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Abstract—Weakly-supervised temporal action localization (W-TAL) aims to classify and localize all action instances in untrimmed
videos under only video-level supervision. Without frame-level annotations, it is challenging for W-TAL methods to clearly distinguish
actions and background, which severely degrades the action boundary localization and action proposal scoring. In this paper, we
present an adaptive two-stream consensus network (A-TSCN) to address this problem. Our A-TSCN features an iterative refinement
training scheme: a frame-level pseudo ground truth is generated and iteratively updated from a late-fusion activation sequence, and
used to provide frame-level supervision for improved model training. Besides, we introduce an adaptive attention normalization loss,
which adaptively selects action and background snippets according to video attention distribution. By differentiating the attention values
of the selected action snippets and background snippets, it forces the predicted attention to act as a binary selection and promotes the
precise localization of action boundaries. Furthermore, we propose a video-level and a snippet-level uncertainty estimator, and they can
mitigate the adverse effect caused by learning from noisy pseudo ground truth. Experiments conducted on the THUMOS14, ActivityNet
v1.2, ActivityNet v1.3, and HACS datasets show that our A-TSCN outperforms current state-of-the-art methods, and even achieves
comparable performance with several fully-supervised methods.

Index Terms—Temporal action localization, weakly-supervised learning
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INTRODUCTION

collection and avoids annotation bias of human annotators,

HE task of weakly-supervised temporal action localiza-

tion (W-TAL) aims at simultaneously localizing and clas-
sifying all action instances in a long untrimmed video given
only video-level categorical labels in the learning phase.
Compared to its fully-supervised counterpart, which requi-
res frame-level annotations of all action instances during
training, W-TAL greatly simplifies the procedure of data
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and therefore has been widely studied [1], [2], [3], [4], [5], [6],
[7], 18], [9], [10], [11], [12], [13], [14] in recent years.

Several previous W-TAL methods [2], [4], [5], [6], [9],
[10], [11], [12], [13], [14] adopt a multiple instance learning
(MIL) framework, where a video is treated as a bag of snip-
pets to perform video-level action classification. During test-
ing, the trained model slides over time and generates a
temporal-class activation map (T-CAM) [4], [15] (ie. a
sequence of probability distributions over action classes at
each time step) and an attention sequence that measures the
relative importance of each snippet. The action proposals
are generated by thresholding the attention value and/or
the T-CAM. This MIL framework is usually built on two fea-
ture modalities, i.e., RGB frames and optical flow, which are
fused in two mainstream ways. Early-fusion methods [3],
[5], [6], [8], [12] concatenate the RGB and optical flow fea-
tures before they are fed into the network, and late-fusion
methods [4], [6], [9], [10] compute a weighted sum of their
respective outputs before generating action proposals. An
example of late fusion is shown in Fig. 1.

Despite these recent developments, one major challenge
remains to be solved: the lack of frame-level supervision
makes W-TAL methods hard to distinguish action from the
background clearly. This problem degrades the localization
performance in two major ways. First, the detected action
instance may not necessarily correspond to the video-level
labels, e.g., the detector may falsely recognize frames includ-
ing a pool as the swimming action. Second, the ambiguity
between actions and background will influence the activa-
tion sequences. This not only makes thresholding methods
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Fig. 1. Visualization of two-stream outputs and their late-fusion result.
The five rows show the input video, the ground truth action instances
and attention sequences (scaled from 0 to 1) predicted by the RGB
stream, the flow stream and their weighted sum (i.e., the fusion result),
respectively. The horizontal and vertical axes denote the time and the
intensity of attention values, respectively. The green boxes denote the
localization results generated by thresholding the attention at the value
of 0.5. By properly combining the two different attention distributions pre-
dicted by the RGB and flow streams, the late-fusion result achieves bet-
ter localization performance.

generate incomplete or over-complete action proposals but
also leads to unreliable action proposal confidence scores.
Therefore, it is necessary to exploit more fine-grained super-
vision to guide the learning process.

In this paper, we introduce an adaptive two-stream con-
sensus network (A-TSCN) to address this problem. First, we
present an adaptive attention normalization loss to better dif-
ferentiate actions and background. Inspired by Otsu’s
method in image binarization [16], the adaptive attention
normalization loss automatically distinguishes the action
snippets and the background snippets according to the video
attention distribution. By maximizing the difference between
attention values of the action snippets and background snip-
pets, the adaptive attention normalization loss promotes pre-
cise localization of action boundaries. Besides, inspired by
two-stream late fusion [17], we introduce a frame-level
pseudo ground truth to provide more fine-grained supervi-
sion. As shown in Fig. 1, with a proper fusion parameter
(e.g., the hyperparameter controlling the relative importance
of the two modalities), the late-fusion activation sequence is
of higher quality compared with each single stream. There-
fore, we propose to generate a frame-level pseudo ground
truth based on the late-fusion activation sequence, which is
then used to iteratively refine the two-stream base models.
To alleviate the adverse effect caused by learning from noisy
pseudo labels, we propose a video-level and a snippet-level
uncertainty estimator. They respectively compute a video-
level confidence score and a snippet-level confidence score
for the pseudo labels based on the agreement of two-stream
outputs. By applying larger weights to confident pseudo
labels and smaller weights to ambiguous pseudo labels, the
model can avoid learning from possibly wrong pseudo
labels, and gradually generate more precise pseudo labels.

Given an input video, snippet-level features are first
extracted with pre-trained backbones from RGB frames and
optical flow, respectively. Then the two-stream base models
are trained with video-level labels on RGB and optical flow fea-
tures, respectively, where the adaptive attention normalization
loss is used to learn the attention distribution. After obtaining
two-stream attention sequences, a frame-level pseudo ground
truth is generated based on their weighted sum (i.e., the late-
fusion attention sequence). Meanwhile, the video-level uncer-
tainty estimator and the snippet-level uncertainty estimator
compute the pseudo label confidence given two-stream out-
puts. The pseudo ground truth in turn provides frame-level
supervision to improve the two-stream base models. We
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iteratively update the pseudo ground truth and refine the two-
stream base models, where the adaptive attention normaliza-
tion loss simultaneously forces the predicted attention to act as
a binary selector. The final localization result is obtained by
thresholding the late-fusion attention sequence.

To summarize, our contribution is threefold:

e Weintroduce an adaptive two-stream consensus net-
work (A-TSCN) for W-TAL. The proposed A-TSCN
features an iterative refinement training method.
The pseudo ground truth generated from the late-
fusion attention sequence at the previous iteration
can provide more precise frame-level supervision at
the current iteration, and iteratively refine base mod-
els. In addition, we propose a video-level uncertainty
estimator and a snippet-level uncertainty estimator
to mitigate the adverse effect caused by learning
noisy pseudo ground truth.

e We propose an adaptive attention normalization loss
to differentiate actions and background. The pro-
posed loss function adaptively distinguishes the
action snippets and the background snippets based
on the video attention distribution, leading to more
training signals. The adaptive attention normaliza-
tion loss promotes precise action boundary localiza-
tion and accurate action proposal scoring.

e Extensive experiments are conducted on four data-
sets (i.e., THUMOSI14, ActivityNet v1.2, ActivityNet
v1.3, and HACS) to demonstrate the effectiveness of
the proposed method. Our A-TSCN significantly
outperforms previous state-of-the-art W-TAL meth-
ods, and even achieves comparable performance to
some recent fully-supervised TAL methods.

