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Abstract—Weakly-supervised Temporal Action Localization
(W-TAL) aims at simultaneously classifying and locating all action
instances with only video-level supervision. However, current
W-TAL methods have two limitations. First, they ignore the
difference in video representations between an action instance
and its surrounding background when generating and scoring
action proposals. Second, the unique characteristics of the RGB
frames and optical flow are largely ignored when fusing these
two modalities. To address these problems, an Action Coherence
Network (ACN) is proposed in this paper. Its core is a new coherence
loss which exploits both classification predictions and video content
representations to supervise action boundary regression and
thus leads to more accurate action localization results. Besides,
the proposed ACN explicitly takes into account the specific
characteristics of RGB frames and optical flow by training two
separate sub-networks, each of which is able to generate modality-
specific action proposals independently. Finally, to take advantage
of the complementary action proposals generated by two streams, a
novel fusion module is introduced to reconcile them and obtain the
final action localization results. Experiments on the THUMOS14
and ActivityNet datasets show that our ACN outperforms the
state-of-the-art W-TAL methods, and is even comparable to some
recent fully-supervised methods. Particularly, ACN achieves a
mean average precision of 26.4 % on the THUMOS14 dataset under
the IoU threshold 0.5.

Index Terms—Temporal action localization, weakly-supervised
learning.

1. INTRODUCTION

EMPORAL Action Localization (TAL) aims at classi-
fying and locating all action instances in an untrimmed
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video. It can be applied to many high-level video understand-
ing tasks such as event detection [1]-[3] and video summariza-
tion [4], [S]. While fully-supervised TAL methods [6]-[23] have
achieved promising performance, they rely on precise annota-
tions of categorical label and the start and end temporal locations
of all action instances. This kind of labeling is expensive and
time-consuming for large-scale datasets, and could be inconsis-
tent due to ambiguous action transitions [24], [25]. This paper
considers a more cost-effective setting: Weakly-supervised Tem-
poral Action Localization (W-TAL), which only requires video-
level categorical labels to perform training. These video-level
labels are much cheaper to annotate, and could be automati-
cally obtained with textual search terms on video sharing web-
sites. Thus, W-TAL is more practical than its fully-supervised
counterpart.

Recent years have witnessed a significant performance im-
provement on W-TAL [26]-[35]. There are two mainstream
methods, i.e., thresholding-based methods and two-stage meth-
ods. Thresholding-based methods [29]-[33] first extract RGB
and optical flow features via pre-trained models, and then jointly
train a classification module that generates Snippet-level Clas-
sification Predictions (SCPs) and an attention module that pro-
duces Snippet-level Attention Predictions (SAPs). The final TAL
results are obtained by directly thresholding the SCPs and SAPs.
Two-stage methods [34], [35] first initialize action proposals as
anchors of predefined lengths at all temporal locations, and then
regress the durations and center locations of these action pro-
posals via additional regression networks.

Despite these recent efforts, two major challenges still per-
sist. On one hand, most methods only exploit the classification
scores and attention weights to generate and score action propos-
als. They do not have an explicit mechanism to model the video
content changes between video frames, e.g., caused by action
starts or ends, which is critical for accurate action localization.
As aresult, the thresholding-based methods often generate frag-
mentary action proposals inside an action instance whose SCPs
are fluctuating. Two-stage methods also suffer from this prob-
lem because fluctuating SCPs inevitably decrease the confidence
score of an action proposal.

On the other hand, how to fuse the predictions from two
modalities (i.e., RGB and optical flow) for W-TAL has not been
well explored. In action recognition, two-stream Convolutional
Neural Networks (CNNs) [36] achieve a significant perfor-
mance boost by fusing the two-stream classification scores via a
weighted summation. This indicates that the two modalities are
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Fig. 1. An overview of the inference process of the proposed ACN. Given an

untrimmed video, modality-specific action proposals are generated by two sub-
networks, i.e., the RGB stream and the optical flow stream, which are reconciled
by a novel fusion module to get the final action localization results.

complementary. However, the unique characteristics of the RGB
and optical flow features are usually ignored in the conventional
fusion methods. Intuitively, the RGB stream is sensitive to scene
transition and large motion displacement but tends to ignore
small movements. The flow stream is appearance-invariant [37],
and much more sensitive to small movements but may introduce
noise during scene transition or camera movement. Therefore,
it is desirable to develop an effective way to integrate these two
modalities.

This paper presents an Action Coherence Network (ACN)
to tackle the aforementioned challenges. For the first prob-
lem, inspired by the Outer-Inner-Contrastive (OIC) Loss [34],
the authors speculate that a good action proposal should have
two qualities: (1) the SCPs within it should be significantly
higher than those in the surrounding background, and (2) the
video representations within it should differ with those outside
the action instance. Therefore, a new coherence loss is intro-
duced to account for both qualities. To address the second chal-
lenge, two separate sub-networks are trained by taking RGB
frames and optical flow as their respective input to exploit the
modality-specific features. The two sub-networks share simi-
lar settings and both are trained with the coherence loss. As a
result, they are able to generate complementary action propos-
als by taking advantage of the unique characteristics of each
modality.

Fig. 1 presents the overview of ACN, which consists of two
sub-networks and a fusion module. Given an input video, fea-
tures of two modalities are first extracted with pre-trained 2D/3D
backbones. Then, action recognition is performed on two modal-
ities respectively to obtain the SCPs and SAPs. After that, initial
action proposals with different predefined anchor lengths are
generated at all temporal locations. For each stream, a group of
regression networks is trained using the coherence loss to regress
boundaries of each action proposal to more precise temporal lo-
cations. Each stream is able to generate modality-specific action
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proposals independently. Non-Maximum Suppression (NMS)
is then performed to remove duplicated action proposals, and
a fusion module is finally proposed to select and combine the
two-stream outputs and generate the final TAL results.

In a nutshell, the main contributions are as follows:

® A new coherence loss is proposed to model both SCPs and
video representations on action boundaries. It can signifi-
cantly improve the performance of action localization.

