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Abstract— The lack of automatic tools to identify giant panda
makes it hard to keep track of and manage giant pandas in
wildlife conservation missions. In this paper, we introduce a
new Giant Panda Identification (GPID) task, which aims to
identify each individual panda based on an image. Though
related to the human re-identification and animal classification
problem, GPID is extraordinarily challenging due to subtle visual
differences between pandas and cluttered global information.
In this paper, we propose a new benchmark dataset iPanda-50 for
GPID. The iPanda-50 consists of 6,874 images from 50 giant
panda individuals, and is collected from panda streaming videos.
We also introduce a new Feature-Fusion Network with Patch
Detector (FFN-PD) for GPID. The proposed FFN-PD exploits the
patch detector to detect discriminative local patches without using
any part annotations or extra location sub-networks, and builds
a hierarchical representation by fusing both global and local
features to enhance the inter-layer patch feature interactions.
Specifically, an attentional cross-channel pooling is embedded
in the proposed FFN-PD to improve the identify-specific patch
detectors. Experiments performed on the iPanda-50 datasets
demonstrate the proposed FFN-PD significantly outperforms
competing methods. Besides, experiments on other fine-grained
recognition datasets (i.e., CUB-200-2011, Stanford Cars, and
FGVC-Aircraft) demonstrate that the proposed FFN-PD outper-
forms existing state-of-the-art methods.

Index Terms— Giant panda identification, feature fusion, patch
detector, fine-grained recognition.

I. INTRODUCTION

UTOMATIC identifying giant panda is an important
task in panda management and interpretation of images
captured by motion activated trail cameras in wildlife research.
However, the subtle differences between panda individuals
and the appearance variations due to posture/viewpoint make
it challenging to correctly identify each giant panda. Even
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Fig. 1. Examples from the proposed iPanda-50 dataset. (a) Images of the
same panda could exhibit dramatic appearance variations due to different
illumination, viewpoint, posture and occlusion conditions. (b) Images of
different individual pandas could have only subtle appearance differences.

though some biometric trait-based methods (e.g., DNA-based
assessment [1]) or RFID (Radio Frequency Identification) tags
can help address such problem, these time-consuming data
collection procedures makes them expensive, inconvenient or
even impractical.

In this paper, we propose to address this problem with
computer vision techniques based purely on an input image.
We formulate the new Giant Panda Identification (GPID) task
and propose a new benchmark dataset iPanda-50 for GPID. We
assume an image database of giant pandas of known identities
are available and the unidentified giant panda belongs to one
of these identities. Thus, GPID is a closed-set identification
problem. While this paper focuses on identifying giant pandas,
we expect the technique could be extended to solve other
animal identification tasks.

Image-based giant panda identification is very challenging
due to large intra-identity variations and small inter-identity
distances. Image examples shown in Figure 1 illustrate the
challenges for the GPID task, i.e., images of the same panda
exhibit dramatic appearance variations caused by varying
illumination conditions, viewpoints, postures, and occlusions,
while images of different individual pandas could look very
similar to untrained human eyes.

Furthermore, as illustrated in Figure 2, GPID is distinct
from other visual identification tasks such as face recogni-
tion [2]-[4], person re-identification [5]-[7] and fine-grained
recognition [8]—-[12]. Compared with the face recognition task,
where the human face is a rigid object with small local
deformations, giant pandas in GPID exhibit postures with
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face identification

Fig. 2. Comparison between the giant panda identification task and similar
computer vision tasks. Four rows above show image examples from the
proposed iPanda-50 dataset for giant panda identification, the CUB-200-2011
dataset [13] for fine-grained visual recognition, the Market-1501 dataset [14]
for person re-identification, and the MS-Celeb-1M dataset [15] for face
identification, respectively.

huge difference, thus it is almost impossible to align the
the giant panda images before comparing their discriminative
features. Compared with the person re-identification task,
the giant panda is not only an articulated object having a large
degrees of freedom (thus various postures and occlusions) but
also lacks discriminative attributes like clothing, while the
pedestrains often show distinctive appearances, e.g., different
clothing, backpacks or hats. Specifically, GPID is highly
related to the fine-grained visual recognition (FGVR) [8]-[12],
where both aim to distinguish subtle differences between
visually similar entities, especially in their local parts. How-
ever, the individual-level appearance differences in GPID are
arguably more challenging to detect than the category-level
differences in FGVR. Therefore, GPID is generally more
challenging than the aforementioned tasks.

Since the differences among inter-category images occur on
subtle parts, both GPID and FGVR should be capable of iden-
tifying discriminative local regions and learning features that
capture their visual differences. However, most existing FGVR
methods conduct part localization and feature learning inde-
pendently. For instance, some part-based methods [16]-[19]
train a part detection sub-network using part annotations and
extract features from each part region, which are subsequently
combined with the global feature for recognition. Despite the
promising results, they rely heavily on manual part labeling,
which could be time-consuming and expensive. Worse still,
the pre-defined parts may not necessarily correspond to the
most discriminative regions and thus result in inferior recog-
nition results.

Recently, some region-attention methods [20]-[23] intro-
duce multi-attention modules as sub-networks to learn the
discriminative regions/features in a weakly-supervised way
and do not need manual part annotations. However, such
multi-stage methods rely on a complicated procedure of
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network training, and sometimes accumulate errors and result
in degraded performance when prior stages focus on false
attention regions. Alternatively, end-to-end methods [24], [25]
require only image-level annotations. Some recent meth-
ods [26], [27] implement end-to-end training based on bilinear
pooling frameworks, but most of them only use features from
the last convolutional layer, which might be suboptimal for
fine-grained recognition tasks.

To address the above challenges, we propose a
Feature-Fusion Network with Patch Detector (FFN-PD)
for GPID. The proposed FFN-PD does not rely on any
location sub-networks and can be simply trained end-to-end
without additional part annotations. Inspired by [28], we adopt
an asymmetric multi-stream structure to capture both local
and global features, and employ 1 x 1 convolution filters (i.e.,
patch detectors) to automatically detect most discriminative
local patches, which could be the key to identify giant pandas.
Thanks to this design, the proposed method does not require
additional part annotations, and the local patches of each
giant panda are self-excavated by the network. In this way,
we avoid fixed types of parts and these learned parts are not
artificially constrained to be shared among different pandas.
Furthermore, we propose a novel fusion stream to fuse global
and local features, and generate a hierarchical representation.
This mid-level representation embodies inter-layer patch
feature interactions and allows the network to further focus
on more commonly discriminative patch features. To facilitate
the learning of identity-specific patch detectors, we further
introduce a novel attentional cross-channel pooling to achieve
convolution filter supervision.