We note a conference version of this paper appears

in [18]. This paper extends our previous version in three sig-
nificant aspects.

e We improve the original attention normalization loss
by adaptively selecting the action snippets and the
background snippets according to the attention dis-
tribution for each video, rather than using a fixed
portion. The improved adaptive attention normaliza-
tion loss provides more training signals and improve
the performance.

e To mitigate the adverse effect caused by learning
from noisy pseudo labels, we introduce a video-level
uncertainty estimator and a snippet-level uncer-
tainty estimator. They estimate the confidence scores
for the pseudo labels at the video level and snippet
level, respectively, thus reducing the weights of pos-
sibly wrong pseudo labels.

e More ablation studies are conducted to validate the
effectiveness of the proposed method. In addition,
we compare it with more state-of-the-art methods,
and also include comparison on the new HACS data-
set [19]. The results reveal that the proposed A-
TSCN outperforms previous state-of-the-art meth-
ods on all benchmarks.

This paper is organized as follows: Section 2 briefly

reviews related work. We present the technical details of
the proposed method in Section 3. Experimental results and
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discussions are presented in Section 4. Finally, we conclude
in Section 5.

2 RELATED WORK

We briefly review related work in action recognition, fully-
supervised temporal action localization, weakly-supervised
temporal action localization and self-training.

Action Recognition. Traditional methods [20], [21], [22],
[23] aim to model spatio-temporal information via hand-
crafted features. Recently, Two-Stream Convolutional Net-
works [17] use two separate Convolutional Neural Networks
(CNNSs) to exploit appearance and motion clues from RGB
frames and optical flow respectively, and use a late-fusion
method to reconcile the two-stream outputs. Feichtenhofer
et al. [24] focuses on studying different ways to fuse the two
streams. The Inflated 3D ConvNet (I3D) [25] expands the 2D
CNNs in two-stream convolutional networks to 3D CNNs,
and further improves the performance. Several recent meth-
ods [26], [27], [28], [29], [30] focus on directly learning motion
clues from RGB frames instead of calculating optical flow.
Besides, some works [31], [32], [33], [34] also try to model
long-term temporal information in videos.

Fully-supervised  temporal —action localization methods
require frame-level annotations of all action instances during
training. Several large-scale datasets have been created for
this task, such as THUMOS [35], [36], ActivityNet [37], and
Charades [38]. Many methods [39], [40], [41], [42], [43], [44],
[45], [46] adopt a two-stage pipeline, i.e., action proposal gen-
eration followed by action classification. Several meth-
ods [43], [44], [46], [47] adopt the Faster R-CNN [48]
framework to TAL. Most recently, some methods [45], [49],
[50] focus on generating action proposals with a more
flexible duration. Several methods [51], [52], [53] apply the
Graph Convolutional Networks (GCN) [54], [55] to TAL to
incorporate more contextual information and exploit pro-
posal-proposal relations. MS-TCN++ [56] proposes a smooth
loss to address the over-segmentation error. Different from
theirs, our smooth loss is proposed to smooth the attention
sequence and remove fragmentary action proposals.

Weakly-supervised temporal action localization, which only
requires video-level supervision during training, signifi-
cantly reduces the data annotation efforts, and draws incre-
asing attention from the community. Hide-and-Seek [1]
randomly hides part of the input video to guide the network
to discover other relevant parts. UntrimmedNet [2] consists
of a selection module to select the important snippets and a
classification module to perform per snippet classification.
Sparse Temporal Pooling Network (STPN) [4] improves
UntrimmedNet by adding a sparse loss to enforce the spar-
sity of selected segments. W-TALC [5] jointly optimizes a
co-activity similarity loss and a multiple instance learning
loss to train the network. AutoLoc [3] and CleanNet [8]
adopt a two-stage pipeline, where they first generate initial
action proposals, and then regress the action proposal
boundaries based on prior knowledge: the action area
should have higher activation than its surrounding back-
ground area. Liu et al. [6] propose a multi-branch network
to model different stages of action. Besides, several meth-
ods [9], [12] focus on modeling the background to better dif-
ferentiate actions and background. DGAM [14] proposes to
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separate action and context with a conditional Variational
Auto-Encoder. A2CL-PT [57] uses two parallel branches in
an adversarial way to generate complete action proposals.
EM-MIL [58] also leverages pseudo labels, where the class-
agnostic attention and the class-specific activation sequence
are alternately trained to supervise each other.

Previously, RefineLoc [59] also proposes an iterative
refinement framework to help the model capture a complete
action instance. Our method is distinct from RefineLoc in
three main aspects. (1) We adopt a late fusion framework
while RefineLoc uses an early fusion framework. Note that
the amount of parameters in the late fusion framework is
only half of that in the early fusion framework, which also
has the potential overfitting problem according to recent
study [6], [60]. (2) Our pseudo ground truth is generated by
fusing two-stream attention sequences, which provides bet-
ter localization performance than individual streams, while
RefineLoc generates the pseudo ground truth by expanding
previous localization results, which might result in coarser
and over-complete action proposals. (3) In addition to the
classification loss, we also introduce an (adaptive) attention
normalization loss, which explicitly avoids the ambiguity of
attention, while RefineLoc does not have explicit constraints
on attention values. As will be shown in Section 4.4, all three
distinctions contribute to our performance superiority.

Self-Training. In semi-supervised learning, self-train-
ing [61], [62], [63], [64], [65] is a widely-used training
scheme, which mainly contains three steps: (1) train a stu-
dent model with labeled data, (2) generate pseudo labels on
unlabeled data with the trained model, and (3) train the stu-
dent model with both labeled data and pseudo-labeled
data. Our pseudo ground truth learning is similar to self-
training by regarding each video snippet as a data point.

3 PROPOSED METHOD

In this section, we first formulate the task of weakly-super-
vised temporal action localization (W-TAL), and then
describe the proposed adaptive two-stream consensus net-
work (A-TSCN) in detail. As illustrated in Fig. 2, our A-
TSCN consists of two parts, i.e., two-stream base models
and a pseudo ground truth generation module. Given an
input video, two-stream base models are first used to per-
form action recognition on RGB snippets and optical flow
snippets respectively, and get respective initial attention
sequences. To facilitate action and background distinguish-
ment, an adaptive attention normalization loss forces the
attention to act like binary selection. Then, a frame-level
pseudo ground truth is generated based on the late-fusion
attention sequence, which in turn provides frame-level
supervision to two-stream base models. Meanwhile, a
video-level and a snippet-level uncertainty estimator
dynamically compute the weights for the pseudo ground
truth learning. Finally, the pseudo ground truth is itera-
tively updated and refines the base models.

3.1 Problem Formulation

Assume we are given a set of training videos. For each
video, we only have its video-level categorical label y,
where y € R is a normalized multi-hot vector, and C is the
number of action categories. The goal of temporal action
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Fig. 2. An overview of the proposed adaptive two-stream consensus network, which consists of two parts. (1) Two-stream base models, where RGB
and optical flow snippet-level features are first extracted with pre-trained models, then action recognition is performed on the two modalities with two-
stream base models, respectively. (2) Pseudo ground truth learning, where a frame-level pseudo ground truth is generated from the two-stream late-
fusion attention sequence, along with video-level and snippet-level uncertainty estimators computing the confidence of the generated pseudo ground

truth. The pseudo ground truth in turn provides frame-level supervision to two-stream base models.

localization is to detect a set of action instances { (s, t.,c, ¥)}
for each testing video, where t,, t., ¢, ¥ denote the start time,
the end time, the predicted action category, and the confi-
dence score of the action instance, respectively.