® A novel Action Coherence Network (ACN) is proposed for
W-TAL. It has two separate sub-networks taking as input
RGB frames and optical flow, respectively. Furthermore,
a new fusion module is designed to reconcile the action
proposals from the two streams and generate the final TAL
results.

e Experiments on two challenging datasets (i.e., THU-
MOS14 and ActivityNet) demonstrate that the proposed
method outperforms state-of-the-art methods. Extensive
ablation studies are conducted to validate the contribution
of each component.

A short conference version of this paper appeared in [38]. This
paper extends the previous version in four aspects. (1) This paper
provides more implementation details of ACN. (2) The overfit-
ting problem in the regression network training is addressed. (3)
More experiments are conducted to analyze the effectiveness of
each component in ACN. (4) The strengths and limitations of
our proposed method and future work are discussed.

This paper is organized as follows. Section II briefly reviews
the related work. Section III presents the framework of the pro-
posed ACN. The experiments are presented in Section I'V. Fi-
nally, Section V presents the conclusion.

II. RELATED WORK

Related work on action recognition, fully-supervised tempo-
ral action localization, and weakly-supervised temporal action
localization are briefly reviewed in this section.

A. Action Recognition

Action recognition has been extensively studied in the past.
Traditional methods [39]-[41] extract hand-crafted represen-
tations to model spatio-temporal information. Recently, deep
learning-based methods show great performance improvement.
Among them, there are two mainstream methods: two-stream
networks [36], [42]-[44] exploit appearance and motion infor-
mation from RGB and optical flow respectively; 3D CNNs [8],
[45] learn spatio-temporal clues directly from consecutive video
frames. Two-Stream Inflated 3D ConvNet (I3D) [46] replaces
the 2D CNNss in two-stream networks with 3D CNNs to model
the temporal information. Besides, several works [44], [47]-
[49] try to model long-term temporal information in action
recognition. Several efforts [50], [51] are made to reduce the
computational cost in action recognition. There are also several
attempts [52]-[55] focusing on directly learning motion clues
from RGB frames instead of calculating hand-crafted optical
flow.
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B. Fully-Supervised Temporal Action Localization

The task of temporal action localization is to temporal lo-
calize and classify all action instances in an untrimmed video,
and the fully-supervised type requires frame-level annotations
of all action instances during training. Some methods [6], [56],
[57] exploit a sliding window or a predefined temporal duration
to generate action proposals. Inspired by deep learning-based
object detection methods, such as Regions with CNN features
(R-CNN) [58], many methods [7]-[11], [16], [17], [59] imple-
ment a “propose and classify” scheme, where action proposals
are first generated and then classified. Some methods [9], [11],
[12], [16] apply the Faster R-CNN [60] framework to TAL. Some
recent methods [17], [20], [21] focus on generating action pro-
posals with more flexible durations. Zeng et al. [23] introduce
graph convolutional networks to exploit the relations among ac-
tion proposals.

Despite the success of fully-supervised TAL, its de-
pendence on temporal annotation, which is expensive and
time-consuming, greatly impede its application in real-world
scenarios.

C. Weakly-Supervised Temporal Action Localization

Weakly-supervised Temporal Action Localization (W-TAL)
aims to achieve temporal action localization with only video-
level action categorical labels available during training. Since the
frame-level labels are not available during training, several exist-
ing methods [27], [28], [30]-[32], [34], [35], [61] adopt a multi-
pleinstance learning framework, where a video is treated as a bag
of frames/snippets to perform action classification. The trained
model generates a per-snippet/frame classification prediction se-
quence, which is further used to generate the action proposals
by thresholding. UntrimmedNet [27] is one of the first W-TAL
method, and it uses an attention module to evaluate the relative
importance of every snippet and a classification module to per-
form the snippet-level classification, and generates localization
results by thresholding the attention and classification activa-
tion sequences. Sparse Temporal Pooling Network (STPN) [28]
improves UntrimmedNet by adding a sparsity loss to enforce
the sparsity of the segment selection. Hide-and-Seek [26] ran-
domly hides parts of the input video to guide the network to learn
the most relevant parts. Paul et al. [30] propose a co-activity
similarity loss to enforce the learned features to be similar if
they belong to the same action category. Liu et al. [31] em-
ploy multi-attention branches to learn different stages of an ac-
tion. 3C-Net [33] proposes a classification loss, a count loss and
a center loss to improve feature discriminability and delineate
proximate action sequences for W-TAL. DGAM [62] learns an
attention value with variational auto-encoder to separate actions
and context. There are also several works [32], [61] aiming to
learn a richer notion of an action with background classification.
TSCN [63] proposes an attention normalization loss to replace
the background learning, and proposes a pseudo ground truth
learning to remove false positives. Some recent works [64], [65]
attempt to separate action and context for better action boundary
learning.
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Apart from these thresholding-based methods, AutoLoc [34]
first adopts a two-stage framework in W-TAL. They first traverse
all temporal locations with predefined anchors to generate ini-
tial action proposals, and then regress the boundaries of them to
more precise temporal locations with an Outer-Inner-Contrastive
(OIC) loss, which aims at maximizing the activation difference
between the action proposal area and its contextual area. Clean-
Net [35] improves AutoLoc [34] by leveraging the temporal con-
trast of Snippet-level Classification Prediction (SCP) to regress
the action proposals to more precise temporal locations.

The proposed method draws the inspiration from Au-
toLoc [34], and differs from AutoLoc in three aspects. (1) The
proposed coherence loss not only accounts for the prominence
of SCPs, but also detects action instances based on their distinc-
tive video representation. (2) Two sub-networks are trained to
learn modality-specific action proposals, which are then recon-
ciled by a fusion module. By contrast, AutoLoc only trains one
network with concatenated RGB and Flow features as input. (3)
The proposed regression networks are designed to make the re-
ceptive field the same as the regression field while maintaining
a small number of parameters. As discussed in Section IV-D, all
these differences contribute to the superiority of the proposed
ACN.

