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Abstract

Pedestrian trajectory prediction is an essential link to
understanding human behavior. Recent work achieves
state-of-the-art performance gained from hand-designed
post-processing, e.g., clustering. However, this post-
processing suffers from expensive inference time and ne-
glects the probability that the predicted trajectory disturbs
downstream safety decisions. In this paper, we present
Trajectory Unified TRansformer, called TUTR, which uni-
fies the trajectory prediction components, social interac-
tion, and multimodal trajectory prediction, into a trans-
former encoder-decoder architecture to effectively remove
the need for post-processing. Specifically, TUTR parses the
relationships across various motion modes using an explicit
global prediction and an implicit mode-level transformer
encoder. Then, TUTR attends to the social interactions with
neighbors by a social-level transformer decoder. Finally,
a dual prediction forecasts diverse trajectories and corre-
sponding probabilities in parallel without post-processing.
TUTR achieves state-of-the-art accuracy performance and
improvements in inference speed of about 10× - 40× com-
pared to previous well-tuned state-of-the-art methods using
post-processing.

1. Introduction
Pedestrian trajectory prediction aims to predict the fu-

ture trajectory based on an observed trajectory. It is an es-
sential link that connects the perception system upward and
the planning system downward [13, 18]. Due to the ran-
domness of human motion, there are diverse plausible fu-
ture trajectories that pedestrians could take [6]. The popu-
lar predictor addresses this multimodal prediction task in a
generative style. They model the multimodality of the fu-
ture trajectory in a specific space, such as an explicit Gaus-
sian space [17, 27, 5], a latent space [34, 16, 37, 6], a hand-
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Figure 1. (A) shows the comparison against the meth-
ods (MemoNet[33], SocialVAE[34]) with post-processing and the
SIT[26] without post-processing, Simultaneously, it presents the
accuracy performance variances of MemoNet and SocialVAE that
use post-processing or not. (B) shows the inference speed vari-
ances as the number of pedestrians increases. Our method achieves
a balance of accuracy performance and inference speed.

planning space [26], or a memory bank [33].
Recently, some works [33, 34] have achieved significant

advances benefiting from hand-designed post-processing,
as illustrated in Figure 1 (A). Most of the time, they
first sample more plausible future trajectories than the de-
sired number of predictions K. Then, a clustering algo-
rithm (e.g., K-means) is operated on sampled trajectories
to generate the desired K predictions, similar to NMS [9]
in object detection. However, this post-processing suffers
from expensive inference time due to the non-parallel loop
iteration in clustering, especially for a dense scene.

As shown in Figure 1 (B), the methods with post-
processing lead to being more and more time-consuming
as the number of pedestrians increases. Furthermore, the
post-processing neglects probability information, disturb-
ing safety decisions. Actually, most works forecast diverse
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trajectories equally (i.e., without probability information)
in pedestrian trajectory prediction. Similarly, the cluster-
ing operation also obtains K centers with equal weights.
Although these predictors have significant performance in
best-of-K prediction, there is no information on which is
the best. It is a disadvantage for the safety decision of an in-
telligent system such as autonomous driving. Our goal aims
to bridge the gap between accuracy and inference speed,
keeping the corresponding probabilities of predicted trajec-
tories simultaneously.

To address the above problems, we propose Trajectory
Unified TRansformer (named TUTR) to effectively elim-
inate the need for post-processing in pedestrian trajectory
prediction. TUTR unifies the components of pedestrian
trajectory prediction, such as social interaction and mul-
timodal trajectory prediction, into a transformer encoder-
decoder architecture as illustrated in Figure 2.

TUTR first parses relationships across various motion
modes using an explicit global prediction and an implicit
mode-level transformer decoder. Specifically, global pre-
diction employs two rigid transformations on training tra-
jectories to obtain general motion modes, which are consid-
ered as the input token of the mode-level transformer en-
coder. Afterward, TUTR attends to the social interactions
with neighbors using a social-level transformer decoder to
prepare a social-acceptable prediction. Finally, a dual pre-
diction is used to forecast diverse trajectories and corre-
sponding probabilities in parallel to cover the multimodality
of future trajectories without any post-processing.