To sum up, the key contributions of this paper are as follows:

o To the best of our knowledge, this is the first work
addressing the important yet challenging task of Giant
Panda Identification (GPID) in images. We build a
new benchmark dataset called iPanda-50, which exhibits
extreme similarity between different individual-level pan-
das (small inter-identity distances) and dramatic varia-
tions of appearances, illuminations, viewpoints, postures,
and occlusions within each identity (large intra-identity
variations).

o We propose a novel Feature-Fusion Network with Patch
Detector (FFN-PD) for GPID with several technical inno-
vations. First, we embed patch detectors across layers to
generate more significant representations for local parts.
Second, we apply a new hierarchical representation to
capture inter-layer patch feature interactions. Third, a new
attentional cross-channel pooling serves as the convo-
lution filter supervision to enhance class-specific patch
detectors. The proposed FFN-PD can be trained end-
to-end and does not require any extra part annotations.

o We evaluate the proposed FFN-PD on the challenging
iPanda-50 dataset as well as other fine-grained recogni-
tion datasets. The results show the proposed FFN-PD
achieves a significant performance advantage against
competing methods on the iPanda-50 dataset, and also
achieve state-of-the-art performance on other fine-grained
recognition datasets (i.e., CUB-200-2011, Stanford Cars,
and FGVC-Aircraft). Besides, extensive ablation studies
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are carried out to validate the contribution of each com-
ponent.

o We find that covering the eyes of pandas via Gaussian
blur will significantly degrade the identification perfor-
mance. This indicates that the panda’s eyes play a critical
role in panda identification.

This paper extends our previous conference paper [29] in
four aspects. (1) More comprehensive review is included in
Section II. (2) More details on problem formulation and
implementation details are provided. (3) We augment the
panda dataset and add extra annotations of the locations of
pandas’ eyes, which we found to be a critical factor for panda
identification. (4) We include more experimental details and
more competitive methods for comparison.

The rest of the paper is organized as follows. In Section II
we review related work. In Section III we present the details
of the proposed Feature-Fusion Network with Patch Detector.
In Section IV, we introduce the new benchmark iPanda-50. In
Section V, we introduce implementation details, along with
detailed evaluation results and discussions. Finally, we con-
clude the paper in Section VI.

II. RELATED WORK

In this section, we briefly review related work on
fine-grained visual recognition, discriminative region excava-
tion, feature fusion and multi-scale feature representation.

A. Fine-Grained Visual Recognition

Popular  Fine-grained Visual Recognition (FGVR)
tasks [30]-[33] often involve the classification of
subspecies/breeds, where appearance variances among

different categories differ only in slight parts. Profited by
the evolvement of deep Convolutional Neural Networks
(CNN), FGVR has transitioned from the strongly-supervised
way [13], [16]-[18] to the weakly-supervised manner [10],
[20], [34], [35] in the past few years. For strongly-supervised
methods [17], [19], they generally utilize localization networks
to locate discriminative part regions with part labels, and
conduct “hard” crop operation on these regions to further
extract region features. Despite their efficacy, their heavy
reliance on part annotations restricts practical applications.
Recently, the attention mechanism introduced in several
part annotation-free methods [20], [35] have been developed.
Fu et al. [20] propose a recurrent attention CNN, which recur-
sively learns discriminative region attention and region-based
feature representation at multiple scales in an alternating opti-
mization scheme. However, the alternate training of multiple
sub-networks needs to be adjusted manually, which could
limit their practicality. Sun et al. [35] employ a one-squeeze
multi-excitation module to obtain multiple attention region
features of each input image and then utilize a metric learning
framework with a multi-attention multi-class constraint, but
this work contains a non-trivial sample selection procedure.
Alternatively, to achieve the ease of training in an end-
to-end manner, some neural network designs resort to the
bilinear pooling [36] and its variants [24], [27]. However,
most of them only exploit feature representation from the
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last convolutional layer, which are typically too coarse for
fine-grained tasks and incur high computational cost due to
the typical large depth/channel dimension.

The most relevant work to ours is DFL-CNN [28] as it also
leverages patch detectors to discover the discriminative local
patches. However, our work differs from [28] in three main
ways. (1) DFL-CNN simply embeds patch detectors after mul-
tiple convolutional layers to achieve multi-scale patch learning,
while we extend patch detectors in another layer to construct
a fusion stream, which makes the network further focus on
high-response discriminative local patches. As a result, our
network promotes the interaction of local patches across layers
while [28] neglects such interaction. (2) We introduce a new
filter supervision (i.e., attentional cross-channel pooling) to
respond reasonably to the roles of different local patches,
and it works better than the mediocre cross-channel pooling
in [28]. (3) We discard the complicated method of non-random
initialization which is designed to avoid bad local minima
while learning the patch detectors in [28].

B. Discriminative Region Excavation

Due to differences of small object parts, discriminative
region excavation plays an important role for fine-grained
object recognition. A straightforward way to represent parts
is to find where the discriminative regions are with location
networks. One prior work [37] uses a volumetric poselet
scheme to establish bird pose-normalized part appearance.
Another work [38] trains two deformable part descriptors
with object part annotations to localize the semantic parts.
Furthermore, some methods locate object parts with key
part point labels to regress region bounding boxes by fully
convolutional network [16], [17] or Mask-CNN [19]. With
image-level supervision, recent methods [20], [21], [23] learn
discriminative region features by generating region atten-
tion maps in a multi-stage optimal manner. For example,
Zhang et al. [23] learn multiple experts focused on the diver-
sity of regions by combining a gradually-enhanced learning
strategy. Ding et al. [39] collect local maximums to estimate
informative regions and learn a set of sparse attention for
capturing fine-detailed visual evidence.

In contrast, our design is an end-to-end network, which
automatically learns discriminative regions without any expen-
sive bounding box/part annotations or complex location sub-
networks. We design our method so that it directly optimizes
local region search with the patch-level classification loss.