III. ACTION COHERENCE NETWORK

This section introduces the proposed Action Coherence Net-
work (ACN), which consists of two sub-networks (i.e., an RGB
stream and a flow stream), and a fusion module (see Fig. 1).
As shown in Fig. 2, each stream is composed of three parts
respectively for action recognition, action proposal regression,
and Non-Maximum Suppression. The two streams share sim-
ilar settings and both are trained with the proposed coherence
loss, which can supervise action boundary learning and facil-
itate action proposal regression. Given different input modali-
ties, the two sub-networks can generate action proposals with
different characteristics. And these action proposals are finally
reconciled via a fusion module. It has been verified from the ex-
periments that the two-stream outputs are complementary and
together contribute to a higher performance.

Section III-A first gives the definition of the Weakly-
supervised Temporal Action Localization (W-TAL) problem.
As the two streams share similar settings, and they only dif-
fer in the input modality (i.e., RGB frames or optical flow),
Section III-B—Section III-D detail the single-stream structure.
Finally, Section III-E introduces how to effectively reconcile
the outputs from two streams.

A. Problem Formulation

The task of W-TAL aims to temporally locate and classify
all action instances in an untrimmed video. Specifically, given
an untrimmed video, only its video-level categorical label y €
R is available during training, where y is a normalized multi-
hot vector. The k-th element of y (i.e., yi) is set to 1/N if
the video contains action instances of the k-th category, where
N is the number of action categories occurred in the video.
During testing, the network is expected to output a set of action
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model is built upon the snippet-level features, and generates Snippet-level Classification Predictions (SCPs). (2) Action Proposal Regression. Initial action proposals
with predefined anchor lengths are generated at all temporal locations. The proposals with a certain anchor length are regressed with a corresponding regression
network, which is trained with the coherence loss and regresses the boundaries of the proposals to more precise temporal locations. (3) Non-Maximum Suppression.

Non-Maximum Suppression (NMS) eliminates redundant action proposals.

proposals {p;|p; = (Ts.i, Te.i, i, si) } 1, for each testing video,
where M is the number of output proposals and p; is the ¢-th
action proposal, which is a tuple containing a start time x ;, an
end time . ;, a category ¢; and a confidence score s;.

B. Action Recognition

The input videos are divided into non-overlapping fixed-
length snippets. Then, a pre-trained deep network (e.g., 13D
network [46]) is used to extract the RGB frame/optical flow
snippet-level features. Specifically, given a video with 7" snip-
pets, the extracted features are denoted as F € RP*T where D
represents the feature dimension. The extracted features provide
a high-level representation of the input video, and are fed to the
classification and attention layers of the network.

Following UntrimmedNet [27], the attention weights a € RT
and the classification scores S € R are obtained by two fully
connected (fc) layers with 1 and C output channels, respectively.
The Snippet-level Classification Predictions (SCPs) S and action
recognition result y € R are calculated as:

exp(S(k,t))

S(k,t) = , 1
1) = 5o ep(sGi.0) @

_ele() g )
Tg ST expla() @

where S(k,t) and S(k, t) represent the classification score and
SCP at temporal location ¢ and category k, respectively, and S(t)
and a(t) represent the SCPs and attention weight at temporal
location ¢, respectively.

The two layers are trained with the cross entropy loss:

C

Log = — Y yklog i,
k=1

3

where ¢, is the predicted probability of the target video contain-
ing action instances in the k-th category. The parameters in the
two layers are fixed after the training of action recognition.

C. Action Proposal Regression

This subsection describes the action proposal regression pro-
cess in a single stream. Without frame-level boundary annota-
tion, it is impossible to directly regress the boundaries of action
proposals with an L1-norm distance like in the fully-supervised
methods [9], [11], [12], [16]. Instead, this paper introduces a
proxy loss—coherence loss for each proposal, and by minimiz-
ing the coherence loss, the proposal boundaries are expected to
regress to more precise temporal locations.

Action Proposal Initialization: Inspired by Faster R-
CNN [60], initial action proposals are generated at all temporal
locations with a group of predefined anchor lengths (number of
snippets). Formally, given an anchor size P, action proposals
are initialized as {(z,, xe,i)}?_lp, such that z. ; — z5,; = P,
251 =0and s 7_p =T — P — 1. To account for the contex-
tual information, the inflated start and end boundaries (X5, X.)
for action proposal (z, x.) are defined as X; = x5 — P/4 and
X, =w.+ P/4.

Coherence Loss: An ideal action proposal is expected to have
distinctive temporal boundaries, which is modeled via the Outer-
Inner-Contrastive (OIC) loss in AutoLoc [34]. Formally, given
the SCPs S € RE*T of a video with T snippets and C' action
categories, the OIC loss for an action proposal (z,x.) of the
action category k € {1,...,C} is defined as

. fX S(k, t)dt — [ S(k,t)dt
OI1C —
Xe—Xe+1) — (e —25+ 1
(X - X+ 1= ) W
Jo S(k,t)dt
g —ws+1°

The goal of the OIC loss is to regress the start boundary x4
and end boundary x. of an action proposal so that the temporal
regions immediately outside the action proposal have low acti-
vation (the first term) while the area within the action proposal
has high activation (the second term).

Therefore, the OIC loss only focuses on the snippet-level clas-
sification predictions while ignoring the content of the action
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L. It consists of two terms: an appearance term L, that calculates the negative
cosine similarity between the action proposal feature and its context feature;
an OIC term Loic that computes the difference between the action proposal
classification score and its context classification score.

instance. Intuitively, the video representations of an action in-
stance should also be different from those of snippets immedi-
ately preceding and succeeding the action instance. For example,
an action may contain a preparation stage, a performing stage
and an ending stage, and they should differ not only in the SCPs
but also in their feature representations. Following this intuition,
the appearance term in the coherence loss is formulated as an
arithmetic average of the cosine similarities between the action
area and its “start area” and “end area”. Formally, given an ac-
tion proposal (z,x.) and its inflated boundary (X, X.), the
features of its start area R, the features of its end area R, and
the features of its action area R, are defined respectively as

B f;: F(t)dt

Ry=———, 5
Te— Xg+1 )
X

cF(t)dt

Re: fze () 3 (6)
Xe—xe+1
[FeF(t)dt

R, =% — 7

Te —Ts+ 1 @)

where F(¢) denotes the feature representation of the ¢-th snippet,
and the feature representation of a temporal area is obtained via
average pooling. Here, an appearance term L, accounting for
the appearance distinctions between the action area and its start
area and end area is introduced as

1 (Rq,Ry,)
“7 2(R,,R,)* (R, R)?
1 (Ra, Re)

5 ; )
2 (R, Ra)? (R, Re)?
where (, Z denotes inner product.