3.2 Two-Stream Base Models

We follow recent W-TAL methods [3], [4], [5], [6], [8], [9],
[10], [11], [12], [13], [14] to construct two-stream base mod-
els upon snippet-level feature sequences extracted from the
raw video volume. After that, we use two-stream base mod-
els to perform action classification with only video-level
labels, and then iteratively refine the base models with a
frame-level pseudo ground truth.

Feature Extraction. The RGB and optical flow snippet-
level features are extracted with pre-trained networks (e.g.,
13D [25]) from non-overlapping fixed-length RGB and opti-
cal flow snippets, respectively. They provide high-level
appearance and motion information of the corresponding
snippets. Formally, given a video with 7" non-overlapping
snippets, we denote the extracted RGB feature and optical
flow feature as Frgp = {fRGBJ}Z-T:1 and Fpoy = {fﬂow),}?zl,
respectively, where fragp,, frow, € RP? are the feature repre-
sentations of the ith RGB snippet and the ith optical flow
snippet, respectively, and D denotes the channel dimension.

The features of the two modalities are fed into two sepa-
rate base models respectively, and the two base models use
the same architecture but do not share parameters. There-
fore, in the rest of this section, for conciseness, we omit the
subscript RGB and flow to indicate a general operation for
both modalities.

Feature Embedding. Since the feature-extraction backbones
are not originally trained for the W-TAL task, we embed the
extracted feature F with two layers of temporal convolutional
layer interleaved with LeakyReLU activation. We denote the
output feature as X = {x;}._,, where x; € R”. The embedding
temporal convolutional layer consists of D convolutional ker-
nels with a temporal size of 3 and a stride of 1. Besides, zero
padding is used to retain the temporal dimension.

Action Recognition. As untrimmed videos may contain
background snippets, to perform the video-level classifica-
tion, we need to select snippets that are likely to contain
action instances and meanwhile filter out snippets that are
likely to contain background. To this end, an attention value
a; € (0,1) to measure the likelihood of the ith snippet con-
taining an action is given by an attention module:

a; = G(gatt(xi§ ‘Patt))v M

where o(), gatt(-) and ¥, are the sigmoid function, the for-
ward pass of the attention module and learnable parameters
of the attention module, respectively. The attention module
is implemented as a single temporal convolutional layer
with a kernel size 3.

With the obtained attention sequence, we then perform
attention-weighted pooling over the feature sequence to
generate a single foreground feature x;,, and feed it to a clas-
sification module to get the video-level prediction y:

Ly
Xg = —7— )  aiX, 2
’ ZiTzl @i =1
S’ = softmax (gcls (xfg; ‘\I,cls) ) ) (3)
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where softmax(+) is a softmax function along the class dimen-
sion, gqs(-) is the forward pass of the classification module,
and W is the learnable parameters of the classification mod-
ule. The classification module share a similar structure with
the attention module, except that the output layer consists of
C convolutional kernels. The classification loss function £
is defined as the standard cross entropy loss:

ds - Z Ye IOg ?J( (4)

where y. and §. denote the values of the label vector y and
the action prediction result ¥ at index c, respectively.

In addition, the temporal class activation map (T-
CAM) [4], [15] S = {sl}l 1, 8i € RY, which is used to mea-
sure the action proposal conﬁdence score in Section 3.4, is
generated by sliding the classification module over all snip-
pet-level features:

s; = softmax(ges(x;; Peys)). %)

Adaptive Attention Normalization Loss. Ideally, the attention val-
ues are expected to be binary, where 1 indicates actions while 0
indicates background. To this end, the original TSCN [18] uses
an attention normalization loss to maximize the difference
between the top-/ and bottom-/ average attention values:

Acnorm = ”C{a Z ¢—- ac{a‘ Z 9, (6)

|al=t |a|=t

where | = max(1, [£]) and s is set to 8 empirically.

One problem with this loss function is that it only applies
on 1/4 of the whole video, leading to limited training sam-
ples. However, in the weakly-supervised setting, the por-
tions of actions and background are unknown. To address
this problem, inspired by Otsu’s method in image binariza-
tion [16], we dynamically determine an attention threshold
Ootsu Via Otsu’s method, which is further used to separate
action snippets and background snippets. Otsu’s method
searches for a threshold that minimizes a weighted sum of
action and background attention variances:

Ootsu = argminl{a;|a; < O}|var({a;la; < 6})
oc{a;}

+ Haila; > 0}|var({a;|a; > 6}), 7)

where var(-) denotes the variance, and | - | denotes the cardi-
nality of a set. In this way, a background set A, and an
action set A, can be generated as Ap, = {a;|a; < Oosu} and
Auer = {aila; > Oy}, respectively. Then, the final adaptive
attention normalization loss is defined as:

> ¢
dea

—— ma , )
dct "?Cl{ax Z ¢

I
‘Ca-norm =7 — nmn
lbg‘ aC{a;}

> Jal=

"lbg

where 1l = max(|Z], ["2])), and fe = max(|Z], | “22).

S

We note the lower bound |1] is indispensable, otherwise
the loss function will converge to only a few snippets being
regarded as actions. Besides, under the weakly-supervised
setting, a single stream is prone to make incorrect snippet-
level action-background classification. Thus, a hyperpara-
meter s’ is used to make the loss function only focus on a
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portion of the most confident part. &' =2 is empirically
determined so that it doubles the training snippets than the
original attention normalization loss.

Smooth Loss. As a minor improvement, we introduce a
smooth loss to enforces temporally proximate snippets to
give similar attention predictions, and thus helps generate a
more smooth attention sequence [66]:

1 T-1
Esmooth = ﬁ ; |at — Q41 ‘ (9)

Total Loss. The overall loss for the base model training is a
weighted sum of the classification loss, the adaptive atten-
tion normalization term, and the smooth loss:

‘Cbase = ['cls + a‘ca—norm + ,B»Csmooth: (10
where « and § are hyperparameters to control the weight of

the adaptive attention normalization loss and the smooth
loss.

3.3 Pseudo Ground Truth Learning
After training the base models with only video-level labels,
we then iteratively refine the two-stream base models with
a novel frame-level pseudo ground truth.

Specifically, we divide the whole training process into
several refinement iterations. At refinement iteration 0, only
video-level labels are leveraged for training. And at refine-
ment iteration n + 1, a frame-level pseudo ground truth is
generated at refinement iteration n, and provides frame-
level supervision for the current refinement iteration. How-
ever, without true frame-level ground truth annotation, we
can neither measure the quality of the pseudo ground truth,
nor guarantee the pseudo ground truth can help the base
models achieve higher performance.

Inspired by two-stream late fusion [4], [6], [9], [10], [17],
we introduce a simple yet effective method to generate the
pseudo ground truth. Intuitively, the late fusion is a voting
ensemble of two streams: locations at which both streams
have high activations are likely to contain ground truth
action instances; locations at which only one stream has
high activations are likely to be either false positive action
proposals or true action instances that only one stream can
detect; locations at which both streams both have low acti-
vations are likely to be the background. Therefore, late
fusion can effectively combine knowledge learned by two
streams, and generates a more reliable attention sequence
than each individual stream.