We evaluate TUTR on the most popular datasets for
pedestrian trajectory prediction, ETH [19], UCY [14], and
SDD [22]. The experimental results show that our pro-
posed method achieves a comparable accuracy performance
and faster inference speed without any post-processing step
compared with existing state-of-the-art methods. Moreover,
TUTR performs the best performance in brier-ADE and
brier-FDE, which are two metrics that consider the prob-
abilities of predicted trajectories.

In summary, the contributions of this paper are summa-
rized as follows.

• We propose a new pedestrian trajectory prediction
framework (TUTR) based on encoder-decoder trans-
former architecture entirely to unify the pedestrian tra-
jectory prediction.

• TUTR parses the relationship across various motion
modes by the explicit global prediction and implicit
mode-level transformer encoder to effectively remove
the need for post-processing.

• TUTR achieves state-of-the-art ADE/brier-ADE/brier-
FDE, and comparable performance in FDE. Moreover,
TUTR performs a faster inference speed to balance ac-
curacy performance and inference speed.

2. Related Works
Research on pedestrian trajectory prediction is briefly

categorized into two classes: prediction based on environ-
ment information (e.g., semantic map) [2, 15, 25, 21, 38, 30]
and prediction based on social interaction from neighbors.
In this paper, we focus on the latter to effectively remove
the need for post-processing by unifying the pedestrian tra-
jectory prediction into an encoder-decoder architecture.

2.1. Pedestrian Trajectory Prediction

Physical Models. Before deep learning, many works de-
sign specific physical models to forecast a deterministic fu-
ture trajectory. Social force [8], motion velocity [28], and
energy [11] are commonly used to model the motion behav-
ior of pedestrians. Also, some works employ the statistical
model, such as Gaussian processes [31, 12], to deal with
the uncertainty of future trajectories. However, they suffer
from bad generalizations when facing various motion pat-
terns and social interactions.
Deep Learning Models. As deep learning develops in
the community, most deep models in pedestrian trajectory
prediction forecast future trajectories via feature extraction
and multimodal trajectory prediction. In feature extraction,
many works use deep models, such as recurrent neural net-
works (RNNs) [1, 6, 34], attention mechanisms [23, 27, 26,
36, 37], and graph neural networks (GCNs) [17], to model
the temporal sequential features from the observed trajec-
tory and spatial interaction features from neighbors.
Multimodal Trajectory Prediction. Pedestrians could
take various future trajectories due to their motion random-
ness [6]. To deal with such multimodal prediction tasks,
many works employ generative models, such as genera-
tive adversarial networks (GANs) [6] and conditional vari-
ational autoencoder (CVAE) [16, 34, 37, 24], to generate
diverse future trajectories. Besides, some works [26, 17, 5]
model the possible future trajectories into a Gaussian dis-
tribution or a Gaussian Mixture Model (GMM). A tree-
based model [26] covers the possible future trajectories by
an interpretable tree. In addition, the memory-based meth-
ods [33] store the diverse trajectories in a memory bank.
Recently, the post-processing step is commonly used to im-
prove the diversity of predicted trajectories. PECNet [16]
changes the variance of latent space. AgentFormer [37] pe-
nalizes the pairwise distance of predicted trajectories. How-
ever, a more effective post-processing step [33, 34] is sam-
pling a large number of predicted trajectories and then clus-
tering them into the desired number of centers. Unfortu-
nately, the post-processing step, especially for the cluster-
ing, suffers from the expensive inference time and loses
the probability of predicted trajectories. In contrast, TUTR
can directly forecast diverse trajectories without any post-
processing step and achieves a balance between inference
time and accuracy performance.
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Figure 2. An overview of TUTR. TUTR employs an encoder-decoder transformer architecture to forecast future motion behaviors. Firstly,
the global prediction generates general motion modes. Then, the general motion modes concatenated with the observed embedding are
considered as the input tokens of a mode-level transformer encoder. Subsequently, the encoder output attends to the social interactions by
a social-level decoder. Finally, two shared prediction heads in dual prediction are used to obtain the dual results, i.e., predicted trajectories,
and corresponding probabilities.

2.2. Transformers

The Transformer model [29] is first proposed in the ma-
chine translation task to replace the recurrent neural net-
works (RNNs) [10]. Transformers are now popular in many
tasks, such as in natural language processing [35, 20] and
computer vision [3, 4]. Transformers encode global features
through the self-attention mechanism in parallel. Then,
the encoder-decoder attention (cross-attention) in the Trans-
former decoder generates the desired output. In the naive
Transformer, the decoder is an auto-regressive model to out-
put tokens one by one.