The proposed coherence loss L. (illustrated in Fig. 3) is de-

fined as a linear combination of the new appearance term L, and
the OIC term:

L. =aLloic+ (1 —a)(L,—1), )
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where a € [0, 1] is a trade-off hyper-parameter empirically set
to 0.6 and fixed thereafter. The coherence loss promotes action
proposals having not only high classification activation but also
video representations distinctive from its context area.

Action Proposal Regression: The boundaries of initial ac-
tion proposals are regressed with a set of regression networks.
Specifically, each anchor size is assigned an exclusive regres-
sion network, and the receptive field size of each regression
network is designed to be identical to its corresponding anchor
size P to include sufficient (but not excessively redundant) con-
textual information. The regression network takes as input the
video snippet-level features F, and outputs a set of start and end
boundary regression results {r; ;}7 ; and {r.;}7 ;.

To be specific, each regression network consists of three tem-
poral convolutional layers. Denote a temporal convolutional
layer with number of kernels ny, temporal kernel size ng, di-
lation rate n4 and activation function €2 as Conv(ny, ns, ng, €2).
For the regression network that corresponds to anchor size P, the
first two layers are set to Conv (256, 3, [ P/4], ReLU). The third
output layer is set to Conv(2, 1, 1, Sigmoid), where the two out-
put channels generate the start and end boundary regression re-
sults {rs ; }7_, and {r ;} 7, respectively. In this way, the recep-
tive field size for the lastlayeris (P/4 + P/4 +2) x 2+ 1~ P
to include sufficient contextual information. In addition, zero
padding is used within the first two layers to retain the output
dimensions, and group normalization [66] with group size 32
are used between each two consecutive convolutional layers.

Given the start and end boundary regression predictions
{rs;}E | and {r.;}L ,, the initial action proposal (7 ;, Z. ;)
with anchor size P are refined as

1
i’s,i = Ts,i +P- <7ns,msyi+1 - 5); (10)
R 1
Teij = Tei +P- <Te,a:e,i+1 - 5)7 (1])

where 2, ; and & ; are the refined start and end boundaries for
the ¢-th initial proposal. In this way, the initial boundaries can
be regressed to any temporal locations within its receptive field.

The confidence scores of action proposals are set to the nega-
tion of their coherence loss — L... To balance the positive and neg-
ative predictions, only proposals with confidence scores higher
than 0.1 are kept. Denote the surviving action proposals as
{pi}f\g’l, where N, is the number of surviving proposals. The
total regression loss L, is defined as the average coherence
loss of the remaining proposals:

N,
1 P
Lieg = < Y _ Le(pi), (12)
Np i=1

where L. (p;) denotes the coherence loss for proposal p;.
However, we empirically observe that some regression net-
works tend to be “lazy,” and generate regression results with
low variance. This problem degrades the performance, as the
true action boundaries usually vary for proposals at different lo-
cations. To address this problem, a regularization term L oy,
to maximize the variance of the regression results generated by
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each layer is introduced:
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Denote all anchor sizes as { P;}'*,, where N, is the number

of anchor sizes. The overall loss for the regression networks is
defined as:
N,

1 a
L= Lreg + ﬂE Zl Lnorm(Pi); (14)

where Lyorm (P;) denotes the regularization loss for the regres-
sion results corresponding to the anchor size P;, and f is a
trade-off hyper-parameter.

D. Single-Stream Inference

During testing, the authors only keep one action proposal per
snippet location which achieves the highest confidence score
among all action proposals covering this location of different an-
chor sizes and discard all others. Subsequently, Non-Maximum
Suppression (NMS) is performed with an overlap Intersection-
over-Union (IoU) threshold 0.4, which is empirically determined
via cross-validation. Since a video may contain action instances
of more than one action category, action localization is per-
formed on all action categories whose classification predictions
are higher than a predefined threshold 0.1.

Note that the RGB stream and the flow stream are trained
separately. They are able to produce reliable modality-specific
temporal action localization results independently.

E. Two-Stream Fusion

After obtaining action proposals from both RGB and flow
streams, a filter fusion strategy is adopted to select and combine
them. Empirically, the flow stream typically provides more ac-
curate action proposals thanks to its sensitivity to even subtle
motions, which align well with the start and end boundaries of
action instances. In contrast, the RGB stream tends to provide
longer, coarser, and less accurate action proposals, but corre-
sponds better to scene transition locations. In addition, the two
streams also focus on different parts of the video, and gener-
ate action proposals at different locations. Based on this obser-
vation, the flow stream is used as the primary source and the
RGB stream is used as the auxiliary one. Let {pﬁow7i}£\/:flfw and
{prgbyi}f\’;’f‘“ denote the retained action proposals from the flow
and RGB steams, respectively, where Nfq, and V., indicate
the corresponding action proposal numbers.

The fusion module first retains all flow proposals
{pﬁow,i}f\jlfw and at the same time discounts the confidence
scores of all RGB proposals by a factor of 2." Subsequently,

ITo alleviate its overfitting tendency, the factor 2 is empirically determined
via cross validation on THUMOS 14, and also works well on ActivityNet.
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for each RGB proposal p,et, s, its IoU with all flow proposals
{Phiow,i} f\f:“fw are calculated to obtain a retention score I (prgb,; )
with max-pooling:

I(prgb,i) = max({IOU(pl'gb,i7pﬁow,j)}é‘v:ﬂ;(fw)- (15)

The reconciled proposals are the union of all flow proposals
{Piow.i } % and a set of RGB proposals {pygn i|I (Prgb.i) <
0.4},

To validate the superiority of the proposed action proposal
fusion module, two alternative fusion methods are also included
for comparison. Union fusion refers to directly combine the ac-
tion proposals from RGB and flow streams as the final results.
The early fusion used in AutoLoc [34] is also included: the early
fusion method directly feeds the concatenated RGB and optical
flow features to one sub-network and takes the output as the final
localization results.

