖ 1 . (6) 

ased on the appearance loss and motion loss, the generative loss 

s defined as their weighted summation: 

 gen = L app + λm 

L mot , (7) 

here λm 

controls the relative importance between the appear- 

nce and motion estimations. 

.3.2. Sparse loss and latent loss 

The memory module dynamically stores a large number of nor- 

al patterns, resulting in a considerable computational burden. 

oreover, since normal and abnormal events are in the same sce- 

ario and share a similar appearance feature, the generative qual- 

ty of abnormal events tends to be fairly good with the complex 

nteraction of different normal patterns, but this is not desired as 

e aim to differentiate the generative error between normal and 

bnormal events. 

Therefore, it is critical to reduce the number of selected items 

rom the memory module for reintegration, meanwhile reducing 

omputation costs. The normal patterns in the memory module 

hould be more sparse and general, making the generative error 

f abnormal events larger. Besides the generative loss, we also use 

he sparse loss to enforce sparsity among the selected items. Fol- 

owing [2] , we formulate the sparse loss as: 

 spa = 

N ∑ 

i =1 

−w i · log (w i ) . (8) 

To further reduce the selected items of the memory module, 

ark et al. [10] and Chang et al. [30] manually restrict the num- 

er of normal patterns, which we argue is not appropriate. A 

ore suitable way would be letting the memory module adaptively 

etermine the number of normal patterns based on the normal 

vents of a given dataset. 

Since we use the normal patterns to reintegrate the encoded 

eature, the quality of integration could not be ideal. Inspired by 

he margin loss [31] , we enforce a small extent of diversity for 

he reintegrated quality because of inadequate details. Specifically, 

e introduce the latent loss based on the margin between the en- 

oded feature z and its reintegration 

ˆ z as: 

 lat = max 

((∣∣∣ ˆ z � z 
‖ ̂

 z ‖‖ z ‖ 

∣∣∣ − ζ
)
, 0 

)
, (9) 

here ζ is a positive number controlling the tolerance of dissim- 

larities. By using the margin-based latent loss, the distance be- 

ween normal and abnormal events in the feature space will be 

uch larger since the abnormal events are less likely to reintegrate 
5 
ell with reduced items. Under the supervision of this loss, we 

ake the following observations: (1) the number of selected items 

ecreases significantly when applied the margin-based latent loss 

 Fig. 5 ), which represents the reduction of computation costs, we 

peculate the reason is that reduced items share similarly detailed 

nformation; (2) the performance is slightly improved, as shown 

n Table 3 , while the inference speed is also improved accordingly 

ue to the reduction of the computation costs of the memory mod- 

le. 

Based on the generative losses, sparse loss and the introduced 

atent loss, our total loss function is defined as: 

 = L gen + αL spa + βL lat , (10) 

here α, β are hyperparameters that control the importance of 

ifferent loss functions. 

.4. Detection method 

In the testing phase, an anomaly score is assigned for each 

rame. As presented in Fig. 3 , as our method contains an appear- 

nce branch and a motion branch, we apply the detection method 

n each branch and fuse them to a united error map, which is ob- 

ained using L p distance between the inputs and outputs following 

ecent works [2,6,10] . And the error maps are used to obtain the 

nomaly score as well as the spatial position of abnormal events. 

Notably, an abnormal event occurring within a small frame 

egion may be missed by existing methods due to the aver- 

ge/summation operation over the entire frame. Even if the gen- 

rative error in a distant abnormal area is high, the averaged error 

f the scene tends to be low, which means the generative error 

n a particular region is better than the whole frame for detect- 

ng anomalies. For a normal sample ( Fig. 4 (b)), we find that the 
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Fig. 3. Overview of the anomaly detection procedure. After obtaining the reconstructed appearance outputs and predicted motion outputs, we compute the difference 

between them and their original inputs, and then apply the Patch-based Stride Convolutional Detection Method (PSCD) to the difference map of appearance and motion 

branches. The localization map of abnormal events and the anomaly score can be calculated from the fusion map. 