Unlike previous applications of the transformer to extract
global features, TUTR is mainly used to address the ques-
tion of output, i.e., multimodal trajectory prediction similar
to [3] in object detection. Concretely, TUTR first design a
global prediction on the whole training trajectories to obtain
general motion behaviors, which are considered as the input
tokens of the encoder of the transformer. Then, a decoder
attends to social interactions with neighbors and the results
of the decoder to forecast diverse trajectories in parallel, not
the autoregressive style.

Some methods [37, 36] have explored the Trans-
former [29] architecture in the prediction of pedestrian tra-
jectory. However, the transformer is only used to extract
temporal and spatial features. Besides, they employ an
auto-regressive model to output trajectory points one by
one. Compared to them, TUTR unifies the pedestrian tra-
jectory prediction modules, such as feature extraction and
multimodal trajectory prediction, into an encoder-decoder
transformer architecture, which includes a mode-level en-
coder, a social-level decoder, and two dual prediction heads.
It achieves better performance and contributes to compati-
bility with other modules, such as upward motion percep-
tion and downstream motion planning. What’s more, TUTR
employs parallel decoding to generate diverse trajectories,
further improving the inference speed compared with auto-
regressive decoding.

3. Our Method

3.1. Problem Definition

Pedestrian trajectory prediction aims to forecast the fu-
ture trajectory of a pedestrian based on the observed tra-
jectories of the pedestrian and its neighbors. Assume that
a sequence of traffic scenes with the length T contains
N pedestrians. We extract N trajectory coordinate se-
quences {xn

t , y
n
t }

T,N
t=1,n=1 for each pedestrian at each time

step. The trajectory model observes the front of sub-
trajectories {xn

t , y
n
t }

Tobs,N
t=1,n=1 and predicts the next sub-

trajectories {xn
t , y

n
t }

T,N
t=Tobs+1,n=1. Due to the multimodal-

ity of pedestrian motion behavior, there are multiple future
trajectories that the pedestrian could take. Therefore, the
trajectory model is required to forecast diverse future tra-
jectories, while only a single true future trajectory (ground
truth) is provided for model training.

3.2. TUTR Architecture

Here, we introduce our proposed Trajectory Unified
TRansformer (TUTR), which contains four components
packed into a transformer encoder-decoder architecture to
forecast diverse future behaviors as illustrated in Figure 2.
The explicit global prediction and the implicit mode-level
transformer encoder are used to parse the relationships
across various motion modes. Subsequently, the encoder
output attends to the social interactions with neighbors us-
ing a social-level transformer decoder. Finally, a dual pre-
diction is used to obtain dual results (diverse future trajec-
tories and corresponding probabilities) in parallel by two
shared prediction heads.

Recall that previous transformer-based methods [36, 37]
employ the transformer architecture only on the observed
trajectory and its neighbors. Namely, the trajectory points
of an observed trajectory are the input tokens of a temporal
transformer encoder to obtain temporal features. The trajec-
tory points of the neighbors are the input tokens of a spatial
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transformer encoder to obtain spatial features. However, the
multimodality of the future trajectory is the main challenge
that affects prediction accuracy. Unlike them, TUTR parses
the relationship across various modes of future behavior by
a mode-level transformer encoder. Then, TUTR attends to
the social interactions using a social-level transformer de-
coder to directly output the diverse future trajectories with-
out any post-processing step.
Global Prediction. TUTR parses the relationships across
various motion modes using an explicit global prediction
and an implicit mode-level transformer encoder. Global
prediction obtains general motion modes to cover common
motion behaviors of a pedestrian, and the results are consid-
ered as the input token of the next mode-level transformer
encoder. Here, we first employ two rigid transformations
to generate normalized trajectories and then use a distance
measurement to obtain the general motion modes.

Given a fixed view, the trajectory is invariant for the
rigid transformation. For example, a pedestrian shows go-
ing straight and then turning left. It also shows the same be-
haviors after translation or rotation for the trajectory of the
pedestrian. For the training trajectories with length T , the
front sub-trajectories with length Tobs are the observed tra-
jectories, while the next sub-trajectories with length Tpred

are the future trajectories. We first translate the Tobs tra-
jectory points of the trajectories into the origin of the co-
ordinate system. Then, the initial trajectory points of the
translated trajectories are rotated to the positive X-axis. In
this case, the direction of most future trajectories is normal-
ized to a relatively fixed region. Namely, the trajectories
with similar motion behaviors could have a small distance.
Thus, we can obtain diverse trajectories explicitly in a dis-
tance measurement strategy to cover the common motion
behaviors.