IV. EXPERIMENTS AND DISCUSSIONS

In this section, the authors present the implementation details
of the proposed Action Coherence Network (ACN) and compare
it with the state-of-the-art temporal action localization (TAL)
methods on two benchmark datasets. Extensive ablation studies
are performed to validate the contribution of each component
of the ACN. Finally, the authors present discussions and future
work.

A. Dataset and Evaluation

Extensive experiments are conducted on two popular large-
scale benchmarks, i.e., THUMOS14 [67] and ActivityNet [49].
Note that only video-level action categorical labels are leveraged
for training.

THUMOS14 dataset: [67] contains 1010, validation and
1,574 testing videos from 101 action categories. Among them,
only 200 validation videos and 213 testing videos within 20 cat-
egories have temporal annotations. The authors follow previous
methods to use the 200 validation videos to train our model, and
use the 213 testing videos to evaluate it. The video length varies
significantly from a few seconds to 26 minutes. The duration of
an action instance also has a large variance, from shorter than
one second to several minutes.

ActivityNet dataset: [49] offers a larger benchmark for TAL
task. Two release versions of ActivityNet, i.e., ActivityNet v1.3
and ActivityNet v1.2 are leveraged for experiments. ActivityNet
v1.3 covers 200 action categories, with a training set of 10024
videos and a validation set of 4926 videos. ActivityNet vl.2 is a
subset of ActivityNet v1.3, and it covers 100 action categories,
with 4819 and 2383 videos in the training and validation sets
respectively.? The training set and the validation set are used for
training and testing, respectively. As shown in Fig. 4, the lengths
of action instances in ActivityNet are generally longer than those
in THUMOS14, and the duration range of ActivityNet is also
larger than that of THUMOS14.

%In our experiments, there are 9937 and 4575 videos in the training and val-
idation sets of ActivityNet v1.3 respectively, and 4471 and 2211 videos in the
training and validation sets of ActivityNet v1.2 respectively. The other videos
are unaccessible from YouTube.
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Fig. 4. Box plots of the action instance duration in THUMOS14 [67] and Ac-
tivityNet [49] datasets. On average, action instances in both release versions of
ActivityNet datasets are significantly longer than those in THUMOS 14. Specif-
ically, the median action instance duration in THUMOS 14 is 3.0 seconds, while
those in ActivityNet v1.2 and ActivityNet v1.3 are 28.5 seconds and 26.6 sec-
onds, respectively.

Evaluation metric: The authors follow the standard evalua-
tion protocol based on mean Average Precision (mAP) values at
different Intersection-over-Union (IoU) thresholds. The mAP
computes the average per-category Average Precision (AP),
which is defined as the area under the Precision-Recall (PR)
curve. A proposal is a true positive if its IoU with certain un-
matched ground truth is higher than a threshold, otherwise it is
a false positive. The recall is defined as the ratio of true positive
to ground truth, and the precision is the ratio of true positive to
all proposals. The PR curve is drawn by connecting the recall
and precision values for increasing set of proposals in a confi-
dence score descending order, starting with the highest-scored
proposal to all proposals [68]. The mAP values are calculated
by the evaluation codes provided by the corresponding datasets.

B. Implementation Details

The proposed ACN is implemented in PyTorch [69]. The op-
tical flow is estimated with TV-L1 algorithm [70], and only for-
ward optical flow is computed. Two feature-extraction back-
bones are leveraged, namely UntrimmedNet [27] with a BNIn-
ception [71] backbone pre-trained on the ImageNet dataset [72],
and I3D [46] pre-trained on the Kinetics dataset [46] for fea-
ture extraction, with a snippet length of 15 and 16 frames,
respectively. RGB and optical flow features are extracted as
1024-dimensional vectors at the global_pool layer. The feature-
extraction backbones are not fine-tuned for fair comparison with
previous methods. For hyperparameter selection, we first man-
ually create a validation set by uniformly sampling 20% videos
from each class in the original training set, and then conduct
grid search on the newly generated validation set. The regres-
sion network is trained with stochastic gradient descent (SGD)
optimizer for 8 epochs, an initial learning rate of 0.001, and a
decay factor of 10 for every 3 epochs. The normalization term
in Eq. (14) is only used for the THUMOS 14 dataset with /3 set
to 2. The weight decay factor is set to 0.0005. To alleviate the
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TABLE I
COMPARISON WITH STATE-OF-THE-ART TAL METHODS ON THE THUMOS 14
TESTING SET. “FULLY-SUPERVISED” MEANS THE TEMPORAL ANNOTATIONS
ARE USED DURING TRAINING, WHILE “WEAKLY-SUPERVISED” MEANS ONLY
VIDEO-LEVEL ACTION LABELS ARE AVAILABLE DURING TRAINING. *
INDICATES OUR REPRODUCED VERSION. “BC”” DENOTES THE BACKGROUND
CLASSIFICATION PROPOSED IN [32]