Fig. 4. The motivation of the patch-based detection method. The left column is the reconstructed error map of the appearance branch, and the right column is the predicted 

error map of the motion branch. The bright mask in upper left and dark mask in upper right point out the abnormal region in the patches. 

Fig. 5. Number of average support items selected from memory per sample in three 

different datasets. Four columns represent without sparse and latent loss, without 

sparse loss only, without latent loss only and with sparse and latent loss. 
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enerative quality is also degraded, and the generative error score 

omputed by average/summation operation may equal to the score 

n a tiny area of an abnormal sample ( Fig. 4 (a)). Furthermore, ab-

ormal events can be perfectly detected from some well-designed 

atches as shown in Fig. 4 (a). Thus, we propose a novel detection 

ethod considering local patches instead of the entire frame, i.e., 
6 
atch-based Stride Convolutional Detection algorithm (PSCD). The 

etection procedure is summarized in Algorithm 1 . 

The PSCD algorithm firstly initializes a filter of size (H, W, C, 1) 

hat is filled by 1, where H, W are based on the shape of a key

bject (e.g., a person) in the scene for a dataset and C is the in-

ut channels. Then, we apply the convolutional operation on the 

ifference map between the input and the corresponding output 

f the appearance branch d app and that of the motion branch d mot , 

nd generate a appearance error map e app and a motion error map 

 mot . The weighted summation between the appearance and mo- 

ion error maps e fuse = ψe app + (1 − ψ) e mot is used to obtain the

nal anomaly score of each patch, where ψ is a fusion hyperpa- 

ameter. Next, we apply max pooling on the set of all fused er- 

or map for each frame and use the maximal patch error as the 

nomaly score η, Finally, we normalize the anomaly score σ to the 

ange [0,1]: 

= 

η − min ( η) 

max ( η) − min ( η) 
. (11) 

 higher σ value means a higher probability of anomaly. Namely 

he anomaly can be detected when the score is above a pre- 
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Algorithm 1 The proposed PSCD anomaly detection algorithm. 

1: Input: 

2: The original frame I , ground-truth flow F , reconstruction 

frame ˆ I , reconstruction flow 

ˆ F , and h , w representing filter 

height and width, and the weights ψ for the fusion. 

3: Input: 

4: Anomaly score σ of target frame. 

5: repeat 

6: d app = | I − ˆ I | 2 # Element-wise difference 

7: d mot = | F − ˆ F | # Element-wise difference 

8: Filter app = Ones (h, w, 3 , 1) # Filter filled by 1 

9: Filter mot = Ones (h, w, 2 , 1) # Filter filled by 1 

10: # the parameters in the convolutional operation are feature map, 

filter, and stride, respectively. 

11: e app = Conv2d (d app , Filter app , (H/ 4 , W/ 4)) 

12: e mot = Conv2d (d mot , Filter mot , (H/ 4 , W/ 4)) 

13: e fuse = ψe app + (1 − ψ) e mot # fusion error map 

14: η = max (e fuse ) 

15: σ = 

η−min ( η) 
max ( η) −min ( η) 

16: Output the Anomaly score σ
17: until all frames are done. 
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efined threshold τ : 

 = 

{
0 , if σ < τ, 

1 , otherwise. , 
(12) 

here 0 indicates normal events while 1 indicates anomaly. More- 

ver, we find that the spatial position of abnormal events can be 

ocated by suppressing the non-abnormal patch. 

A similar detection method is of Nguyen et al. [6] , while the 

ajor differences between our proposed PSCD and them lie in two 

spects: (1) the patch size is not designed as the same size in all

atasets, since we regularize the patch size as the shape of people 

hown in the datasets; (2) the calculation of the difference map is 

imilar with the loss functions while [6] use the mean square error 

or appearance branch and motion branch, and the fusion mecha- 

ism of two branches is the weighted summation without the su- 

ervision of training samples while [6] is not. 