Therefore, a clustering operation is used on the nor-
malized future trajectories to obtain L centers C ∈
RL×Tpred×2, where C = {c1, ..., cL} and each {cl|l ∈
1, ..., L} is a trajectory with length Tpred. Thus, the centers
C represent the general motion modes, which are the input
tokens of the next mode-level transformer encoder. Note
that C is invariant in the inference step. Namely, global
prediction does not lead to additional inference time.
Observed embedding. The general motion modes are con-
sidered as the input token of the next described mode-
level transformer encoder. They are first reshaped into a
L× 2Tpred features and then embedded by a learnable lin-
ear transformation to obtain input embeddings Ec as fol-
lows:

Ec = ϕ(C,Wc), (1)

where ϕ(·, ·) is a linear transformation with a learnable pa-
rameter matrix Wc ∈ R2Tpred×De , Ec ∈ RL×De is the
input embeddings.

The previous input embeddings of the transformers
need an extra positional embedding [29] to deal with the
permutation-invariant of the self-attention mechanism. Un-
like them, the elements in C are not limited by their se-
quences. Thus, the positional embedding is not necessary
for the input embedding Ec. However, our goal is to pre-
dict diverse trajectories of a pedestrian based on its observed
motion states. The input embeddings Ec are required to fit
the given input observed trajectory X ∈ RB×Tobs×2, where
B is the batch size. Hence, the observed trajectory X is em-
bedded and added to the input embeddings Ec as follows:

Eo = ϕ(X,Wo),

Ee = Ec + Eo,
(2)

where X is reshaped into B× 2Tobs before the linear trans-
formation, Wo ∈ R2Tobs×De is the learnable parameter
matrix. We broadcast the dimensions of Ec and Eo to
B×L×De and perform an add operation between them to
obtain the final embedding Ee ∈ RB×L×De .
Mode-Level Transformer Encoder. Unlike feature-level
transformer encoders to build the global dependence of tra-
jectory points, the mode-level transformer encoder parses
the relationships across various modes. Given the input em-
bedding Ee that represents general motion modes based on
the observed trajectory, the mode-level transformer encoder
employs the standard encoder architecture of a naive trans-
former on Ee to parse the relationships across various mo-
tion modes. Each encoder block includes a multi-head self-
attention layer and a Feed-Forward Network (FFN) with
the residual connection [7]. Unlike the naive transformer
encoder, which adds positional embedding at each encoder
block, the observed embedding occurs only once.
Social-Level Transformer Decoder. This decoder is
used to extract social interactions with neighbors. It fol-
lows the standard decoder architecture of a naive trans-
former, including an attention layer and a Feed-Forward
Network (FFN). The differences with naive transformers
lie in four aspects: First, the decoder receives neighbor-
ing embeddings, not masked output embeddings. Second,
TUTR keeps the encoder-decoder attention and empirically
removes the self-attention. Third, the positional embedding
is not necessary for the input embedding because the tra-
jectory coordinates have shown the position relationships
between pedestrians and their neighbors. Finally, the out-
put embeddings are decoded into diverse future trajectories
and corresponding probabilities by the next described dual-
prediction in parallel, not the autoregressive style.

Assume that a pedestrian has N neighbors, represented
by the neighbor observed trajectories Xs ∈ RN×Tobs×2.
Each trajectory in Xs is flattened into a feature vector, lead-
ing to a feature matrix X̂s ∈ RN×2Tobs . Then, we embed
the feature matrix by a learnable linear transformation to
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obtain the input embeddings of the social-level transformer
decoder as follows:

Es = ϕ(X̂s,Ws), (3)

where Es ∈ RN×De is the input embeddings of the decoder,
Ws ∈ R2Tobs×De is the learnable parameter matrix. After
that, the input embeddings Es are transformed into output
embeddings with the subsequent encoder-decoder attention
layer and an FFN layer with the residual connection. In
this case, these output embeddings attend to the social in-
teractions to forecast social-acceptable trajectories and cor-
responding probabilities by the next dual prediction.
Dual Prediction. Most previous methods [16, 37, 33, 34]
predict diverse future trajectories but neglect the proba-
bilities of predicted trajectories. It is a disadvantage to
the safety decision. Here, we use a dual prediction to
achieve regression and classification tasks simultaneously.
As illustrated in Figure 2, a shared regression predic-
tion head (REG FC) and a shared classification prediction
head (CLF FC) are used to forecast diverse future trajec-
tories and corresponding probabilities, respectively. In the
implementation, we empirically find that placing the clas-
sification prediction head to the back of the mode-level en-
coder could bring better accuracy performance.
Model Training. Due to a single provided true future tra-
jectory (ground truth) Ŷ for multimodal trajectory predic-
tion, we employ a greedy training strategy. Specifically, we
first obtain the closest clustering centers ci, i ∈ {1, ..., L}
by distance measurement between the ground truth Ŷ and
L clustering centers C = {c1, ..., cL} as follows:

i = argmin
i∈{1,...,L}

(||Ŷ − ci||22). (4)

Next, we employ a nearest neighbor hypothesis, which
means the ground truth Ŷ can be obtained by a (deep) trans-
formation of the closest centers ci, and the predicted trajec-
tory obtained from ci is the most likely one, i.e., owning the
maximum probability. The soft probability p̂ of ci can be
represented by the normalized negative distance as follows:

p = softmax({−||Ŷ − ci||22 | i ∈ {1, ..., L}}). (5)

Consequently, TUTR is used to transform ci into the de-
sired Ŷ . In this case, we could predict the future trajectory
and its probability with the current motion mode by the ith
output embedding of the decoder in the training step, result-
ing in a predicted trajectory Y and the corresponding soft
probabilities p. Finally, TUTR can be trained in an end-to-
end way as follows:

L = λ1Lreg(Y, Ŷ ) + λ2Lclf (p, p̂), (6)

where λ1 and λ2 are used to balance the loss function, Lreg

is the Huber loss, and Lclf is the cross entropy loss.
In the inference step, TUTR outputs multiple predicted

trajectories and selects K predicted trajectories with Top-K
probabilities to cover diverse motion behaviors.

4. Experiments and Discussions

In this section, we show that TUTR achieves a compara-
ble accuracy performance and faster inference speed com-
pared to existing state-of-the-art methods that benefit from
the well-designed post-processing step. In addition, we pro-
vide detailed ablation studies on components of the pro-
posed method. Finally, we further evaluate the effectiveness
of TUTR by qualitative visualization evaluation.

4.1. Experiments Setting

Datasets. We conduct experiments on two benchmark
datasets, i.e., ETH-UCY [19, 14], and Stanford Drone
Dataset (SDD) [22], to evaluate our proposed method.
ETH-UCY is the most widely used benchmark for pedes-
trian trajectory prediction. It contains trajectories of 1,536
pedestrians collected in four different scenarios with a bird’s
eye view and divided into five subsets, ETH, HOTEL,
UNIV, ZARA1, and ZARA2. On ETH-UCY, we follow
prior works [33, 34] that use a leave-one-out method for
model training. Namely, we train the proposed model on
four subsets and test it on the rest of the subsets. SDD is a
larger benchmark dataset in pedestrian trajectory prediction,
also captured by bird’s eye view. It contains the trajectories
of 5,232 pedestrians recorded in eight different scenarios.
On SDD, we use the previous train-test split [16] to train
and test our proposed model. The model observes the tra-
jectory with length Tobs = 8 (3.2 seconds) and predicts the
next Tpred = 12 (4.8 seconds) trajectory.
Evaluation Metrics. We evaluate our proposed and com-
pared methods by four metrics, i.g., Average Displacement
Error (ADE) and Final Displacement Error (FDE), brier-
ADE and brier-FDE. Given a true future trajectory (ground
truth) {xt, yt}Tt=Tobs+1 and the corresponding predicted K
trajectories, ADE and FDE are used to measure the ℓ2 dis-
tance between ground truth and the corresponding closest
predicted trajectory {x̂t, ŷt}Tt=Tobs+1 ,as shown in Eq. (7).

ADE =
1

Tpred

T∑
t=Tobs

√
(xt − x̂t)2 + (yt − ŷt)2,

FDE =
√
(xT − x̂T )2 + (yT − ŷT )2.