C. Feature Fusion

CNNs have also become popular for instance-level classifi-
cation, but the feature map out of a single convolution layer
is often insufficient to distinguish subtle differences among
very similar objects or categories, e.g., feline/canine/avian
subspecies. Recently, efforts of combining feature maps from
multiple convolution layers have been proposed [40], [41].
Long et al. [42] combine coarse features and fine features
from different convolution layers for image segmentation.
Hariharan et al. [43] present a hyper-column representa-
tion for object segmentation and fine-grained localization,
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Fig. 3. An overview of the proposed Feature-Fusion Network with Patch Detector, which consists of a global stream (G-Stream), a local stream (L-Stream) and
a fusion stream (F-Stream) to exploit global information, patch-level information and hierarchical information, respectively. Besides, an attentional convolution
filter supervision is proposed to facilitate identity-specific discriminative patch learning.

which concatenates pixel-level activations from all CNN units.
Cai et al. [27] concatenate multiple feature maps from different
layers to exploit the intra-layer and inter-layer interactions.
More recently, Yu et al. [25] claim that hierarchical bilinear
pooling could enhance both inter-layer patch feature interac-
tion and fine-grained feature representation.

D. Multi-Scale Feature Representation

In order to further improve the performance, many CNNs
of computer visual tasks have exploited multi-scale features.
Some methods [42], [44] concatenate feature vectors inferred
from multiple layers and obtain the final result to include infor-
mative features of low-level spatial resolution and high-level
semantic properties. Besides, Lin et al. [45] propose a Feature
Pyramid Network (FPN) to build high-level semantic feature
maps at all scales by a top-down architecture with lateral
connections. Wang et al. [46] use a multiple granularity
framework to encode informative and discriminative features
covering all the grain levels. More recently, the deep layer
aggregation structure studied in [47] produces better accuracy
by iteratively and hierarchically merging the feature hierarchy.

In this paper, we perform multi-scale feature representation
by independently computing four various losses, where each
one accounts for a meaningful semantic representation, and
they jointly contribute to the final classification.

III. FEATURE-FUSION NETWORK WITH PATCH DETECTOR

In this section, we first formulate the task of Giant Panda
Identification (GPID), then describe the framework of the pro-
posed Feature-Fusion Network with Patch Detector (FFN-PD)
in detail, and finally present the network training and test-
ing process. As described in Section I, it is necessary to
exploit both global and fine-grained discriminative informa-
tion to identify pandas. To this end, the proposed FFN-PD
adopts an asymmetric multi-stream structure. As illustrated in
Figure 3, the proposed FFN-PD consists of a global stream
to learn global features, a local stream with patch detectors
to learn local discriminative features, and a fusion stream to
learn hierarchical representation. Besides, a novel attentional

cross-channel pooling is employed to force identity-specific
patch features learning.

A. Problem Formulation

The training set contains a set of training tuples, where each
tuple (X,y) consists of one RGB giant panda image X €
R3*H*W and its corresponding ground truth label y € RV,
where H and W respectively indicate the height and width of
the image, y is a one-hot label vector, and N is the number of
panda individuals. The goal of GPID is to correctly map the
testing giant panda image to its label vector.

B. Global Stream

Similar to generic image classification methods, the global
stream (i.e., G-Stream) consists of a feature-extraction back-
bone (e.g., ResNet50 [48]) for image feature extraction, and a
fully-connected classification layer with softmax to output the
classification prediction Jgiopal-

However, using the G-Stream alone is far from enough
to clearly distinguish panda identities, as panda identities
exhibit very similar global patterns. Therefore, we introduce
the following local stream to identify pandas in a fine-grained
level.

C. Local Stream

The appearance differences among panda individuals usu-
ally occur at subtle parts, which are crucial for panda identifi-
cation. To this end, we propose a local stream (i.e., L-Stream)
to capture the local discriminative information. Naturally,
early layers of a feature-extraction backbone have smaller
receptive field than its deep counterpart, thus early layers are
able to detect more fine-grained information [45]. Therefore,
the L-Stream takes as input an intermediate feature map
from the feature-extraction backbone (e.g., feature map at the
layer3 of ResNet50 [48]).

Denote the intermediate feature map is of size C’ x H; x Wy,
where C’ is the number of channels, H; and W; are respectively
the height and width of the feature map. The feature map can
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Fig. 4. An overview of the patch detector. A patch detector finds dis-
criminative local patches with patch-level information, which is the L-stream
in Figure 3.

be further interpreted as H; x W; patch vectors of size C’x1x1,
where each patch vector represents the local feature within its
receptive field. Inspired by [28], we exploit 1 x 1 convolutional
filters as patch detectors to detect local patches so that high
responses represent subtle discriminative characteristics of
a panda identity. Thanks to this design, the learned patch
detectors will not be limited to manually pre-defined locations,
thus free us from additional manual location annotations.
As shown in Figure 4, C patch detectors are used to learn the
most discriminative image patches. The output feature map is
filterd with a global max pooling (GMP) to keep the most
discriminative features, and passed through a fully-connected
softmax layer to get the local stream prediction result Yiocal.

D. Fusion Stream

Despite using patch detectors in the L-Stream, as illus-
trated in Figure 3, we further embed patch detectors into
the G-Stream to exploit various semantic patches in feature
maps with different receptive fields. To guide the network
to emphasize more on high-response patches, we introduce
a fusion stream (i.e., F-Stream) to fuse local and global
features via element-wise multiplication. These inter-layer
patch interactions can further activate common high-response
regions and produce a local-global hierarchical representation.
Figure 5 shows an overview of the F-Stream.