mAP@IoU (%)
Method 03 04 05 06 07
Karaman et al. [73] 05 03 02 02 01
Richard and Gall [74] | 30.0 232 152 - -
Yeung et al. [75] 36.0 264 17.1 - -
Yuan et al. [76] 336 261 188 - -
< Yuan et al. [77] 365 278 17.8 - -
Z S-CNN [56] 363 287 19.0 - 53
5 SST [6] 378 - 23.0 - -
= CDC [8] 40.1 294 233 131 79
I Dai et al. [11] - 333 256 159 9.0
= TURN TAP [12] 441 349 256 - -
= R-C3D [9] 448 356 289 - -
Gao et al. [59] 50.1 413 310 191 99
SSN [7] 50.6 40.8 29.1 - -
BSN [17] 535 450 369 284 200
TAL-Net [16] 532 485 428 338 208
Hide-and-Seek [26] 195 127 63 - B
UntrimmedNet [27] 282 21.1 13.7 8.3 4.2
STPN (UNTF) [28] 3.1 235 162 98 5.1
W-TALC (UNTF) [30] | 32.0 260 188 109 62
2 | AutoLoc (UNTF) [34] | 358 290 212 134 58
= CMCS (UNTF) [31] 375 291 199 123 6.0
8 | CleanNet (UNTF) [35] | 37.0 309 239 139 7.1
2 ACN (UNTF) 370 311 249 157 175
= STPN (I3DF) [28] 355 258 169 99 43
S | W-TALC (I3DF) [30] | 40.1 31.1 228 145 76
= | AutoLoc (I3DF)* [34] | 38.1 30.6 23.1 142 69
CMCS (I3DF) [31] 412 321 231 150 7.0
3C-Net (I3DF) [33] 409 323 246 - 7.7
ACN (I3DF) 407 347 264 168 8.0
ACN + BC [32] (I3DF) | 434 363 273 17.6 87

background noise, attention thresholding is employed during
testing. All snippets whose attention weights are lower than a
threshold are discarded. Specifically, the attention threshold is
fixed at 5 for the flow stream and 7 for the RGB stream for
UntrimmedNet features, and 0.3 for both streams for 13D fea-
tures. Following AutoLoc [34], the anchor sizes P (the number
of snippets) are set to 1, 2, 4, 8, 16, 32 for THUMOS 14 and 16,
32, 64, 128, 256, 512 for ActivityNet. If the length of a video
is shorter than the minimal predefined anchor length, the whole
video is considered as an action proposal and its confidence score
is equal to its classification prediction score.

C. Comparison With State-of-The-Arts

Experiments on THUMOS14: The results on the THU-
MOS14 testing set are summarized in Table I, where the
UntrimmedNet feature and 13D feature are denoted as UNTF
and I3DF, respectively. The proposed ACN outperforms all com-
peting W-TAL methods on the THUMOS 14 testing set. Among
them, ACN with UNTF outperforms AutoLoc [34] by a large
margin at all IoU thresholds. Especially, ACN with UNTF even
achieves higher or comparable mAP with previous state-of-the-
art methods (e.g., STPN [28], W-TALC [30], AutoLoc [34]
and CMCS [31]) with I3DF at high IoU thresholds, which
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TABLE II
COMPARISON WITH STATE-OF-THE-ART W-TAL METHODS ON THE ACTIVITYNET V1.2 VALIDATION SET. AVG DENOTES THE MEAN mAP AT IoU THRESHOLDS
0.5:0.05:0.95. T INDICATES THE REPRODUCED VERSION OF AUTOLOC [34], AND * INDICATES OUR REPRODUCED VERSION

— mAP@IoU (%)
Supervision Method 05 055 06 065 07 075 08 085 09 095 | A8
UntimmedNetr [27] | 74 61 52 45 39 32 25 18 12 07 | 36
AutoLoc (UNTF) [34] | 273 249 225 199 175 151 130 100 68 33 | 160
Weakly-stmervised ACN (UNTF) 304 272 243 205 180 154 132 103 75 37 | 170
y-sup W-TALC (I3DF) [30] | 370 335 304 257 146 127 100 70 42 15 [ 180
AutoLoc (BDF)* [34] | 319 293 260 229 200 170 136 97 50 14 | 177
ACN (I3DF) 360 316 280 242 211 179 148 113 70 35 | 196

TABLE III

COMPARISON WITH STATE-OF-THE-ART W-TAL METHODS ON THE ACTIVITYNET V1.3 VALIDATION SET. AVG DENOTES THE MEAN mAP AT IoU THRESHOLDS
0.5:0.05:0.95. * INDICATES OUR REPRODUCED VERSION

mAP@IoU (%)
Supervision Method 05 055 06 065 07 075 08 085 09 095 | A&
UntrimmedNet* [27] 7.0 6.1 5.3 44 4.0 33 2.6 2.1 1.5 0.7 3.7
AutoLoc (UNTF)* [34] | 25.6 226 200 173 144 11.6 8.9 6.5 3.7 1.1 13.2
ACN (UNTF) 288 259 229 206 182 154 129 96 55 1.3 16.1
Weakly-supervised STPN (I3DF) [28] 29.3 - - - - 16.9 - - 2.6 -
W-TALC (I3DF)* [30] | 334 30.7 284 262 218 116 46 2.1 0.8 0.2 16.0
AutoLoc (I3DF)* [34] 26.1 240 216 190 164 142 116 82 43 1.3 14.7
ACN (I3DF) 33.6 300 267 234 201 174 140 108 72 39 18.7
demonstrates that the proposed coherence loss is able to detect Py -
more precise action boundaries. 2231 =k~ Flow stream
When equipped with I3DF, the proposed ACN achieves the _ 200
state-of-the-art performance compared with all competing W- §17.5
TAL methods, and is even comparable with some recent fully- S 150
supervised methods (e.g., Dai et al. [11] and TURN TAP [12]). (—; s
. . . . . o .
Besides, adding the background classification [32] as an auxil- E
iary training objective improves the feature representation abil- 100
ity, and further improves the overall performance. 7.51
Experiments on ActivityNet: Results on ActivityNet v1.2 5.0
and v1.3 validation sets are presented in Table II and Table III, 00 02 04 o o6 08 1o
respectively. The proposed ACN outperforms all other methods
with the same backbone on the average mAP at IoU thresh- Fig. 5. TAL performance comparison with different o values in (9) during

olds 0.5:0.05:0.95. Furthermore, the proposed ACN with UNTF
outperforms AutoLoc [34] at all IoU thresholds on two datasets.
Especially, on ActivityNet v1.3, ACN with UNTF even achieves
higher mAP than AutoLoc with I3DF at all IoU thresholds.