(7)

brier-ADE and brier-FDE [32] are similar to ADE and
FDE but add the probability p of the closest predicted tra-
jectory, as shown in Eq. (8):
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Method Venue/Year ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social GAN [6] CVPR2018 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84 0.61/1.21
SoPhie [23] CVPR2019 0.70/1.43 0.76/1.67 0.54/1.24 0.30/0.63 0.38/0.78 0.51/1.15
STAR [36] ECCV2020 0.36/0.64 0.17/0.36 0.31/0.62 0.29/0.52 0.22/0.46 0.26/0.53
SGCN [27] CVPR2021 0.63/1.03 0.32/0.55 0.37/0.70 0.29/0.53 0.25/0.45 0.37/0.65
CAGN [5] AAAI2022 0.41/0.65 0.13/0.23 0.32/0.54 0.21/0.38 0.16/0.33 0.25/0.43
SIT [26] AAAI2022 0.39/0.62 0.14/0.22 0.27/0.47 0.19/0.33 0.16/0.29 0.23/0.38

SocialVAE [34] ECCV2022 0.47/0.76 0.14/0.22 0.25/0.47 0.20/0.37 0.14/0.28 0.24/0.42
PECNet [16] ECCV2020 0.54/0.87 0.18/0.24 0.35/0.60 0.22/0.39 0.17/0.30 0.29/0.48

AgentFormer [37] ICCV2021 0.45/0.75 0.14/0.22 0.25/0.45 0.18/0.30 0.14/0.24 0.23/0.39
MemoNet [33] CVPR2022 0.40/0.61 0.11/0.17 0.24/0.43 0.18/0.32 0.14/0.24 0.21/0.35

SocialVAE+FPC [34] ECCV2022 0.41/0.58 0.13/0.19 0.21/0.36 0.17/0.29 0.13/0.22 0.21/0.32
Ours (TUTR) - 0.40/0.61 0.11/0.18 0.23/0.42 0.18/0.34 0.13/0.25 0.21/0.36

Table 1. Comparison with state-of-the-art methods on ETH-UCY in ADE/FDE. The first block is the comparisons against the methods
without the post-processing step, while the second block is the comparisons against the methods with the post-processing step.

brier-ADE = ADE+(1− p)2,

brier-FDE = FDE+(1− p)2.
(8)

Implementation Details. In our conducted experiments,
the trajectories are translated to the origin and then ro-
tated to the X-axis to be consistent with the general mo-
tion modes. On ETH-UCY, the number of general motion
modes L = 50, 90, 50, 70, 50 for the ETH, HOTEL, UNIV,
ZARA1, and ZARA2, respectively. The embedding dimen-
sion De is equal to 128. We stack 2 mode-level transformer
encoders with 4 attention heads and 128 FFN hidden dimen-
sions. We stack 1 social-level transformer decoder with 4
attention heads and 128 FFN hidden dimensions. On SDD,
the number of general motion modes L = 100 and the em-
bedding dimension De = 64. We stack 2 mode-level trans-
former encoders with 4 attention heads and 128 FFN hidden
dimensions. We stack 1 social-level transformer decoder
with 4 attention heads and 128 FFN hidden dimensions. All
experiments are conducted on a single RTX 3090 GPU.

4.2. Comparison with State-of-art Methods

Comparison in ADE/FDE on ETH-UCY. As shown in
Table 1, the first block shows the comparisons against
methods without post-processing. TUTR achieves state-
of-the-art performance in both average ADE and average
FDE. Specifically, TUTR improves the average ADE/FDE
from 0.23/0.38 to 0.21/0.35 compared to the previous best
method, SIT [26]. The second block in Table 1 shows the
comparison against the methods with the post-processing
step. TUTR shows competitive performance in average
ADE metrics, being on par with the methods (Memo-
Net [33] and SocialVAE+FPC [34]) with a post-processing
step. However, TUTR still shows a performance gap (0.04)

Method Venue/Year ADE/FDE

Social GAN [6] CVPR2018 27.23/41.44
SoPhie [23] CVPR2019 16.27/29.38
CAGN [5] AAAI2022 9.42/15.93
SIT [26] AAAI2022 9.13/15.42