After passing deep feature maps through patch detectors of
the L-Stream and G-Stream, we obtain the local and global
filtered feature maps M; € RC*H>xWi and M, € RE*HsxWe
respectively, where Cy, Hg, and W, are the number of output
channels, height and width of the global filtered feature map,
respectively. Typically, H; > H, and W; > W,, because the
size of feature map generally decreases as the depth of layers
increases. An additional average pooling layer is included to
reduce the spatial dimension of the local filtered feature map
and match the size of global filtered feature map, such that
M; = AvgPool(M;) € RE*HsxWe  Subsequently, the feature
fusion is implemented via element-wise multiplication:

M; =M, OM, (N

where © denotes the element-wise multiplication and My €
RCE*HexWe - Ag shown in Figure 5, the L-Stream may falsely
exploit background noise as discriminative patches, while the
G-Stream can only detect coarse regions. With the proposed
element-wise multiplication fusion method, the hierarchical
representation can guide the network to focus on the com-
monly interesting regions across layers, which could effec-
tively promote identification accuracy. Then, global average
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Fig. 5. An overview of the fusion stream. The feature fusion process
fuses local filtered features and global filtered features via element-wise
multiplication and results in a hierarchical representation. The learned heat
maps of each feature map are illustrated.

pooling is implemented on the fusion feature map to reduce the
spatial dimension: m; = GlobalAvgPool(My) € R€. Finally,
{> normalization is carried out to obtain the final hierarchical
representation:

_ my¢
AT YT @
where || - ||> denotes the £, norm. my is subsequently fed
into a fully-connected layer with softmax to get the fusion

prediction Yfusion-

E. Attentional Convolution Filter Supervision

As illustrated in Figure 5, the fully-connected layer used
to compute ¥jocar inevitably mixes all discriminative patches
together. Moreover, there is no guarantee that the 1 x 1 con-
volutional filters (designated as patch detectors) will focus on
specific discriminative patches of a certain identity. Therefore,
an additional supervision is needed to encourage patch detec-
tors to emphasize on identity-specific discriminative patches.
To this end, as illustrated in Figure 6, we propose a novel
attentional cross-channel pooling module to address the afore-
mentioned problem.

Specifically, let the number of patch detectors be C = k- N,
where k is a pre-defined hyperparameter indicating the top-
k most discriminative local patches for each identity. Given
local and global filtered feature maps M; and M, we first use
global max pooling to obtain two (k - N)-dimensional feature
vectors v; and vy € RKN respectively. As mentioned above,
each identity is assigned with k patch detectors to detect its
discriminative features, thus the k values in the feature vectors
are expected to have high activations, while others are expected
to have low activations. Therefore, we propose to directly
generate identification predictions from the feature vectors.
Specifically, we first combine v, and v; via element-wise
addition as v = v; + v,. Then, for convenience, we reshape
the (k - N)-dimensional feature vector as a matrix V =
[V1, s ,VN] (S RkXN.

In [28], this combined V is simply average-pooled to
generate a N-dimensional vector a € RV for identification
prediction:

1

a—
k

where 1,51 denotes an all-one vector of size k x 1.

Vi1, (3)
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Fig. 6. An overview of the proposed attentional cross-channel pooling.
The local and global filtered feature vectors are weighted sumed via an
attention weight matrix W, and generate a filter identification prediction. This
figure provides details of the “filter supervision — Yqie;” green rectangle
in Figure 3.

However, such simple averaging strategies are reported to
induce balanced responses in these k patches during back-
propagation [49]. Besides, the k discriminative features may
not necessarily appear in each image due to different panda
poses. Therefore, we concern that the simple averaging in
Eq. (3) might assign equal weights to patches with different
semantic significance and falsely detect irrelevant patches, thus
adversely affect the performance. To address this problem,
we propose a new attention mechanism, which automatically
learns the weights assigned to the k local patches. Specifi-
cally, let W = [wy,--- ,wy] € RK*N' denote the attention
weights, with each column w; = [wi1,--- ,wijk]T e Rk,
i =1,---,N. All elements in W are initialized to 1/k and
automatically updated during the training process via back-
propagation. Then, we weighted sum the feature matrix V via
the attention weights W, and generate the filter prediction yier
via class-wise softmax:

Jier = softmax (VO W) Lt ) o

where softmax(-) denotes a class-wise softmax.

F. Network Training and Testing

By exploiting information from different streams, we obtain
different semantic identification predictions from features
with different receptive fields. Specifically, three predictions
Yelobals Ylocal, and Yusion are obtained from the global stream,
the local stream, and the fusion stream, respectively. Besides,
an additional filter supervision prediction ¥gjer iS obtained
directly from the feature vectors. During training, the four
predictions are supervised by the standard cross entropy
loss, and a weighted sum of the four losses forms the total
loss L:

L= Z Lee(§i,¥) + AL Fhilter> ¥)» (5)
icpP
where P = {global, local, fusion}, L. is the standard cross
entropy loss, and 1 is a weight parameter.
During testing, we also use a weighted average to generate
the final prediction ¥:

ZieP yi + jvﬁﬁlter

344 ©

3\7:
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IV. THE iPANDA-50 DATASET

We present a new iPanda-50 dataset for the giant panda
identification task. We first collect giant panda streaming
videos from the Panda Channel,! which contains daily rou-
tine videos of pandas at different ages (cubs, juveniles, and
adults). The identity annotations are provided by professional
zookeepers and breeders. To extract panda images from videos,
we compute the similarities between adjacent video frames
with the structural similarity index measure (SSIM) [50],
which is defined as

N
SSIM, , = % Z (2ﬂx;ﬂyi + Cl) (20'x;yi + C2) NG
i=1 (,u%i + ,ug,,. + Cl) (O'XZZ, + 0')%, +C2)

where uy;, uy, are the averages of the iy, pair of patches in
the images x, y respectively, oy, oy are their variances, oy is
their covariance, and M is the total number of image patches.
c1 and ¢, are constants to prevent the denominator of Eq. (7)
from being zero. In this way, only key frames that are different
from their previous ones are retained.

We further manually select images with various illumi-
nations, viewpoints, postures, and occlusions. In addition,
we manually crop out each individual panda with a tight
bounding box of varying aspect ratios. The iPanda-50 dataset
consists of 6,874 images of 50 giant panda identities with
49 ~ 292 images per panda identity. The split ratio of the
training set and testing set is 2:1. Some sample images and
statistics of this dataset are shown in Figure 7. This iPanda-
50 dataset is available online,> and we are further expanding
the dataset.

V. EXPERIMENTS AND DISCUSSIONS

This section contains four parts. First, we introduce the
implementation details of the proposed Feature-Fusion Net-
work with Patch Detector (FFN-PD). Second, we evaluate
the proposed method on the challenging iPanda-50 dataset.
Third, we apply our method to conventional fine-grained
visual recognition (FGVR) datasets, i.e., CUB-200-2011 [13],
Stanford Cars [32], and FGVC-Aircraft [51], which are most
related to our task. Finally, we demonstrate ablation studies
to prove the contribution of each component in the proposed
FFN-PD.