. Experiments and discussions 

In this section, we present the implementation details of the 

roposed MAAM-Net and compare it with the state-of-the-art 

ethods on three benchmark datasets, including UCSD Ped2 [32] , 

UHK Avenue [33] , and ShanghaiTech [1] . Extensive ablation stud- 

es are then performed to validate the contribution of each com- 

onent of the MAAM-Net. 

.1. Datasets 

We evaluate our proposed method on three benchmarks: UCSD 

ed2, CUHK Avenue and ShanghaiTech, which are introduced in the 

ollowing paragraphs. 

The UCSD Ped2 dataset [32] contains 16 training videos and 12 

esting videos with 12 kinds of abnormal events. The frame is in 

rey scale. There are 2550 samples for training and 2010 samples 

or testing. Abnormal events include vehicles such as bicycles, cars 

nd skateboards. What’s challenging, a scene may contain multiple 

nomalies. The camera is fixed and the size of people in the scenes 

s almost the same. 

The CUHK Avenue dataset [33] contains 16 training videos and 

1 testing ones with a total of 47 kinds of abnormal events, in- 

luding throwing objects, loitering, running, dancing, etc. The total 

umbers of frames for training and testing are 15,328 and 15,324, 
7 
espectively. The camera is also fixed but the size of people may 

iffer because of the distance to cameras. 

The ShanghaiTech dataset [1] is so far the biggest and most 

hallenging dataset. It contains 330 training videos of 274,515 

rames and 107 testing videos of 42,883 frames with 130 kinds of 

bnormal events. The main differences between it and the afore- 

entioned two datasets are that it contains 13 different scenes, 

nd the abnormal events include running, bicycles, vehicles, fight- 

ng, etc. Due to the different scenes, the size of objects varies from 

cene to scene. 

The above three datasets contain training and testing sets re- 

eptively. We directly use the training set for training our MAAM- 

et and testing set for evaluation on each experiment. 

.2. Evaluation metrics 

Following previous works [6,10,30,34] , we also evaluate our pro- 

osed MAAM-Net by the Area Under Curve (AUC), which is ob- 

ained by calculating the area under the Receiver Operation Char- 

cteristic (ROC) curve. We further report the Equal Error Rate 

EER), which is the point on the ROC curve that corresponds to 

aving an equal probability of miss-classifying a positive or nega- 

ive sample, to validate the effectiveness of the MAAM-Net. Since 

ew papers have been published with the EER score, we present it 

s a trigger for future work comparison. 

.3. Implementation details 

The input size of the frame is set to 180 × 320 for Avenue and

hanghaiTech datasets. Due to the frame size in Ped2 dataset is 

mall, we directly use the frames of their original size to train our 

odel. The corresponding optical flow [29] is also resized to the 

ame resolution with bilinear interpolation. The flow visualization 

s obtained by using the official code of Flownet2 [29] . All experi- 

ents are conducted on a single NVIDIA RTX 2080 Ti GPUs. 

Our proposed MAAM-Net is implemented with Tensorflow (ver- 

ion 1.13.1) [35] in Ubuntu (version 16.04.7). We use the Adam 

ptimizer [36] with a fixed learning rate (0.0 0 0 02, 0.0 0 05, and

.0 0 0 01 on Ped2, Avenue, and ShanghaiTech, respectively) during 

he whole training process. In practice, the memory capacity is set 

o 500 for Ped2 and 20 0 0 for other two datasets, λ is 1 /N ( N is

emory capacity), and the margin is 0.001. We empirically set λm 

, 

, β , and ζ as 2, 0.0 0 03, 0.0 01, and 0.1 on all datasets following

2,6] , respectively. The training epoch is set to 50. The patch size is 

et to the average size of persons shown in the scenes. 