MemoNet [33] CVPR2022 9.50/14.78
SocialVAE [34] ECCV2022 8.88/14.81

PECNet [16] ECCV2020 9.96/15.88
MemoNet [33] CVPR2022 8.56/12.66

SocialVAE+FPC [34] ECCV2022 8.10/11.72
Ours (TUTR) - 7.76/12.69

Table 2. Comparison with state-of-the-art methods on SDD in
ADE/FDE. The first block is the comparisons against the meth-
ods without the post-processing step, while the second block is the
comparisons against the methods with the post-processing step.

in average FDE metrics, against the previous best methods,
SocialVAE+FPC [34].
Comparison in ADE/FDE on SDD. As shown in Table 2,
the first block shows the comparisons against the methods
without post-processing. TUTR also achieves state-of-the-
art performance both in ADE and FDE. Specifically, TUTR
improves the ADE/FDE from 8.88/14.81 to 7.79/12.73
compared with the previous best method, SocialVAE [34].
The second block in Table 2 shows the comparisons against
the methods with the post-processing step. TUTR shows
state-of-the-art performance in ADE metrics, improving the
ADE from 8.10 to 7.79 compared with previous methods,
SocialVAE+FPC [34]. However, TUTR also shows a per-
formance gap (1.01) in FDE metrics, against the previous
best method, SocialVAE+FPC [34].
Comparison in brier-ADE/FDE. Since many works ne-
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Method Venue/Year ETH HOTEL UNIV ZARA1 ZARA2 AVG

CAGN* [5] AAAI2022 1.43/1.78 1.18/1.44 1.47/2.04 1.29/1.78 1.23/1.65 1.32/1.73
SIT [26] AAAI2022 1.29/1.49 1.03/1.14 1.38/1.82 1.08/1.23 0.99/1.13 1.15/1.36

SocialVAE+FPC* [34] ECCV2022 1.37 / 1.61 1.02/1.09 1.12/1.31 1.07/1.20 1.04/1.17 1.12/1.27
Ours (TUTR) - 1.21/1.41 0.8/0.86 0.99/1.19 1.03/1.19 0.73/0.85 0.95/1.10

Table 3. Comparisons on ETH-UCY in brier-ADE/brier-FDE. * represents the conducted model variant.

glect probabilities, we select three methods with differ-
ent multimodal trajectory prediction strategies to make a
comparison in brier-ADE/FDE. SIT [26] provides proba-
bility information without post-processing. CAGN [5] uses
the Gaussian Mixture Model (GMM) to model diverse fu-
ture trajectories but without probability information. So-
cialVAE+FPC [34] is the previous state-of-the-art method
with post-processing but without probability information.
We conduct two variants of VAGN and SocialVAE+FPC to
make a comparison with TUTR. CAGN predicts 20 Gaus-
sian components and the weights of each component as
probabilities. SocialVAE+FPC predicts abundant trajecto-
ries and clusters them into a GMM, where the weights of
each component are considered as probabilities.

As shown in Table 3 and Table 4, TUTR achieves state-
of-the-art performance in both brier-ADE and brier-FDE.
Specifically, TUTR reduces the brier-ADE/brier-FDE from
1.12/1.17 to 0.95/1.1 on ETH-UCY compared to Social-
VAE+FPC [34]. On SDD, TUTR reduces brier-ADE/brier-
FDE from 9.57/14.75 to 8.44/13.53 compared to Social-
VAE+FPC.
Comparison in Inference Speed. We compare the infer-
ence speed with previous state-of-the-art methods in sparse
and dense pedestrian motion scenes, respectively. We set
the number of pedestrians N as equal to 5, 10, 20, 40, and
80, respectively. The larger N represents more dense
scenes. As shown in Table 5, TUTR significantly outper-
forms the methods (MemoNet [33], SocialVAE+FPC [34])
with post-processing step significantly. Specifically, Mem-
oNet and SocialVAE+FPC suffer from the higher prediction
delays that they cost 1.2989s and 2.0939s to predict a 4.8s
trajectory in a dense scene, respectively. In contrast, TUTR
achieves about 10× speed improvement in sparse scenes
and 40× speed improvement in dense scenes. The inference
speed variance is also shown in Figure 1 (B). In conclusion,
TUTR achieves a balance between accuracy performance
and inference speed.