Following this intuition, we use the fusion attention

(n) \T ) . .
sequence {a; /. };—; at refinement iteration n to generate

pseudo ground truth {g (nt1) } ;_, for refinement iteration n +

1, where a,f(hs)ej = A“é{();n/ +(1- )‘)ag(sz',f’ and Ae[0,1] is a
fusion hyperparameter to control the relative importance of
RGB and flow attentions. We then refine the base models by
forcing the attention sequence predicted by each stream to
fit the pseudo ground truth. In this paper, we introduce two

pseudo ground truth generation methods.

o  Soft pseudo ground truth dlrectly uses the fusion atten-

tion values as pseudo labels: "™ = a{")  The soft
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pseudo labels contain the probability of a snippet
being the foreground action, but also add uncer-
tainty to the model.

o Hard pseudo ground truth thresholds the attention
sequence to generate a binary sequence:

1, d" >0

(n+1) _ ’ fuse,i )
Gr=q (11)

» Oy, S 97

where 0 is the threshold value. Setting a large value
of 6 will eliminate the action proposals that only one
stream has high activations, reducing the false posi-
tive rate. In contrast, setting a small value of 0 will
help models to generate more and longer action pro-
posals and achieve a higher recall. Hard pseudo
labels remove the ambiguity and provide stronger
supervision, but introduce a hyperparameter.
After generating the pseudo ground truth, the attention
sequences of each single stream are forced to fit the pseudo
ground truth with a mean square error loss:

LS ntt)  ani1)2
:?Z(ai" — g ) (12)
i=1

However, under only video-level supervision, the pseudo
labels are prone to be noisy. To alleviate this issue, we intro-
duce a video-level uncertainty estimator wyigeo and a snip-
pet-level uncertainty estimator wgippet;, for pseudo ground
truth learning. The video-level and snippet-level uncertainty
estimators leverage the agreement of two-stream outputs at
video-level and snippet-level, respectively. Specifically, the
video-level uncertainty estimator measures the confidence
of the pseudo ground truth for a given video, and assigns
larger/smaller weights to confident/ambiguous pseudo
ground truth in a batch. The snippet-level uncertainty esti-
mator measures the snippet-level confidence for the pseudo
ground truth, and assigns larger/smaller weights to confi-
dent/ambiguous snippets in a video. The adaptive pseudo
ground truth learning loss with video-level and snippet-level
uncertainty estimators is formulated as

£ 1 & (n+1) (n+1)\ 2
a-pseudo Wyideo T § Wsnippet.i | @; - g;j .
i=1

[:(n+1)

pseudo

(13)

For the video-level uncertainty estimator, we consider
two different implementations.

o Attention difference: the difference between two-
stream average attention values is leveraged to mea-
sure the uncertainty, where the video-level uncer-
tainty is defined as wyiqeo =1 — |%21T ARGB; — 7
ZlT Aflow i | .

o  Symmetric KL divergence on attention distribution: this
estimator considers the two-stream attention distri-
bution, and measures the video-level consensus with
symmetric KL divergence. To simplify computation,
we approximate the attention distribution by divid-
ing the attention into b bins, where b is a hyperpara-
meter. The ith bin contains snippets with an
attention value in the range [5,4]. In this way, we
can denote the attention distribution as a vector a €
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R®, where its ith value a; denotes the ratio of the
number of snippet contained in the ith bin to the
total number of snippets. Therefore, the two-stream
attention distributions can be obtained as argp and
afow, respectively, and the video-level uncertainty is
estimated by symmetric KL divergence wyigeo =
eXp(fKL(aRGBHEHOW) — KL(aﬂOWHéRGB)), where KL
(+]|-) denotes the KL divergence.

For the snippet-level uncertainty estimator, we also con-

sider two different implementations.

e  Attention difference: this estimator measures the snip-
pet-level uncertainty via the difference between two-
stream attention values, where weippet; = 1 — |araB; —

Qflow,i

o  Symmetric KL divergence on T-CAM: this estimator com-

putes the symmetric KL divergence between the two-
stream T-CAM: Wsnippet,i = eXp(_KL(SRGBJ||SﬂOW.1) -
KL(Sfiow, ||SraB;))-

To avoid the impact of numerical differences of different
uncertainty estimators, we further normalize the uncertain-
ties with min-max normalization, and add a bias so that the
video-level/snippet-level uncertainties have a batch-/
video-wise average uncertainties of 1.

Note that we only apply the pseudo ground truth learn-
ing to the attention sequence, while no constraint is applied
to the classification module. This is because the classifica-
tion module is primarily guided by the attention: the classi-
fication module uses an attention-weighted pooled feature
to perform action recognition, and thus its activation resem-
bles the attention.

Finally, at refinement iteration n + 1, the total loss for
each stream is

+1 +1
‘C‘EZtal) = ‘Cbaﬁe + y‘cglpsel)l(b’ (14)

where y is a hyperparameter to control the relative impor-
tance of the pseudo ground truth learning.

3.4 Action Localization

During testing, following recent methods [4], [12], we first
temporally upsample the attention sequence and T-CAM by
a factor of 8 via linear interpolation. Since a video may con-
tain action instances from different categories, we then select
top-k action categories from the fusion video-level prediction
Viwe t0 perform action localization, where ¥, . = Aypqp +
(1 — N)¥gq.,,- For each of these categories, following common
practice [4], [9], [12], we generate action proposals by pro-
gressively thresholding the attention values, and concatenat-
ing consecutive snippets. The action proposals are scored via
a variant of the Outer-Inner-Constrastive score [3]: instead of
using average T-CAM, we use attention-weighted T-CAM to
measure the temporal contrast between the action proposal
and its surrounding areas. Formally, given an action pro-
posal (ts,te, ), a fusion attention sequence {afum,}iT: , and a
fusion T-CAM {Sfuse_i}z;l, where  Sgyse; = ASren, + (1 —
A)Siiow, the confidence score v is computed as

te
Zi:ts Gfuse,i Stuse,ic
te - ts

Te te
_ Z{;TS Qfuse,i Stuse,ic — Zi;ts Gfuse; Stuse,ic
)
Te - Ts‘ - (te - te)

U=

(15)
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where T, =t, — %, T. =t.+%, L =t. — t,, and sgu,. is the
fusion T-CAM value of ith snippet for category c. Finally,
non-maximum suppression is used within each class to
remove duplicated detections.

4 EXPERIMENTS AND DISCUSSIONS

In this section, we first introduce four standard benchmarks,
the evaluation metrics, and the implementation details.
Then, we compare the proposed A-TSCN with state-of-the-
art methods, followed by a set of ablation studies. Note that
only video-level categorical labels are leveraged to train the
proposed A-TSCN.

4.1 Dataset and Evaluation

THUMOS14 dataset [35] contains 200 validation videos and
213 testing videos within 20 categories for the TAL task. We
use the 200 validation videos to train, and use the 213 test-
ing videos to evaluate. Following BaS-Net [12], we remove
testing video #270, #1292 and #1496 as they are incorrectly
annotated. Each video averagely contains 15.5 action instan-
ces in the THUMOS14 dataset.