With I3DF, ACN further improves the performance. Although
W-TALC [30] achieves higher mAPs at low IoU thresholds, the
performance advantage of ACN becomes more significant as
IoU increases, which demonstrates that ACN can locate more
precise temporal boundaries and the results have larger overlap
with the ground truth. It also should be noted that the perfor-
mances of almost all the methods degrade on ActivityNet v1.3
compared with ActivityNet v1.2. The reason might be that the
durations of action instances on ActivityNet v1.3 vary more than
those on ActivityNet v1.2 (see Fig. 4). Particularly, AutoLoc [34]
with I3DF drops 3% on average, while ACN with I3DF only
drops 0.9% on average, which demonstrates that ACN is able to
generate more flexible action proposals.

To summarize, the proposed ACN outperforms all the
competing W-TAL methods on both the THUMOS14 and
ActivityNet datasets, and even compares favorably with some
fully-supervised TAL methods. This clearly demonstrates the
efficacy of the proposed ACN.

training and evaluation on the THUMOS14 dataset. Both streams achieve the
highest performances when @ = 0.6.

D. Ablation Study

To analyze the contribution of each component of our pro-
posed ACN to the overall performance boost, a set of ablation
studies are carried out on the THUMOS 14 dataset with UNTF.

Sensitivity Analysis on «: The « value in Eq. (9) is an im-
portant trade-off hyper-parameter, which measures the relative
importance between SCPs and video representations in the pro-
posed coherence loss. Different o values are evaluated during
both training and evaluation phases. The results are measured
with mAP atIoU threshold 0.5 and are illustrated in Fig. 5, which
justifies our empirical choice of o = 0.6.

The performance is extremely low when « equals to 0. This
reveals that by only using the appearance term accounting for the
video content change while ignoring the classification score, it is
hard to distinguish the foreground from the background because
the background is equally possible to be classified as action in-
stances. When taking the classification score into account, the
performance boosts significantly even when o = 0.2. When «v is
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TABLE IV
SINGLE-STREAM TAL PERFORMANCE WITH DIFFERENT TRAINING LOSSES AND SCORING METHODS ON THE THUMOS 14 TESTING SET. THE LOSS COLUMN
MEANS THE NETWORK IS TRAINED WITH THE CORRESPONDING LOSSES, AND THE SCORE COLUMN MEANS THE PROPOSALS ARE SCORED WITH THE
CORRESPONDING METHODS

mAP@IoU (%)

Loss | Score | 63 g4 05 06 07
—Ta. | 153 118 79 42 2.1
La | —Lomc | 328 272 209 130 62
—L. | 339 280 216 140 7.3
“T. | 183 139 98 54 23
Lowc | —Loic | 338 276 213 138 6.6
“Le | 355 289 220 141 6.9
“L. | 173 135 96 54 23
Le | —Loic | 337 278 223 153 7.2
L. | 358 298 236 148 7.2

(a) Flow stream-only localization performance.

TABLE V
TAL PERFORMANCE WITH DIFFERENT FUSION METHODS ON THE
THUMOS 14 TESTING SET. “DISCOUNT” MEANS THE CONFIDENCE SCORES OF
RGB PROPOSALS ARE DISCOUNTED BY A FACTOR OF 2

mAP@IoU (%)

Fusion Method 03 04 05 06 07

early fusion 370 293 224 143 6.2
union fusion 265 236 196 138 7.5
filter fusion w/o discount | 36.1 303 243 151 7.2
filter fusion w/ discount 370 311 249 157 75

setto 1, namely only OIC loss is used to train and test our model,
the flow stream achieves an mAP of 21.3% at IoU threshould 0.5,
which even outperforms the mAP of 21.2% by AutoLoc [34].
This verifies our assumption that the RGB and optical flow
modalities are complementary, and the concatenation-based fu-
sion methods such as AutoLoc [34] fail to effectively utilize the
two modalities.

Ablation Study on Action Proposal Scoring: As presented
in Section III-C, the negation of coherence loss L. is used to
score action proposals. Two additional variants of the scoring
method are also included (for evaluation phase only), namely
the appearance term — L, only and the OIC term —Lorc only.
The authors train the network with three different loss functions,
namely L,, Loic, and L. For each of these models, the authors
score the action proposals with three different scoring methods.

The flow stream and RGB stream TAL performances are sum-
marized in Table IV(a) and Table IV(b), respectively. First, the
performance advantage of —L, as the scoring method for all
training losses verifies that the OIC term and the appearance
term are indispensable, and they jointly contribute to the deter-
mination of the relative importance of action proposals. Second,
the performance of L. is better than that of Loic. This verifies
that the proposed coherence loss is able to regress the action
proposals to more precise action boundaries.

Ablation Study on the Regularization Loss: To help the
regression network generate flexible regression results, a regu-
larization term L., is introduced as in Eq. (13). The compar-
ison results are listed in Table VI. The results reveal that the
regularization loss helps improve the localization performance
for both streams at all IoU thresholds. Besides, the average test-
ing variance of the regression results with the regularization is
also larger than that without the regularization loss, demonstrat-
ing that the regularization loss helps to generate more flexible

mAP@IoU (%)
Loss | Score | 53 04 05 06 07
—T. | 136 95 58 26 09
La | —Lomc | 237 175 113 58 2.1
“L. | 242 176 116 54 21
“L. | 142 100 61 27 08
Loic | —Loic | 237 179 119 63 24
“L. | 250 186 124 62 22
“L. | 140 98 590 28 08
Le | —Loic | 242 181 126 64 24
~L. | 253 192 130 67 23

(b) RGB stream-only localization performance.

TABLE VI
PERFORMANCE COMPARISON BETWEEN MODELS TRAINED WITH AND
WITHOUT THE PROPOSED REGULARIZATION LOSS Ly orm. THE VARIANCE
COLUMN DENOTES THE AVERAGE VARIANCE OF REGRESSION RESULT FOR
DIFFERENT ANCHOR SIZES

mAP@IoU (%)

Lnorm | Stream 03 0.4 05 06 0.7 Variance
- RGB 209 148 9.7 4.5 1.9 0.0173
v 253 192 130 6.7 23 0.0189
- flow 352 297 228 15.0 7.2 0.0156
v 358 298 236 148 72 0.0201
60 4 ™= RGB stream
Flow stream
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Fig. 6.  Per category TAL performance on the THUMOS14 dataset under the

IoU threshold 0.5. In all action categories except for Shotput, the flow stream
outperforms the RGB stream. And the fusion results further improve the perfor-
mance of most categories.

regression predictions. The performance improvement and the
variance increase demonstrate the efficacy of the regularization
loss.