.4. Comparison with state-of-the-arts 

We present the AUC and EER performance comparison with 

tate-of-the-art methods on the Ped2 [32] , Avenue [33] , and 

hanghaiTech [1] datasets in Tables 2 and 3 , respectively. Among 

he compared methods, we re-implement the performance of 

guyen et al. [6] and Sabokrou et al. [9] , and directly report the 

erformance of the remaining methods. 

.4.1. Ped2 

Our MAAM-Net achieves an AUC of 0.977 on the Ped2 dataset, 

hich outperforms all previous methods. Compared with the base- 

ine MemAE [2] , our method outperforms it by a margin of 3 . 6% in

UC, which demonstrate the efficacy of the introduction of the mo- 

ion branch. Moreover, our method can further obtain a 1 . 5% gain 

n AUC when competing with the appearance-motion model that 

acks of the memory module [6] , which demonstrate the neces- 

ity and effectiveness of the combination of them. Our MAAM-Net 

lso achieves a considerable EER performance of 6.3%, which out- 

erforms recent methods [9,37,38] and is 0.3% lower than NM-GAN 

16] using an additional discriminator. 
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Fig. 6. Hyperparameter sensitivity analysis on the weight parameter β and the margin parameter ζ . The Ped2 dataset uses the primary axis and the Avenue dataset uses 

the deputy axis. 
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Table 4 

Comparison with various methods on model complexity and in- 

ference speed on three benchmarks. “M” means millions, and 

“FPS” denotes Frames Per Second. Numbers in bold represent the 

best results. 

Methods 

Parameters 

(M) 

FPS 

Ped2 Avenue SHTech 

Liu et al. [11] 7.7 32.76 20.97 16.17 

MemAE [2] 6.5 59.14 – –

AMMC-Net [19] 25.1 37.03 44.11 40.18 

Ours 8.5 (9.22) 63.6 78.38 79.76 
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.4.2. Avenue 

Compared with the Ped2 dataset, Avenue is a larger and more 

hallenging dataset due to more anomaly scenes. On this dataset, 

ur MAAM-Net still outperforms all competing methods in AUC 

erformance and improves the AUC to a new stage. The perfor- 

ance in EER is competitive as well. Compared with Park et al. 

10] , which leverages manual intervention of memory update, our 

ethod achieves an 8 . 1% higher AUC and exceeds our baseline 

emAE [2] by a large margin of 7 . 6% in AUC. Even for MAAM-

et without the memory module, our method still has compa- 

able performance, validating the superior capability of our pro- 

osed MAAM-Net. Moreover, our MAAM-Net outperforms the re- 

ent method FSCN [38] both in AUC and EER, and is 2.3% higher 

n AUC and is 0.7% higher in EER compared to the recent method 

M-GAN [16] . 

.4.3. ShanghaiTech 

We achieve competitive performance with recent methods 

1–3,10] in AUC. Notably, we outperform the recent methods 

hat leverage memory modules [2,10] . We note several methods 

11,16,18,30] achieve higher AUC performance than ours on this 

ataset, and we speculate the reason is that they use additional 

raining clues. Specifically, they can benefit from multi-frame input 

11,18,30] and/or a much longer training schedule [16] , while our 

odel only needs single-frame input and requires fewer epochs to 

chieve considerable performance in contrast, which also leads to 

 high ratio of false detection. The other reason might be that our 

etection method is based on patches, and the patch size is based 

n the average size of persons in the dataset. Frames in Shang- 

aiTech exhibit large scene variances than those in the Ped2 and 

venue datasets, which leads to the performance degradation of 

ur PSCD algorithm. Our EER performance is relatively weak com- 

ared with the recent method NM-GAN [16] , and we speculate the 

easons are as follows. The first one is NM-GAN [16] heavily relies 

n a pre-defined normal distribution to produce negative samples 

n the training phase, while the normal events are enough for our 

AAM-Net. The second one is the input of NM-GAN [16] is not the 

hole frame but the overlapped patch sets of training samples. Al- 

hough the two additional works make a better EER of NM-GAN 

16] , they need some preliminary work, leading to a massive repet- 

tive computation and slowing the inference speed. 