ActivityNet dataset [37] has two release versions, i.e., Acti-
vityNet v1.3 and ActivityNet v1.2. ActivityNet v1.3 covers
200 action categories, with a training set of 10,024 videos
and a validation set of 4,926 videos. ActivityNet v1.2 is a
subset of ActivityNet v1.3, and covers 100 action categories,
with 4,819 and 2,383 videos in the training and validation
set, respectively." We use the training set and the validation
set for training and testing, respectively. Each video aver-
agely contains 1.5 action instances in ActivityNet datasets.

HACS dataset [19] is a recently released dataset for the
TAL task. To our knowledge, it is so far the largest TAL
benchmark, and covers 200 action classes, with a training
set of 37,612 videos, and a validation set of 5,981 videos. We
use the HACS v1.1.1 to conduct the experiments. Each video
in this dataset contains 2.5 action instances on average.

Evaluation Metrics. Following the standard protocol on
temporal action localization, we evaluate our method with
mean Average Precision (mAP) under different Intersec-
tion-over-Union (IoU) thresholds. We use the evaluation
code provided by ActivityNet to measure the performance.

4.2 Implementation Details
The optical flow is estimated via the TV-L1 algorithm [71].
Two off-the-shelf feature-extraction backbones are used in
our experiments, i.e., UntrimmedNet [2] and I3D [25], with
snippet lengths of 15 frames and 16 frames, respectively.
The two backbones are pre-trained on ImageNet [72] and
Kinetics-400 [25] respectively, and are not fine-tuned for a
fair comparison. The RGB and optical flow snippet-level
features are extracted at the global_pool layer as 1024-D
vectors.

The network is implemented in PyTorch [73]. We use the
AdamW optimizer with a fixed learning rate 0.0001 during
the whole training process. For the pseudo ground truth

1. In our experiments, there are 9,937 and 4,575 videos in the train-
ing and validation set of ActivityNet v1.3 respectively, and 4,471 and
2,211 videos in the training and validation set of ActivityNet v1.2
respectively, because the rest of the videos are inaccessible from
YouTube.
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generation, we simply select models in the last epoch of
each refinement iterations as the teacher model. The batch
size is set to 16. During testing, we choose top-2 action cate-
gories and reject categories whose fusion classification pre-
diction scores are lower than 0.1 to perform action
localization. To remove fragmentary action proposals in
ActivityNet datasets, we downsample the input at a rate of
1/30. The numbers of epochs are set to 80, 20, and 20 for
refinement iteration 0 for THUMOS14, ActivityNet and
HACS, respectively; and for later refinement iterations, the
numbers of epochs are set to 40, 10 and 10, respectively. The
number of training epochs is largely affected by the number
of training videos per class in each dataset. For all datasets,
we train the model for 8 refinement iterations.

Hyperparameters. For the s in the original attention nor-
malization loss, we follow similar weakly-supervised classi-
fication loss functions [5], [12] to set s = 8. And s’ in the
adaptive attention normalization loss is set to 2, which dou-
bles the training snippets than our conference version. The
weights for loss functions are set by only adjusting their
magnitudes: « = § = 0.1, and y = 1. And the fusion param-
eter X is set to 0.5, so that the two modalities are equally
weighted. According to our intuition that the attention per-
forms binary classification, the thresholding parameter 6 is
set to 0.5. For the symmetric KL divergence in the uncer-
tainty estimators, we set b = 10. As will be shown in the
ablation study, our method is robust to most of the
hyperparameters.

4.3 Comparisons With the State-of-the-Art

THUMOS14. Table 1 summarizes the performance compari-
son between the proposed A-TSCN and state-of-the-art
fully-supervised and weakly-supervised TAL methods on
the THUMOS14 testing set. With UntrimmedNet features,
A-TSCN outperforms other W-TAL methods at most IoU
thresholds by a large margin, and even achieves comparable
results to some recent W-TAL methods with I3D features
(e.g., BaS-Net [12] and DGAM [14]) at several IoU thresholds.

The proposed A-TSCN achieves higher performance
with I3D features, and outperforms all of the previous W-
TAL methods at the average mAP between 0.3 and 0.7. Fur-
thermore, our A-TSCN achieves similar performance to
some recent fully-supervised methods (e.g., SSN [40]), and
even outperforms TAL-net [46] at IoU thresholds 0.1 and
0.2. However, as the IoU threshold increases, the perfor-
mance of A-TSCN drops significantly, because localizing
more precise action boundaries needs true frame-level
ground truth supervision.

ActivityNet. The performance comparisons on Activity-
Net v1.2 and v1.3 are shown in Tables 2 and 3 respectively,
where our models are trained with I3D features. The pro-
posed A-TSCN outperforms previous W-TAL methods at
the average mAP at IoU threshold 0.5 : 0.05 : 0.95 on both
release versions of ActivityNet, verifying the efficacy of our
design intuition.

HACS. The performance comparison on the HACS vali-
dation set is presented in Table 4, where all methods are
trained with I3D features. Our A-TSCN outperforms the
previous fully-supervised method SSN [40], the weakly-
supervised method BaS-Net [12] and our baseline model
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TABLE 1
Comparison of Our Method With State-of-the-Art TAL Methods on the THUMOS14 Testing Set
Method Supervision  Feature mAP@IoU (%) Avg (%)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.3:0.1:0.7
Richard et al. [67] Full - 39.7 35.7 30.0 23.2 15.2 - - - - -
Yuan et al. [68] Full - 51.0 45.2 36.5 27.8 17.8 - - - - -
CDC [39] Full - - - 40.1 29.4 23.3 13.1 7.9 - - 22.8
R-C3D [44] Full - 54.5 51.5 44.8 35.6 28.9 - - - - -
SSN [40] Full - 66.0 59.4 51.9 41.0 29.8 - - - - -
BSN [45] Full - - - 535 450 369 284 200 - - 36.8
BMN [50] Full - - - 56.0 47.4 38.8 29.7  20.5 - - 38.5
GTAN [49] Full - 69.1 63.7 57.8 47.2 38.8 - - - - -
G-TAD [52] Full - - - 54.5 47.6 40.2 30.8 23.4 - - 39.3
TAL-Net [46] Full 13D 598 571 532 485 428 338 208 - - 39.8
P-GCN [51] Full 13D 69.5 67.8 63.6 57.8 49.1 - - - - -
UntrimmedNet [2] Weak - 444 377 282 211 13.7 - - - - -
STPN [4] Weak UNT 453 38.8 31.1 23.5 16.2 9.8 5.1 2.0 0.3 17.1
W-TALC [5] Weak UNT 49.0 42.8 32.0 26.0 18.8 109 6.2 - - 18.8
Liu et al. [6] Weak UNT 53.5 46.8 37.5 29.1 19.9 12.3 6.0 - - 21.0
AutoLoc [3] Weak UNT - - 35.8 29.0 21.2 134 5.8 - - 21.0
TSM [11] Weak UNT - - 37.3 - 21.9 - 6.0 - - -
RefineLoc [59] Weak UNT - - 36.1 29.6 22.6 12.1 5.8 - - 21.2
Huang et al. [13] Weak UNT 54.2 47.1 37.8 29.4 21.2 139 6.8 - - 21.8
CleanNet [8] Weak UNT - - 370 309 239 139 7.1 - - 22.6
BaS-Net [12] Weak UNT 56.2 50.3 42.8 347 251 17.1 9.3 3.7 0.5 25.8
EM-MIL [58] Weak UNT 59.0 50.4 427 345 27.2 18.9 10.2 - - 26.7
TSCN [18] Weak UNT 58.9 52.9 45.0 36.6 27.6 18.8 10.2 4.0 0.5 27.6
A-TSCN (Ours) Weak UNT 60.5 54.0 46.3 374 28.8 19.2 10.3 3.8 04 28.4
STPN [4] Weak 13D 52.0 447 355 25.8 16.9 9.9 43 1.2 0.1 18.5
W-TALC [5] Weak 13D 55.2 49.6 40.1 31.1 22.8 14.5 7.6 - - 23.2
Liu et al. [6] Weak 13D 57.4 50.8 41.2 32.1 23.1 15.0 7.0 - - 23.7
TSM [11] Weak 13D - - 39.5 - 24.5 - 7.1 - - -
RefineLoc [59] Weak 13D - - 40.8 327 231 13.3 53 - - 23.0
BaS-Net [12] Weak 13D 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5 27.3
Nguyen et al. [9] Weak 13D 604 560 466 375 268 176 9.0 33 04 27.5
Huang et al. [13] Weak 13D 62.3 57.0 48.2 37.2 27.9 16.7 8.1 - - 27.6
DGAM [14] Weak 13D 60.0 54.2 46.4 38.2 28.8 19.8 114 3.6 0.4 29.0
A2CL-PT [57] Weak 13D 61.2 56.1 48.1 39.0 30.1 19.2 10.6 4.8 1.0 294
EM-MIL [58] Weak 13D 59.1 52.7 455 36.8 30.5 22.7 16.4 - - 30.4
TSCN [18] Weak 13D 63.4 57.6 47.8 377 287 194 10.2 3.9 0.7 28.8
AUMN [69] Weak 13D 66.2 61.9 54.9 444 33.3 20.5 9.0 - - 324
TSCN+UGCT [70] Weak 13D 67.5 62.1 55.3 45.2 33.3 20.7 9.5 - - 328
A-TSCN (Ours) Weak I3D 65.3 59.0 52.1 42.5 33.6 23.4 12.7 45 0.5 329