Ablation Study on Action Proposal Fusion: As discussed in
Section III-E, experiments to compare different fusion methods
are conducted. The results on the THUMOS 14 dataset are pre-
sented in Table V. The proposed filter fusion which discounts
scores of RGB proposals outperforms other methods. Mean-
while, early fusion outperforms AutoLoc at all IoU thresholds,
which demonstrates the superiority of the proposed coherence
loss. However, its performance is even worse than the perfor-
mance of the flow stream under most of the IoU thresholds,
which means the concatenation-based two-modality fusion may
introduce some noise to the model and thus lead to performance
degradation.
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Fig. 7.

Per category Precision-Recall (PR) curve under the IoU threshold 0.3 on the THUMOS14 dataset. The x and y axes represent recall and precision,

respectively. The area enclosed by the PR curve and x and y axes is the Average Precision (AP).

Fig. 6 compares the TAL performance on all action categories,
where the flow stream outperforms the RGB stream on all cat-
egories except for Shotput. Moreover, the proposed filter fusion
further helps improve the performance on most of the action
categories. For example, on action Long Jump, the APs at IoU
threshold 0.5 are 53.4% and 56.0% for RGB stream and flow
stream respectively, while the fusion result on this category is
62.7%. On action Hammer Throw, the APs at the IoU thresh-
old 0.5 are 28.7% and 49.2% for the RGB stream and the flow
stream respectively, while the fusion result achieves 55.4%.

Fig. 7 presents the Precision-Recall (PR) curves for all cat-
egories under the IoU threshold 0.3. Since the flow stream is
chosen as the primary source, the PR curves of the flow stream
and the fusion result are largely overlapped on most of the cat-
egories. Meanwhile, the filter fusion result can achieve higher
recall (i.e., longer in the x axis) than the flow stream because
the retained RGB proposals contain some true action instances
that the flow stream fails to detect. The results also show that
the higher recall is the main factor of the performance im-
provement, because it leads to a larger area enclosed by the
PR curve and the x and y axes, and thus a higher AP for each
category.

Qualitative Analysis: Several representative examples of
TAL results are plotted in Fig. 8 to illustrate the efficacy of
the proposed ACN. For the Frisbee Catch example, the flow
stream and RGB stream both only detect a portion of ground

truth results, and thus all two stream proposals are kept in the fi-
nal fusion results. For the Billiards example, the RGB and flow
streams are also complementary, but the RGB stream fails to
separate two proximate action instances, and these RGB pro-
posals are discarded after fusion because of their large overlap
with the flow proposals. For the Throw Discus example, both
streams provide accurate action proposals, and only flow pro-
posals are retained in the final results under such situation. For
the Javelin Throw example, the RGB stream fails to detect all
true action instances, while the flow stream produces precise ac-
tion proposals. Although the final fusion results nearly contain
all action proposals from two streams, the confidence score dis-
count in the RGB stream helps to alleviate the negative effect of
fusing RGB proposals. For the last example of Clean and Jerk,
both streams cannot provide accurate predictions, and they in-
stead predict fragmentary and low-quality action proposals. In
this case, combining these inaccurate predictions leads to even
worse prediction results, as the merged predictions will decrease
the precision while maintaining the recall.

E. Discussion and Future Work

The proposed coherence loss improves the performance by
involving the video content change in the scoring, whose
importance has also been verified in the co-activity simi-
larity loss in W-TALC [30]. Specifically, in our work and
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Fig. 8.

Qualitative TAL results obtained by ACN on the THUMOS 14 dataset. The horizontal axis in the plot is the timestamp. The five rows in each case are

1) input video frames, 2) ground truth of action instances, 3) action proposals from the flow stream, 4) action proposals from the RGB stream, and 5) final fusion

results, respectively.

W-TALC [30], the feature similarity is measured via cosine
similarity, the values of which will be very approximate for
high-dimensional (e.g., 1024-dimensional) features. Moreover,
if a video exhibits many scene transitions, the regressed action
boundaries tend to be those scene transition locations rather than
true action boundaries. This is because the SCPs and features are
more distinctive at these locations. Therefore, future work may
further exploit effective ways to model the action coherence or
similarity, or try to separate scenes in a video before performing
temporal action localization.

In addition, the flow stream with only an OIC loss achieves
comparable performance with AutoLoc [34]. This means the
RGB modality is largely ignored or even not used in the
concatenation-based fusion method. Therefore, another future
work may continue to focus on properly fusing the two modali-
ties.

Furthermore, the proposed ACN achieves higher performance
boost on THUMOS14 than on ActivityNet. The reason is that
under large anchor sizes, the dilation can be very large, leading
to a very sparse sampling (e.g., the dilation is 128 for anchor
size 512). This means the temporal information is not effectively
employed. However, on one hand, when increasing the sampling
rate, more parameters need to be added to the network, and thus
the overfitting problem will become more severe; on the other
hand, setting a higher 3 in Eq. (14) will also lead to performance
degradation. Future work may try to solve this dilemma.

V. CONCLUSION

This paper proposes an Action Coherence Network (ACN)
for weakly-supervised temporal action localization, which ben-
efits from a new coherence loss and a novel fusion module. The
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coherence loss helps action proposals regress more precise tem-
poral locations, which have high classification activation and
clear appearance boundaries. The novel fusion module is capa-
ble of reconciling modality-specific action proposals generated
by the RGB and flow streams. Experimental results on the THU-
MOS14 and ActivityNet datasets demonstrate the superiority
of our ACN over previous states-of-the-art. Extensive ablation
studies are also conducted to validate our design intuitions.
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