To summarize, with the help of the memory module and the 

ovel Patch-based Stride Convolutional Detection (PSCD) algorithm, 

ur method outperforms all competing methods on the Ped2 

nd Avenue datasets in AUC, and achieves competitive AUC per- 
8 
ormance on the ShanghaiTech dataset with recent methods [1–

,10,11,18,30] . Besides, our method achieves comparable EER perfor- 

ance with other methods [9,37,38] on Ped2 and Avenue datasets. 

t is close to NM-GAN [16] on the Ped2 and Avenue datasets but 

oor than NM-GAN on the ShanghaiTech dataset in EER. Moreover, 

ven without the memory module, our model still achieves a com- 

arable performance, verifying the intuition of introducing motion 

eatures into MAAM-Net. 

.5. Model complexity and inference speed 

We present the model complexity and inference speed compar- 

son with other methods [2,11,19] on the Ped2, Avenue, and Shang- 

aiTech datasets in Table 4 . The inference speeds of different meth- 

ds are collected by running the official implements on a single 

vidia RTX-2080Ti GPU. Here, we present two values of the model 

arameter of our method, which means 8.5 M on Ped2 and 9.22 M 

n Avenue and ShanghaiTech. The reason for the different model 

arameters is videos in Avenue and ShanghaiTech are more com- 

lex than Ped2, and thus we use bigger memory capacity for them. 

lthough the parameter size of MemAE [2] is smaller than that of 

urs, the large selected items used in MemAE make the inference 

rocedure more time-consuming. Apart from the model parameter, 

ur model is faster than all competing methods as it can infer 63.6 

PS on Ped2, 78.38 FPS on Avenue, and 79.76 FPS on ShanghaiTech, 

erifying the intuition that improving the feature generalization of 

he memory module is efficient to accelerate the inference speed. 

.6. Ablation study 

.6.1. Appearance and motion branches 

In our method, we use an appearance branch to reconstruct 

he input frame and learn spatial features, and use a motion 
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Fig. 7. Quantitative results on three datasets. Each dataset contains two examples and each example have two rows, the first is the video sequence, the abnormal events are 

enclosed by red boxes and the abnormal frames are larger than normal events, the second row is the corresponding anomaly score for each frame, higher anomaly score 

represents higher probability of abnormalities. The light blue background area is the ground-truth anomaly range in temporal sequence. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 
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ranch to predict the optical flow and capture the temporal cor- 

elation. To validate the necessity of the two branches, we con- 

uct ablation experiments on Ped2, Avenue, and ShanghaiTech 

atasets. The last row of Table 4 summarizes the performance of 

sing different branches on the three datasets. The results suggest 
9 
he appearance-motion architecture largely improves the detection 

erformance. We argue the motion feature plays a more important 

ole than the appearance feature since abnormal events are often 

ositively correlated with unusual speed of object movement, and 

he visualization results are presented in Section 4.7 . Therefore, the 
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Fig. 8. Detailed visualization samples. Each row contains original inputs, appearance differences, motion differences, fusion differences and anomaly localization respectively. 

In the last column, the red, green, and yellow masks represent the predicted abnormal area, ground-truth abnormal area and the overlap area of them. The first two rows 

are from the Ped2 dataset, the next two rows are from the Avenue dataset and the last two rows are from the ShanghaiTech dataset. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 
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otion branch can better model the anomaly, and thus can achieve 

igher performance than the appearance branch. The combination 

f them further boosts the performance. 