Recent fully-supervised and weakly-supervised methods are reported. UNT and 13D are abbreviations for UntrimmedNet feature and I3D feature, respectively.

The Avg column indicates the average mAP at IoU thresholds 0.3:0.1:0.7.

TSCN [18] at all IoU thresholds and the average mAP. To
our knowledge, the HACS dataset is the largest dataset for
the TAL task, and it is a realistic and challenging one due to
its fine-grained annotation. Thus, our performance superi-
ority on this dataset indicates its applicability to real
scenarios.

To summarize, on the above four datasets, the proposed
A-TSCN outperforms state-of-the-art W-TAL methods,
including TSCN proposed in our conference paper [18]. Sur-
prisingly, our A-TSCN achieves similar or even higher per-
formance than some recent fully-supervised methods on the
four benchmarks. The clear performance superiority dem-
onstrates the effectiveness of the proposed A-TSCN.

4.4 Ablation Study

In this subsection, to better analyze the contribution of each
component, we conduct ablation studies on the THUMOS14

testing set. The ablation studies are conducted with I3D fea-
tures. To improve readability, we use gray color to mark the
final setting used to compared with the state-of-the-art.
Ablation Study on the Adaptive Attention Normalization Loss
Lynom- To reduce the ambiguity between foreground and
background, we introduce an adaptive attention normaliza-
tion loss to differentiate them in attention values. Compared
with the original version, where the action and background
portions are fixed, the new adaptive version dynamically
determines the action and background portions according
to the attention distribution, increasing the training samples
and improving the performance. Table 5 compares the per-
formance of the original attention normalization loss and its
adaptive version. We make the following observations. (1)
For the original attention normalization loss Ly.m, the per-
formance first raises as s increases from 2 to 8, indicating
manually setting a large portion of action or background
does not conform to the real action and background
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TABLE 2 TABLE 4
Comparison of Our Method With State-of-the-Art TAL Comparison of Our Method With State-of-the-Art TAL
Methods on the ActivityNet v1.2 Validation Set Methods on the HACS Validation Set

Method Sup. mAP@IoU (%) Avg (%) Method Sup. mAP@IoU (%) Avg (%)
05 075 095 0.5:0.05:0.95 0.5 0.75 095 0.5:0.05:0.95

SSN [40] Full 413 270 6.1 26.6 SSN [40] Full 28.82 18.80 5.32 18.97

UntrimmedNet [2] Weak 7.4 3.2 0.7 3.6 BaS-Net [12]* Weak 30.12 16.69 6.13 18.63

AutoLoc [3] Weak 273 151 33 16.0 TSCN [18] Weak 3340 1997 645 20.80

TSM [11] Weak 283 170 3.5 17.1 A-TSCN (Ours) Weak 34.86 20.89 6.60 21.71

W-TALC [5] Weak 370 127 15 18.0

Liu et al. [6] Weak 36.8 22.0 5.6 224 The Avg column indicates the average mAP at IoU thresholds 0.5:0.05:0.95. *

Huang et al. [13] Weak 376 239 54 233 denotes our reproduced results.

BaS-Net [12] Weak 385 242 56 24.3

DGAM [14] Weak 410 235 53 244 improves the performance for the RGB stream and the fusion

EM-MIL [58] Weak 374 - 2.0 20.3 . .

TSCN [18] Weak 37.6 237 57 23.6 result. Despite the slight performance drop for the flow

AUMN [69] Weak 42.0 250 5.6 255 stream, the fusion result outperforms both streams after the

TSCN+UGCT [70] Weak 40.0 23.6 5.6 24.3 hard pseudo label learning. In contrast, the soft pseudo

A-TSCN (Ours) Weak 396 251 5.8 25.6 ground truth degrades the performance of the flow stream

The Avg column indicates the average mAP at IoU thresholds 0.5:0.05:0.95.

distribution (e.g., setting s =4 assumes action and back-
ground each account for 25% of the whole video). The per-
formance drops at s =16, which might attribute to the
decrease of training samples. (2) For the adaptive version
without a lower bound, the performance significantly drops
as s' increases. Besides, the number of action snippets
decreases much more quickly than the number of back-
ground snippets. Without a lower bound constraint, we
speculate that the model only focuses on the most discrimi-
native part of actions for classification, while ignoring the
completeness of action instances. (3) With the lower bound
constraint (the last group), the performance improves sig-
nificantly for ¢ =2 and s’ =4, which demonstrates the
effectiveness of our adaptive attention normalization loss.
Besides, setting s’ =1 slightly decreases the performance,
indicating that it is unreliable to determine the action and
background for the whole video for a single modality.
Ablation Study on the Pseudo Ground Truth Type. Fig. 3 plots
the performance comparison between different pseudo
ground truth methods at different refinement iterations. The
results reveal that the hard pseudo ground truth dramatically

TABLE 3
Comparison of Our Method With State-of-the-Art W-TAL
Methods on the ActivityNet v1.3 Validation Set

Method mAP@IoU (%) Avg (%)
0.5 0.75 0.95 0.5:0.05:0.95

STPN [4] 29.3 16.9 2.6 -
TSM [11] 30.3 19.0 45 -

Liu et al. [6] 34.0 20.9 5.7 21.2
Nguyen et al. [9] 36.4 19.2 2.9 -
BaS-Net [12] 34.5 22.5 49 22.2
A2CL-PT [57] 36.8 22.0 52 22.5
TSCN [18] 35.3 21.4 53 21.7
AUMN [69] 38.3 23.5 5.2 23.5
TSCN+UGCT [70] 38.1 21.2 54 22.8
A-TSCN (Ours) 37.9 23.1 5.6 23.6

The Avg column indicates the average mAP at IoU thresholds 0.5:0.05:0.95.

and the fusion result. As for the RGB stream, though the soft
labels improve its performance, the improvement requires
more refinement iterations and is still lower than that trained
with hard labels. These results reveal the importance of
removing ambiguity in the pseudo ground truth.