A. Implementation Details

The proposed FFN-PD is implemented via PyTorch [52]
and trained with 4 NVIDIA 1080Ti GPUs. We apply Ima-
geNet [53] pre-trained ResNet50 [48] as the backbone in our
experiments, and extract feature map at the layer3 for local
stream. It is worth noting that our backbone is not tied to
any specific networks. The regular stochastic gradient descent
optimizer is used with a momentum of 0.9, a weight decay of
5x 107, and a batch size of 32. The initial learning rates are
0.01 and 0.1 for the pre-trained layers and the newly added
layers, respectively. The learning rates are decayed by a factor

1Video streaming website, http://www.ipanda.com
2https://github.com/iPandaDateset/iPanda—SO
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Fig. 7. Sample images and statistics of all the panda identities from the
iPanda-50 dataset. Statistics are formatted as identity, #images(#training-
images/#testing-images).

of 0.1 every 20 epochs. The number of the most discriminative
patches per identity, i.e., k, is empirically fixed to 10. Both
the kernel size and the stride of the average pooling in the
F-stream are 2. The weight parameter 4 is set to 0.1 according
to grid search.

As mentioned in previous sections, the receptive field of
the deep layer is too large to locate object parts. To tackle this
issue, we zoom in the input image, and thus the receptive
fields of the subtle parts become larger compared to the
original image at the same convolution layers. Specifically,
for the giant panda identification task, all input images are
resized to 448 x 448 regardless of aspect ratios, and augmented
with random horizontal flipping during training, while they
are only resized during testing. The FGVR settings on the
CUB-200-2011, Stanford Cars, and FGVC-Aircraft datasets
are highly similar, except that (1) all images are resized so
that the shorter edge is 448 pixels wide (keeping aspect ratio
unchanged), (2) training images are randomly cropped so that
their sizes are 448 x 448, and (3) testing images are cropped
at the center so that their sizes are 448 x 448. We use the
multi-class classification accuracy as the evaluation metric.

B. Evaluation on the iPanda-50 Dataset

The performance comparison between the proposed
FFN-PD and competing methods on the iPanda-50 dataset is
summarized in Table I. All statistics in Table I are obtained
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TABLE I

PERFORMANCE COMPARISON ON THE IPANDA-50 DATASET VIA
5 RANDOM TRIALS. THE MAXIMUM, MEAN, AND STANDARD
DEVIATION OF THE ACCURACY ARE REPORTED AS MAX.,
MEAN, AND J, RESPECTIVELY. P-VALUES AND
ALTERNATIVE HYPOTHESIS H; CONFIDENCE IN A
SERIES OF ONE-TAILED STUDENT’S T-TESTS
(WITH NULL HYPOTHESIS H() BEING THERE
Is NO EFFECTIVE ADVANTAGE OF THE
PROPOSED FFN-PD OVER OTHERS)

ARE REPORTED AS P-VALUE
AND CONF., RESPECTIVELY

Method Max. (%)  Mean (%) 4 P-value Conf.
Baseline 76.3 75.7 0.70 2.0e-6 >99%
MFC 80.8 79.9 1.00 1.2e-4 >99%
HBP [25] 78.4 77.8 0.48 4.1e-7 >99%
B-CNN [36] 71.3 76.9 0.30 1.3e-9 >99%
DFL-CNN [28] 84.8 84.1 0.49 2.0e-4 >99%
FFN-PD (ours) 86.3 86.1 0.16 - -

with 5 independent random training/testing splits (4, 106 and
2,768 images in training and testing splits, respectively). The
maximum (Max.), mean (Mean), and standard deviation () of
the accuracy (%) over these 5 trials are reported. Additionally,
to account for coincidental fluctuations and reveal statistical
significance, a series of 5 one-tailed student’s t-tests are
carried out. The null hypothesis Hy is there is no obvious
advantage of the proposed FFN-PD over other competing
methods. P-values and the confidence intervals (Conf.) of
the alternative hypothesis H; being true are also reported
for each competing methods. As presented in Section III,
the “Baseline” in Table I denotes a generic classification
network with a single G-Stream branch.

We also implement a multi-feature concatenation (“MFC”
in Table I) method, which directly concatenates features
from multiple convolution layers (i.e., layer3 and layerd4 of
ResNet50). It outperforms the baseline, indicating the value
of incorporating cross-layer features.

More importantly, we re-implement three FGVR methods,
i.e., (1) a classical bilinear pooling method BCNN [36],
(2) a hierarchical bilinear pooling framework HBP [25],
which concatenates multiple cross-layer bilinear features,
(3) DFL-CNN [28], which learns a mid-level representation to
capture identity-specific discriminative patches. The proposed
FEN-PD outperforms all these competing ones with confidence
intervals of > 99%.

Figure 8 provides Grad-CAM [54] visualizations of the
local filtered features for four different identities. The second
column in Figure 8 is the feature visualization before training,
and it shows that the high activations are scattered all over the
image, and most of the patches with high response are located
on the background instead of the target panda.

After training, such discriminative patches focus on the
pandas, especially on their faces, as shown in the third
column of Figure 8. Besides, for different panda identities,
the patches may also focus on different locations (e.g., eyes
of “wuyi”, nose of “sa”, back of “giyuan”, and ears of “susu”),
which demonstrates patch detectors can detect identity-specific
discriminative parts. We further remap the local patches with
the top-3 activations back to the original image in the fourth

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 20,2021 at 07:25:51 UTC from IEEE Xplore. Restrictions apply.



2844

sa

qiyuan

Fig. 8. The Grad-CAM [54] visualization of the feature maps of different
panda identities at the end of the local L-Stream branch. The first column
is the original images, the second column is the feature visualization before
training, the third column shows the active regions after training, and the last
column shows the top-3 patches remapped onto the original image.

L

aibang maodou nina
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Fig. 9. The visualization of covering different regions of the giant panda
with Gaussian blur. We cover the giant panda’ eyes on the image as shown
in the first row, and randomly cover other regions except the eyes shown in
the second row.

column. We are surprised that these visualizations agree well
with [55], which claims that such black eye patches may help
pandas recognize one another.