.6.2. Different losses 

In our proposed MAAM-Net, we introduce a sparse loss L spa 

nd a latent loss L lat to reduce the selected items of the memory 

odule for feature reintegration. Specifically, the sparse loss en- 

ourages the selected items to be sparse and the latent loss forces 

he selected items to be critical, and they together improve the 

eneralization of the memory module. Due to the natural relation- 

hip between normal events and abnormal events, i.e., anomalies 
10 
sually exhibit anomalous shapes and speeds, it has no effect for 

ormal events to reintegrate when we slightly drop the reintegra- 

ion quality of normal events, while it increases the difficulty to 

eintegrate abnormal events. Thus it validates the effectiveness of 

he latent loss and sparse loss. 

Table 5 lists the performance of all combinations of losses with 

ifferent branch mixtures. By using the sparse loss and the la- 

ent loss, the performance outperforms all variants that use the 

ppearance-motion architecture. Besides, in single-branch cases, 

he combination of two loss terms may underperform a single loss, 

nd we speculate the reason is that the two loss functions both 

im to reduce the selected items for reintegration, which restrict 
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Table 5 

Ablation Study on loss and branch combinations. The performance is measured by AUC. Numbers in bold represents 

the best results. The tick in L spa and L lat means whether using the target loss. 

L spa L lat 

Ped2 Avenue SHTech 

App. Mot. App. + Mot. App. Mot. App. + Mot. App. Mot. App. + Mot. 

0.826 0.972 0.974 0.782 0.828 0.891 0.511 0.713 0.711 

� 0.855 0.972 0.974 0.784 0.823 0.899 0.509 0.712 0.707 

� 0.830 0.972 0.975 0.779 0.834 0.889 0.507 0.711 0.709 

� � 0.778 0.972 0.977 0.773 0.820 0.909 0.539 0.712 0.713 

Fig. 9. Failure cases. The red, green, and yellow masks represent the predicted ab- 

normal area, ground-truth abnormal area, and the overlap area of them. The first 

two rows are from Ped2 and Avenue dataset respectively, and the last two rows 

are from ShanghaiTech dataset. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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he single-branch model to learn rich features. Without the inter- 

ction of both branches, the performance with latent loss in the 

ingle branch model is weak compared with other combinations of 

oss functions, which indicates that the latent loss heavily relies on 

he representational ability of features. 

.6.3. Computation cost 

In order to verify the influence that the new loss function on 

he decline of selected items, we also present the average number 

f the reintegration items for each sample among three datasets 

n Fig. 5 . It indicates that the new latent loss largely reduces the 

umber of selected items. With the latent loss, the proportion of 

elected items drops around 25% , 36% , and 37% on Ped2, Avenue, 

nd ShanghaiTech datasets respectively, which validates the state- 

ent that the introduced latent loss is able to reduce the com- 

utation costs and further improve the feature generalization. Fur- 

hermore, with the sparse loss, the number of the selected items 

roceeds to be reduced. 

.6.4. Hyperparameter sensitivity 

There are two important hyperparameters in our proposed 

AAM-Net, i.e., the weight parameter β and the margin param- 

ter ζ . The sensitivity analysis of them are presented in Fig. 6 . 

In particular, β controls the importance of feature sparsity, and 

urther influences the feature generalization of the memory mod- 

le. Figure 6 (a) plots the AUC performances under different values 

f β . We can observe that the performance of Avenue has an obvi- 

us drop when the weight is larger than 1. While the performance 

s not sensitive to the variation of the weight parameter when it 
11 
s smaller than 1. Such phenomenon validates the necessity of the 

ntroduction of our latent loss. 

What’s more, ζ controls the tolerance of the model for the gen- 

rative quality. A large ζ makes the memory module select the 

carce yet crucial items for reintegration, but causes a quality drop. 

igure 6 (b) plots the AUC performances of different ζ on Ped2 and 

venue datasets. As the cosine similarity is smaller than 1, we set 

ifferent ζ in the range of [0,1]. We can see that our model is not 

ensitive to the variation of the margin parameter ζ . 