In the following discussion, if not explicitly stated, the
pseudo ground truth denotes the hard pseudo ground truth.

Table 6 lists the detailed performance comparison
between models trained with only video-level labels and
those trained with pseudo ground truth. The results show
that the pseudo ground truth improves the localization per-
formance for the RGB stream and the fusion result at all IoU
thresholds, and improves the flow stream at high IoU
thresholds. Also, the pseudo ground truth dramatically
improves the precision and recall for the RGB stream, and
improves the precision for the flow stream and the fusion
result with a slight loss of recall. The pseudo ground truth
improves the F-measure for all three results. This demon-
strates that the pseudo ground truth can help eliminate false
positive action proposals.

TABLE 5
Ablation Study on the Adaptive Attention Normalization
Loss Lo

Loss s ¢ _mAP@IoU (%) Avg (%)  #Act #Bg
0.3 0.5 0.7 0.3:0.1:0.7
- - - 331 190 57 18.2 - -
2 - 428 243 8.0 23.3 196.4 196.4
4 - 444 271 9.7 26.6 98.2 98.2
Lnorm 8 457 29.3 10.6 28.4 49.1 49.1
16 - 440 281 97 27.3 246 246
-1 446 273 104 26.8 1575 239.2
- 2 401 229 6.0 219 35.2 1627
Lonorm - 4 374 181 4.5 17.6 14.6 83.9
- 8 322 144 38 13.9 6.3 42.6
8 1 454 278 103 27.5 168.8 216.0
8 2 479 303 10.7 29.6 71.1  130.9
8 4 469 300 105 29.2 50.2 66.6

#Act and #Bg denote the average number of positive and negative snippets par-
ticipated in the loss function computation in the testing set, respectively. Per-
formances are reported wjo pseudo ground truth learning.
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Fig. 3. Comparison between models trained with different pseudo

ground truth at different refinement iterations on the THUMOS14 testing

set. “Hard” denotes models trained with hard pseudo ground truth, and
“Soft” denotes models trained with soft pseudo ground truth.

The per category precision-recall (PR) curve is presented in
Fig. 4. The category-wise PR curve indicates that the pseudo
ground truth improves precision for most categories (i.e.,
higher in the y axis), and thus achieves a larger area enclosed
by the PR curve, the x axis and the y axis (i.e., average preci-
sion, AP). However, for several categories (e.g., Cricket Shot
and Tennis Swing), the performance slightly drops. The reason
is that some false positive action proposals are wrongly rein-
forced in the iterative refinement, and we will further illus-
trate this problem in qualitative analysis.

Ablation Study on the Uncertainty Estimators. To mitigate
the adverse effect caused by the noise of pseudo ground
truth, we introduce a video-level uncertainty estimator and
a snippet-level uncertainty estimator. They estimate the reli-
ability of pseudo ground truth in a batch and in a video
respectively, and thus decrease the weight for uncertain
pseudo ground and increase the weight for confident ones.
Table 7 summarizes the results, which demonstrate the
usage of either uncertainty estimator improves the perfor-
mance, and their combination leads to even higher perfor-
mance. Specifically, the snippet-level uncertainty estimator
has more impact than the video-level one. Moreover, sym-
metric KL divergence-based uncertainty estimators perform
better than those using attention difference.

Sensitivity Analysis on the Thresholding Parameter 6. The
thresholding parameter 6 in the hard pseudo ground truth
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generation has significant impact on the quality of the pseudo
ground truth. Figs. 5a, 5b and 5c plot the localization perfor-
mance, precision and recall changes under different 6 values,
respectively. In Fig. 5b, a relative large 6 (e.g., 0.55 and 0.6)
helps remove false positive action proposals, and improve the
precision, while a too large or small 6 decreases the precision.
In Fig. 5¢, a relatively small 6 (e.g., 0.45) helps retain more
action proposals, which may contain some false negatives,
and improve the recall, while a too small or large 6 decreases
the recall. Therefore, the localization performance in Fig. 5a
shows a trade-off result between precision and recall, where
the best performance is achieved under 6 = 0.5. To summa-
rize, the localization performance, precision and recall show
the same tendency: the performance is positively correlated
with the distance between 6 and 0.5.

Sensitivity Analysis on the Fusion Parameter A. X is an
important hyperparameter controlling the relative impor-
tance between the RGB stream and the flow stream at late
fusion, and thus influences the fusion result and the pseudo
ground truth. As shown in Fig. 6, with only video-level
supervision, the late-fusion result outperforms both individ-
ual streams only when the stream that has higher perfor-
mance dominates (e.g., A = 0.2). Under frame-level pseudo
supervision, the localization performances of the RGB
stream and the fusion result are greatly improved compared
with those under only video-level supervision. However,
when the noisy RGB stream predominates the pseudo
ground truth (i.e, A > 0.5), the performance of the flow
stream and the fusion result corrupt significantly. We also
note that performances for A = 0.2 and A = 0.4 exceed the
performance for A = 0.5, as the noisy RGB prediction has
lower weights than the more precise flow stream. That said,
to demonstrate the generalization ability of our method, we
use A = 0.5 in later experiments.

Interestingly, under frame-level pseudo supervision with
A =1, (i.e., only the RGB stream is used for pseudo ground
truth generation), the flow stream still outperforms the RGB
stream by a large margin, which demonstrates the RGB
stream is insensitive to actions and lacks generalization
ability.