4.3. Ablation Studies

Importance of Global Prediction. We conduct a variant
to evaluate the importance of global prediction, referring to
object queries [3]. Specifically, the L general motion modes
obtained from the global prediction are replaced by L learn-
able latent vectors. In this case, the nearest neighbor hy-

pothesis is not available because the latent vectors cannot
provide information on which latent vector is closest to the
ground truth. Therefore, we use a variety loss [6] to predict
trajectories. The experimental results demonstrate that the
latent vectors suffer from a large performance reduction, en-
larging the average ADE/FDE from 0.21/0.36 to 0.34/0.64
on ETH-UCY and from 7.76/12.69 to 17.26/34.64 on SDD.
The reason lies that latent vectors cannot provide useful in-
formation to guide neural networks to generate diverse tra-
jectories compared with general motion modes.
Number of General Motion Modes. The general motion
modes are used to represent the common motion behaviors
of a pedestrian. Here. we analyze the impact of the number
of general motion modes L as shown in Figure 4, where the
experimental results show that L = 100 achieves the best
performance. The reason could be that too few general mo-
tion modes can not cover common motion behaviors, and
too many general motion modes disturb the neural network
to search for effective modes.
Importance of Model Components. We conduct three
variants to evaluate the components of TUTR. As shown
in Table 6, GP is the global prediction, MTE is the mode-
level transformer encoder, and STD is the social-level trans-
former decoder. GP is replaced by multiple learnable latent
vectors similar to the before-mentioned ablation study of
global prediction. The MTE is replaced by a feed-forward
network [29] to perform an ablation study. The experimen-
tal results show that each component is effective in predict-
ing diverse future trajectories.

4.4. Qualitative Analysis

General Motion Modes. Here, we provide an intuitive vi-
sualization of general motion modes to evaluate their ability
to cover common motion behaviors of a pedestrian. Note
that the general motion modes are obtained on normalized
trajectories, i.e., the direction of pedestrian motion is from
right to left. As shown in Figure 3, the general motion
modes could represent the common motion behaviors, e.g.,
going straight, turning left/right, or turning back.
Predicted Diverse Trajectories. As shown in Figure 5,
the predicted trajectories have a good diversity to cover
various motion behaviors of pedestrians, such as turning
left/right (1,4), going straight (3), keeping standing (6) and
sharp turning (2, 5). Moreover, TUTR can predict the best
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Method Venue/Year ADE/FDE

CAGN* [5] AAAI2022 17.82/35.78
SIT [26] AAAI2022 10.06/16.33

SocialVAE+FPC* [34] ECCV2022 9.57/14.75
Ours (TUTR) - 8.44/13.53

Table 4. Comparisons on SDD in brier-ADE/brier-FDE. * repre-
sents the methods without probability prediction.

N MemoNet [33] SocialVAE+FPC [34] Ours

5 0.3221 0.6127 0.0577
10 0.4058 0.6869 0.0561
20 0.5358 1.1807 0.0586
40 0.7784 1.4053 0.0582
80 1.2989 2.0939 0.0533

Table 5. Comparisons in inference time recorded by seconds. Our
method significantly outperforms the compared methods.

Variant GP MTE STD ADE/FDE

(1) ✗ ✓ ✓ 17.26/34.64
(2) ✓ ✗ ✗ 8.14/13.46
(3) ✓ ✓ ✗ 7.85/12.91
(4) ✓ ✓ ✓ 7.76/12.69

Table 6. Ablation study of TUTR on SDD dataset in ADE/FDE.
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Figure 3. Visualizations of the general motion modes on ETH-
UCY and SDD. The motion direction is from right to left.

trajectory with high probability.

5. Conclusion

In this paper, we present a trajectory-unified framework
named TUTR, which unifies the social interaction and mul-

A
D
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L

Figure 4. Ablation study of the number of general motion modes
L on SDD dataset. L = 100 is the best performance.
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Figure 5. Visualization of predicted trajectories and correspond-
ing probabilities.

timodal trajectory prediction into an encoder-decoder trans-
former architecture to remove the need for post-processing.
The experimental results show that TUTR achieves compet-
itive accuracy performance compared with previous state-
of-the-art methods that gain from the well-designed post-
processing. What’s more, TUTR performs about 10×−40×
inference speed improvements. However, the clustering al-
gorithm is hard to match complex data structures, such as
map information. How to learn more robust mode represen-
tations is worth exploring in the future.
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