In order to verify the aforementioned conjecture that the
features around the eye regions of the giant panda may pro-
mote the accuracy of panda identification, we further perform
the following experiments. We use Gaussian blur to cover the
panda eyes in the iPanda-50 dataset (as shown in the first
row of Figure 9). Since occlusion based on Gaussian blur
also brings noise, it is difficult to directly judge whether the
factor affecting the accuracy is the Gaussian blur itself or the
occlusion of the panda’s eyes. Therefore, we also use Gaussian
blur occlusion on other regions besides eyes (as shown in
the second row of Figure 9), and the number of Gaussian blur
occlusions is set to the same as the number of eyes exposed in
the image (due to panda’s pose, some image may show one eye
or two eyes). In addition, random occlusion also brings random
errors. The best way to eliminate random errors is to repeat the
similar process and use the mean to offset the random errors.
Therefore, we randomly conduct five independent Gaussian
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TABLE II

PERFORMANCE COMPARISON BETWEEN COVERING PANDA EYES AND
RANDOMLY COVER OTHER REGIONS ON THE IPANDA-50 DATASET

. randomly cover other parts
iPanda-50 | cover eyes ol = 3 ) 5 T Moan.
86.3 % 82.2 84.4184.6 | 84.0 | 849 | 847 | 845

shuqing

-t
baolan

sa yayi
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Fig. 10. Failure cases of the proposed FFN-PD due to the bad illumination
condition and the back posture that does not show obvious discriminative
characteristics.

blur occlusions on other regions. Finally, we evaluate with our
proposed algorithm on the iPanda-50 dataset after Gaussian
blur processing.

The results are summarized in Table II. We obtain an
accuracy of 82.2% on the same iPanda-50 dataset split by only
covering the giant panda’s eyes, which is 4.1% lower than
86.3% without any cover processing. Meanwhile, the mean
accuracy of the five independent random occlusions is 84.5%,
which slightly degrades the performance. It indicates that
Gaussian blur does partly reduce the identification perfor-
mance, but the impact it brings is far worse when covering
the eyes. We believe that the features around eyes could affect
panda identification. The experimental results indicate that our
method can well learn the features around the eyes without any
part-level supervision. It further illustrates the effectiveness
and feasibility of the proposed method.

Figure 10 shows failure cases with the proposed FFN-PD.
Specifically, we speculate that the back view of giant pandas
“sa” and “yayi” and the poor illumination of the giant panda
“xingxiao” account for such identification failures.

Additionally, a closer look reveals that a small portion of the
learned discriminative image regions are unfortunately related
to background objects, which indicates the network might rely
on panda’s background/habitat to distinguish their identities.
We speculate that this phenomenon results from the limited
dataset size and diversity.

C. Evaluation on Other FGVR Datasets

1) FGVR Datasets: To further demonstrate the effectiveness
of the proposed method, we conduct experiments on three
FGVR datasets (i.e., CUB-200-2011 [13], Stanford Cars [32],
and FGVC-Aircraft [51]).

o« CUB-200-2011 [13] is an avian species classification

dataset which contains 11, 788 images of 200 categories.
The ratio of training images and test images is about
1 : 1. We use the publicly available split [31] in our
experiments.

o Stanford Cars [32] contains 16,185 images of 196 car

categories with a roughly 50% — 50% split of each
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category. The car images of this dataset usually show
various angles and sizes, and the categories are typi-
cally divided according to the production year and car
model.

o« FGVC-Aircraft [51] contains 10,000 images of 100 cat-
egories. The ratio of training and testing images is 2 : 1.
The airplane images of this dataset are assigned in four
levels from finer to coarser, i.e., Model, Variant, Family,
and Manufacturer.

2) Baselines: We compare the proposed FFN-PD with
15 existing state-of-the-art FGVR methods, including four
part-based methods [16]-[19] with bounding box/part anno-
tations, four region-attention methods [20], [21], [23], [35]
using attention maps with image-level labels, and seven end-
to-end (i.e., one-stage) methods [11], [24], [25], [28], [36],
[56], [57] with image-level labels. All baselines are listed as
follows.

o Part-RCNN [17]: a part-based model that extends R-
CNN [58] to extract features based on bottom-up region
proposals with part annotations.

o DeepLAC [16]: a deep location, alignment, and classifi-
cation architecture that forms a valve linkage function for
simple back-propagation and recognizes in pose-aligned
part images.

o PS-CNN [18]: a part-stacked CNN architecture that per-
forms object part localization with a fully convolutional
network and simultaneously encodes object-level and
part-level features.

o Mask-CNN [19]: a mask-CNN model that contains a
fully convolutional network to learn the discriminative
part masks and uses these masks to select deep descrip-
tors.

o RA-CNN [20]: a recurrent attention CNN that begins
with whole images and combines the previous result
to iteratively generate region areas from coarse to fine
stages.

e MA-CNN [21]: a multi-attention CNN that clusters the
spatially-correlated channels to generate multiple parts
and learns fine-grained features based on these parts in a
mutual reinforced way.

e« MAMC [35]: a multi-attention multi-class constraint
method that learns attention maps in the one-squeeze
multi-excitation module and then regularizes features in
a metric learning manner.

o MGE-CNN [23]: a mixture of granularity-specific
experts approach that learns experts with former
experts to focus on finer regions and guides each
expert to produce diverse prediction distribution via a
Kullback-Leibler constraint.

o B-CNN [36]: a bilinear CNN model that extracts pairwise
feature interactions for fine-grained recognition in an end-
to-end training.

o« Compact B-CNN [56]: a compact bilinear CNN that
reduces feature dimensions with the same discriminative
power compared with B-CNN [36].

+ Kernel-Pooling [24]: a kernel pooling method that uses
the form of kernels to capture higher order feature inter-
actions for fine-grained recognition.
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o Low-rank B-CNN [57]: a low-rank bilinear pooling
method that proposes the covariance feature representa-
tion with a low-rank bilinear classifier to reduce compute
time.

o« HBP [25]: a hierarchical bilinear pooling approach that
captures the inter-layer part feature relations and inte-
grates multiple cross-layer bilinear features.

o DFL-CNN [28]: a discriminative filter bank model
that exploits mid-level representation and learns
identity-specific patches by the filter bank.

o« DCL [11]: a destruction and construction learning model
that enhances the difficulty of recognition by destructing
images and then reconstructs images to learn fine-grained
features.

3) Results on the CUB-Birds Dataset: We first conduct the
experiment on the CUB-200-2011 dataset, which not only
provides the class label but also provides additional bird part
annotations including beak, eyes, nape, wing, and tail efc.
We compare the proposed FFN-PD with 15 exiting FGVR
methods on this dataset, and the detailed discussion is as
below.