.7. Qualitative evaluation 

.7.1. Qualitative analysis on testing videos 

Figure 7 presents six qualitative results on the Ped2, Avenue, 

nd ShanghaiTech datasets, respectively. We showcase two video 

xamples for each dataset. The abnormal event is enclosed by red 

oxes and the frame it belongs to is larger than normal frames. 

e can see that the abnormal events usually correspond to the 

nomaly score raise. With the increase of the dataset complexity 

Ped2 < Avenue < ShanghaiTech), it is much more difficult to iso- 

ate the normal and abnormal events. 

Specifically, in Fig. 7 (a), we can clearly observe that MAAM-Net 

an successfully isolate the normal and abnormal events. When the 

icycle or the car appears in the scene, the anomaly score raises 

ignificantly. The abnormal labels perfectly correspond to the pre- 

icted results, which shows the efficacy of our proposed MAAM- 

et. In Fig. 7 (b), the boundary between the normal and abnormal 

vents is also clearly enough. The emerge of abnormal events (A 

an throwing a bag and a man walking in the wrong direction) 

ncur high anomaly scores. Compared with the Ped2 dataset, Av- 

nue dataset is much more complicated, and thus the curve of 

nomaly scores appear to fluctuate, which makes it a little diffi- 

ult to choose a suitable threshold. In Fig. 7 (c), the curve becomes 

ore fluctuant due to the scene variances in ShanghaiTech dataset. 

he results show that the anomalies (the bicycles) detected by our 

ethod are well located in the ground-truth temporal sequence. 

.7.2. Qualitative analysis on testing frames 

Figure 8 plots some testing samples. We can see that the fu- 

ion results of appearance and motion branches surely improve the 

ocal response and widen the difference between the normal and 

bnormal areas of each sample, and meanwhile suppress the re- 

ponse of the normal samples. As illustrated in the last column, 

he red, green, and yellow masks represent the predicted abnormal 

rea, ground-truth abnormal area, and the overlap area of them, 

e can see that our method perfectly locates the spatial location 

f the abnormal events, which demonstrates that the MAAM-Net 

as the ability to locate the specific anomaly region without addi- 

ional bounding box annotations. 

.7.3. Failure cases 

Under the unsupervised learning setting of anomaly detection, 

he model is prone to misclassify hard positive samples due to 

he lack of abnormal events during training. Figure 9 shows sev- 

ral failure examples, where some testing samples are misclassi- 
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ed due to the complexity of human behaviors and the distance 

rom the surveillance camera. However, to clearly distinguish the 

ard positive examples from the true negative examples may re- 

uire stronger supervision. 

. Conclusion 

In this paper, we propose a Memory-Augmented Appearance- 

otion Network (MAAM-Net) for video anomaly detection, which 

enefits from a novel end-to-end memory-augmented network for 

earning the appearance and motion feature of a given input frame, 

 well-designed margin-based latent loss, and a pointed Patch- 

ased Stride Convolutional Detection (PSCD) algorithm. The mem- 

ry module is creatively embedded into the appearance-motion 

ase network, which can differentiate the normal and abnormal 

vents by using the feature representation of the former to rein- 

egrate the latter. The margin-based latent loss forces the mem- 

ry module to select a sparse set of critical items for reintegration 

nd further reduces the computation costs. The PSCD algorithm fo- 

uses on the patch-level rather than the frame-level response of 

he error map, which explicitly utilizes the characteristics of the 

bnormal events and boosts detection accuracy. Experiments on 

hree benchmarks demonstrate the efficacy and efficiency of the 

roposed MAAM-Net compared to the state-of-the-art methods. 

. Limitation and future work 

Our proposed PSCD algorithm has an important value for im- 

roving anomaly detection accuracy. It decreases the potential false 

larms caused by the long-range abnormal region. However, it per- 

orms weakly in the multi-scene anomaly dataset, since choos- 

ng a suitable patch size is difficult and thus degrades the perfor- 

ance. Therefore, we plan to adjust the mechanism of patch choice 

o adapt to the needs of multi-scene anomaly detection in future 

ork. 
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