Ablation Study on the Early-Fusion Framework. As we
reviewed in Section 1, there are two mainstream two-stream
fusion methods, i.e., early fusion and late fusion. To demon-
strate the effectiveness of the proposed method, we imple-
ment our method in the early-fusion framework, where the

TABLE 6
Comparison Between the Models Trained With Only Video-Level labels and the Model Trained
With Hard Pseudo Ground Truth on the THUMOS 14 Testing Set

Modality  Label mAP@IoU (%) Avg (%) Recall (%) Precision (%) F-measure
0.1 0.2 0.3 0.4 0.5 0.6 07 08 09 0.3:0.1:0.7
RGB Video 545 472 380 283 184 105 47 1.0 0.1 20.0 48.0 6.0 0.1067
RGB Frame 585 530 451 359 269 178 83 29 04 26.8 53.4 9.9 0.1670
Flow Video 635 582 510 418 322 216 119 37 04 31.7 61.0 7.3 0.1304
Flow frame 628 56.7 502 407 311 214 116 43 05 31.0 54.8 10.2 0.1720
Fusion Video 61.6 552 479 395 303 19.8 10.7 30 03 29.6 67.0 7.3 0.1316
Fusion Frame 653 59.0 521 425 33.6 234 127 45 05 32.9 63.2 94 0.1636

The “Label” column denotes the supervision used in training, where “Video” indicates only video-level labels are leveraged, and “Frame” indicates the hard
pseudo ground truth is also leveraged during training. Precision, recall and F-measure are calculated under IoU threshold 0.5.
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Fig. 4. Per category precision-recall (PR) curves on the THUMOS14 testing set. The PR curve is plotted under loU threshold 0.3. The area enclosed
by the PR curve, x axis and y axis is average precision (AP) of each category.

concatenation of the RGB and optical flow features on the
feature dimension is fed into a single base model. The
pseudo ground truth is generated from the single base mod-
el’s attention sequence and used for iterative refinement.
The performance comparison in the early-fusion network
is summarized in Table 8. Without pseudo ground truth, the
results show the same tendency with the late-fusion frame-
work: the original attention normalization loss greatly
improves the baseline performance, and its adaptive

TABLE 7
Ablation Study on Video-Level and Snippet-Level
Uncertainty Estimators

Video Snippet mAP@IoU (%) Avg (%)
Uncertainty ~ Uncertainty 0.3 0.5 0.7  0.3:0.1:0.7
None 509 328 119 32.1
None Diff 51.2 331 122 323
KLD 515 332 123 32.4
None 511 328 118 32.1
Diff Diff 514 332 123 324
KLD 51.7 333 124 32.6
None 51.0 330 120 32.2
KLD Diff 51.7 332 123 32.5
KLD 521 336 127 32.9

version further boosts the performance, demonstrating its
effectiveness in both early- and late-fusion frameworks. In
the early-fusion framework, the pseudo ground truth
requires the base model to output previous results under
different stochastic model noise (e.g., dropout), and thus it
improves the generalization ability and robustness of the
base model. Therefore, both soft and hard pseudo ground
truths improve the performance in the early-fusion frame-
work, demonstrating their effectiveness. Furthermore, the
hard pseudo ground truth also achieves higher performance
than its soft counterpart, which agrees with the results in
the late-fusion framework.

Hyperparameter Sensitivity. To demonstrate the robustness of
our method to hyperparameters, we present a set of ablation
study in Table 9. The results reveal that our method is robust to
loss weights for the adaptive attention normalization loss
(Table 9(a)), the smooth loss (Table 9 (b)), and the adaptive
pseudo ground truth learning loss (Table 9 (c)). Specifically,
our smooth loss improves the performance at low loss weights,
as it involves the temporal relationship in attention learning.

Qualitative Analysis. Four representative examples of TAL
results are plotted in Fig. 7 to illustrate the efficacy of the
proposed pseudo supervision. In the first example, with
only video-level labels, the RGB stream provides a worse
localization result than the flow stream, and thus leads to a
noisy fusion attention sequence. The pseudo ground truth
guides the RGB stream to identify false positive action
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Fig. 5. Comparison between models trained with hard pseudo ground truth under different thresholding 6 values.

proposals and discover true action instances. It furthermore
leads to a cleaner fusion attention sequence, where high
activations correspond better to the ground truth. In the sec-
ond example, with only video-level supervision, both
streams have some non-overlapping false positive action
proposals at the beginning of the video. In this case, the
pseudo ground truth helps remove such false positives. In
the third example, with only video-level supervision, the
RGB stream can only distinguish certain scenes, and fails to
separate proximate action instances. In contrast, the flow
stream can precisely detect the ground truth action instance.
Therefore, the pseudo ground truth helps the RGB stream to
separate consecutive action instances. The last example
shows a classic case of performance degradation. Both
streams exhibit numerous false positives in the middle of
the video. The false positives are mostly overlapped, and
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Fig. 6. Comparison between models under different fusion parameter A
on the THUMOS14 testing set.

TABLE 8

Results of the Proposed Method in the Early-Fusion Framework
Loss Pseudo mAP@IoU (%) Avg (%)

Label 0.3 0.5 0.7 0.3:0.1:0.7
- - 31.6 16.8 54 16.7
Lorm - 37.6 222 6.0 22.1
Lanorm - 39.3 23.7 7.1 23.3
Lonorm Soft 40.2 24.1 7.3 23.7

Hard 41.2 25.0 7.9 244

are reinforced in the pseudo ground truth, making the mod-
els trained with the pseudo ground truth more confident
about the false positive. Eliminating such false positive
action proposals, however, requires true ground truth
supervision.

To summarize, the two modalities have their own
strengths and limitations. The RGB stream is sensitive to
appearance. Thus, it fails in scene shot from unusual angles
or separating proximate action instances; the flow stream is
sensitive to motion, and provides more accurate results, but
it fails in slow or occluded motion. Qualitative results reveal
that the pseudo ground truth helps two streams reach a con-
sensus at most temporal locations. Therefore, the fusion
attention sequence becomes cleaner and helps generate
more precise action proposals and more reliable confidence
scores.

TABLE 9
Hyperparameter Sensitivity Analysis

(a) Sensitivity analysis on the attention normalization loss
weight «. Results are reported w/o pseudo ground truth
learning.

o mAP@IoU (%) Avg (%)
0.3 0.5 0.7 0.3:0.1:0.7

0 33.1 19.0 5.7 18.2

0.05 47.8 29.8 10.3 28.9

0.1 47.9 30.3 10.7 29.6

0.2 48.3 30.2 104 29.5

(b) Sensitivity analysis on the smooth loss weight 8. Results
are reported w/o pseudo ground truth learning.

B mAP@IoU (%) Avg (%)
0.3 0.5 0.7 0.3:0.1:0.7

0 46.8 29.8 10.5 29.2
0.05 47.5 30.1 10.5 29.5
0.1 47.9 30.3 10.7 29.6
0.2 47.0 29.7 10.5 29.2

(c) Sensitivity analysis on the pseudo ground truth learning
loss weight y.

y mAP@IoU (%) Avg (%)
0.3 0.5 0.7 0.3:0.1:0.7

0.1 51.7 333 12.6 325
0.2 52.0 33.3 12.4 32.6
0.5 51.9 334 12.8 32.8

1 52.1 33.6 12.7 32.9

2 52.0 33.7 12.3 32.8
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5 CONCLUSION

In this paper, we propose an adaptive two-stream consen-
sus network (A-TSCN) for W-TAL, which benefits from an
adaptive attention normalization loss and an iterative
refinement training approach. The adaptive attention nor-
malization loss dynamically selects the action and back-
ground snippets in a video, and forces the attention to
perform a binary selection, thus reducing the ambiguity
between the foreground and background. The iterative
refinement training scheme uses a novel frame-level pseudo
ground truth as fine-grained supervision, and iteratively
improves the two-stream base models. Meanwhile, a video-
level uncertainty estimator and a snippet-level uncertainty
estimator dynamically determine the learning weights for
each video and snippet, thus mitigating the adverse effect
caused by learning from noisy pseudo labels. Experiments
on four benchmarks demonstrate the proposed A-TSCN
outperforms current state-of-the-art methods, and verify
our design intuition.
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