Of the 15 competing FGVR methods, Part-CNN [17],
DeepLAC [16], PS-CNN [18], and Mask-CNN [19] learn
fine-grained features based on various parts by using location
networks to locate object parts with additional part annota-
tions. Specifically, the located parts should be shared across
categories, which means such part representations are similar,
but the later fine-grained learning encourages these subtle
parts to be different. Thus, it should balance the localization
and classification networks, which is hard to achieve in prac-
tice. B-CNN [36] performs classification via high-dimensional
feature representation with supplementary object bounding
boxes. Due to their privileged access with additional bounding
box/part annotations, their performances are not fairly compa-
rable with others. Nevertheless, our method surpasses these
methods with 12.2%, 8.3%, 12.0%, 1.3%, and 3.5% relative
accuracy gains, respectively.

RA-CNN [20], MA-CNN [21], MAMC [35] and MGE-
CNN [23] rely on attention maps to facilitate the fine-grained
feature learning with only image-level labels. However, such
methods almost require additional architectures such as the
attention network to locate discriminative parts or encode
region features, which leads to more computation both in
training and testing. For example, MA-CNN [21] consists of
the convolution, channel grouping, and part classification sub-
networks, which requires alternative optimization of each sub-
network. The most recent method MGE-CNN [23] achieves
a high classification accuracy that is closest to ours on this
dataset. But it iteratively generates region-specific experts in
multiple stages, which will be in an extreme predicament when
the previous stage focuses on error attention regions.

Recent methods that can be trained end-to-end (i.e.,
one-stage) are also included, such as B-CNN [36], Com-
pact B-CNN [56], Low-rank B-CNN [57], and Kernel-
Pooling [24], which typically exploit very high-dimensional
features compared to the other two groups. For instance,
Kernel-Pooling [24] encodes higher order interaction represen-
tation for fine-grained feature learning, but its dimension is still
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TABLE III

PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND
15 EXITING FGVR METHODS ON THE CUB-200-2011 DATASET.
THE FIRST GROUP USES LOCATION SUB-NETWORK WITH
BOUNDING BOX/PART ANNOTATIONS. THE SECOND GROUP
LEVERAGES REGION ATTENTION MAPS WITH ONLY
IMAGE-LEVEL LABELS. THE THIRD GROUP PERFORMS
IN AN END-TO-END MANNER (i.e., ONE-STAGE)

WITH IMAGE-LEVEL LABELS

Method Backbone BBox/Parts 1-Stage Accuracy
Part-RCNN [17] AlexNet v 76.4
DeepLAC [16] AlexNet v 80.3

PS-CNN [18] AlexNet v 76.6
Mask-CNN [19] ResNet-50 v 87.3
B-CNN [36] VGG-16 v v 85.1
RA-CNN [20] VGG-19 85.3
MA-CNN [21] VGG-19 v 86.5
MAMC [35] ResNet-50 v 86.5
MGE-CNN [23] ResNet-50 88.5
B-CNN [36] VGG-16 v 84.1
Compact B-CNN [56] VGG-16 v 84.0
Kernel-Pooling [24] VGG-16 v 86.2
Low-rank B-CNN [57] VGG-16 v 84.2
HBP [25] VGG-16 v 87.1
DFL-CNN [28] ResNet-50 v 87.4
DCL [11] ResNet-50 v 87.8
FFN-PD (ours) ResNet-50 v 88.6
TABLE IV

PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND
10 EXITING FGVR METHODS ON THE STANFORD CARS DATASET.
THE FIRST GROUP LEVERAGES REGION ATTENTION MAPS WITH

ONLY IMAGE-LEVEL LABELS. THE SECOND GROUP PERFORMS
IN AN END-TO-END MANNER (i.e., ONE-STAGE)
WITH IMAGE-LEVEL LABELS

Method Backbone 1-Stage Accuracy
RA-CNN [20] VGG-19 92.5
MA-CNN [21] VGG-19 v 92.8
MAMC [35] ResNet-50 v 93.0
MGE-CNN [23] ResNet-50 93.9
B-CNN [36] VGG-16 v 91.3
Kernel-Pooling [24] VGG-16 v 924
Low-rank B-CNN [57] VGG-16 v 90.9
HBP [25] VGG-16 v 93.7
DFL-CNN [28] ResNet-50 v 93.1
DCL [11] ResNet-50 v 94.5
FFEN-PD (ours) ResNet-50 v 94.7

too large. Here the weakly-supervised B-CNN [36] is reported
only with image-level labels, whose accuracy (84.1%) is lower
than the counterpart with bounding box annotations (85.1%).
In addition, DCL [11] proposes a “Destruction and Con-
struction Learning” method to increase recognition difficulty
and make the network learn expert knowledge, however, its
training process is complicated. HBP [25] and DFL-CNN [28]
have been discussed in the previous section.

As summarized in Table III, the proposed FFN-PD neverthe-
less outperforms all 15 competing algorithms, even including
those with privileged access to additional bounding box/part
annotations.

4) Results on the Stanford Cars Dataset: The classification
accuracy on the Stanford Cars dataset is present in Table IV.
Stanford Cars dataset does not have part annotations, thus
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TABLE V

PERFORMANCE COMPARISON BETWEEN THE PROPOSED FFN-PD AND
8 EXITING FGVR METHODS ON THE FGVC-AIRCRAFT DATASET.
ALL METHODS PERFORM IN AN END-TO-END MANNER
(i.e., ONE-STAGE) WITH IMAGE-LEVEL LABELS, AND
THE FIRST GROUP LEVERAGES REGION ATTENTION
MAPS WITH IMAGE-LEVEL LABELS

Method Backbone 1-Stage Accuracy
RA-CNN [20] VGG-19 88.2
MA-CNN [21] VGG-19 v 89.9

B-CNN [36] VGG-16 v 84.1
Kernel-Pooling [24] VGG-16 v 86.9
Low-rank B-CNN [57] VGG-16 v 87.3
HBP [25] VGG-16 v 90.3
DFL-CNN [28] ResNet-50 v 91.7
DCL [11] ResNet-50 v 93.0
FFEN-PD (ours) ResNet-50 v 93.2

the part-based methods are not reported in Table IV. Our
method achieves the best performance against other state-
of-the-art methods. Compared to the region-attention method
MGE-CNN [23], which learns a mixture of granularity-specific
experts in multiple stages, the proposed FFN-PD outperforms
it by 0.8%. We can also observe that our method surpasses
end-to-end methods. Although DCL [11] attains a high accu-
racy on this dataset, it needs a special stage for destruction
initialization. Our method is much simpler and can surpass it.

5) Results on the FGVC-Aircraft Dataset: The classification
results on the FGVC-Aircraft dataset are shown in Table V.
The FGVC-Aircraft dataset also does not contain part anno-
tations, thus we compare our method with two groups of
methods including region-attention methods and end-to-end
methods. Obviously, the proposed FFN-PD obtains the best
classification performance among these methods. Due to our
multiple representations, we surpass DFL-CNN [28] by 1.5%
relative accuracy gains, which also exploits discriminative
identity-specific patches. Furthermore, we still outperform
DCL [11] and region-attention methods (e.g., RA-CNN [20]
and MA-CNN [21]), which further demonstrates the signifi-
cance of the proposed FFN-PD.

D. Ablation Studies

To validate the contribution of each component in the
proposed FEN-PD, we conduct a set of ablation experiments
on the iPanda-50 dataset.

1) Different Stream Combinations: To validate the effec-
tiveness of each stream in the proposed FFN-PD, we conduct
experiments on the iPanda-50 dataset with different stream
combinations. The results are summarized in Table VI. With
a single stream, the performance deteriorates obviously. The
combination of G-Stream with any other streams boosts their
performance obviously, indicating the necessity of including
global image features as visualized in Figure 11 (b). Moreover,
methods including F-Stream always perform better than those
without it (e.g., L-Stream + F-Stream versus L-Straem), which
agrees with our speculation that the hierarchical representation
is beneficial. Especially, the fusion feature (visualized in
Figure 11 (e)) is fused by the local filtered feature (visualized
in Figure 11 (c)) and the global filtered feature (visualized
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TABLE VI

IDENTIFICATION PERFORMANCE COMPARISON OF DIFFERENT
COMBINATIONS ON THE IPANDA-50 DATASET. MAXIMUM, MEAN,
AND STANDARD DEVIATION OF THE ACCURACY (%) ARE
REPORTED FROM 5 RANDOM TRIALS. AVG AND ATT
DENOTE THE AVERAGE CONVOLUTION FILTER
SUPERVISION PROPOSED IN [28] AND OUR PROPOSED
ATTENTIONAL CONVOLUTION FILTER
SUPERVISION, RESPECTIVELY

Method
Global Local Fusion Avg Att Max-Acc. Mean Ace. S STD Dev.

v 76.3 75.7 0.70
v 73.8 73.4 0.38

v 60.3 58.7 1.10

v v 74.8 74.6 0.15

v v 84.2 83.8 0.13
v v 84.7 84.4 0.24
v v v 75.4 75.1 0.16

v v v 85.8 85.6 0.17
v v v 85.9 85.5 0.27
v v v v 86.0 85.4 0.65
v v v v 86.3 86.1 0.16

local filtered global filtered
feature feature

=] "

(a) (b)

fusion feature

original image

global feature

Fig. 11. Grad-CAM [54] visualizations of feature maps of (a) the original
image, (b) the global feature map at the G-Stream, (c) the local filtered feature
map at the L-Stream, (d) the global filtered feature map, and (e) the fusion
feature map at the F-Stream.

in Figure 11 (d)), which further activates regions of high
responses and assists the network to emphasize important
regions and suppress background noise. Note that in our
proposed method, filter supervision (i.e., Avg and Att columns)
must be evaluated in conjunction with the L-Stream, where the
patch detectors are used to detect discriminative patches.

The visualization of the local GMP features v; is shown
in Figure 12. Thanks to the design of the attentional filter
supervision, the network has learned a set of supervised patch
detectors, where patch-level representations could present the
highest activation value in the corresponding identity.

2) Effect of Attentional Filter Supervision: We conduct
experiments on the iPanda-50 dataset with different convolu-
tion filter supervisions in the proposed FFN-PD. The last three
rows of Table VI present their identification accuracies, which
are characterized by columns “Avg” (as in Eq. (3), described
in [28]) and “Att” (proposed by us in Eq. (4)). They are all
combined with all three streams. The results show that both
average pooling and attentional pooling are effective, with our
proposed attentional pooling outperforms the average pooling,
which indicates the effectiveness of the attentional pooling.

Finally, the combination of three streams and our proposed
attentional pooling achieves the best result, which supports our
claim that the patch-level information, the global information,
and the hierarchical representation jointly contribute to the
overall performance.

3) Size of the iPanda Dataset:
in the iPanda-50 dataset is relatively small (i.e.,

The number of identities
50 panda
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Fig. 12.  The visualization of the local GMP features v;. For the samples

in a given testing class (e.g., class 9 and class 27) in iPanda-50, the peak
feature value produced by the discriminative patch detector locates at the
corresponding class donated by the dash line.
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Fig. 13. The identification accuracy versus the number of panda identities
curve on the iPanda-50 dataset.

identities), and we speculate that the increase/decrease of the
panda dataset size should also increase/decrease its identi-
fication difficulty. To verify this hypothesis, we conduct an
experiment on different subsets of the iPanda-50 dataset with
the proposed FEN-PD, and the categories in each subset
are randomly selected as shown in Figure 13. For example,
the accuracy improves significantly if the number of individual
pandas is largely reduced to 10. This also indicates that a more
challenging dataset could potentially be built by including
more individual pandas.

VI. CONCLUSION

We propose a Feature-Fusion Network with Patch Detector
(FFN-PD) to address the important yet challenging Giant
Panda Identification (GPID) problem. The proposed FFN-PD
exploits discriminative local image patches in each image via
the patch detector without any bounding box/part annotations,
and fuses both global and local features to generate a hierar-
chical representation, which effectively improves identification
performance. Specifically, a new attentional cross-channel
pooling module is proposed to provide more effective training
supervision of the convolution filters in the patch detectors.
These multiple feature representation simultaneously facilitate
the recognition performance. Moreover, we propose a new
iPanda-50 dataset to evaluate the proposed FFN-PD and exist-
ing FGVR algorithms on the GPID task, where the proposed

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on February 20,2021 at 07:25:51 UTC from IEEE Xplore. Restrictions apply.



2848

FEN-PD outperforms other methods by a large margin, thus
verify the effectiveness of the proposed method. In addition,
the eye-covering experiment indicates that visual features
around eyes play a significant role in panda identification.
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