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The potential energy functions of 200 diatomic systems, with dissociation energies De ranging from
few eV to hundreds of �eV, are well described by a new three-parameter potential energy function.
Identification of the evaluated values of a dimensionless quantity, �n �

L2

Ln
[Ln � �

n!De
fn
�1=n, a scaled length

parameter, and fn, the nth force constant evaluated at the equilibrium internuclear distance Re], is
proposed as a reliable criterion to search for the universal scaling features of potentials and spectroscopic
constants for bound diatomic systems. Our study suggests a useful approach to predicting future molecular
spectroscopic constants.
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In the Born-Oppenheimer approximation for a diatomic
system, the solution of the Schrödinger equation, as a
function of the internuclear separation R, gives rise to
families of diatomic potentials E�R� [1–3]. The eigenfunc-
tions for nuclear motion in these potentials then provide a
complete basis set and information for describing all prop-
erties [1–3] (e.g., molecular spectroscopy) of the system.
Also, modeling diatomic potentials is of fundamental im-
portance to many other issues [1–3] such as molecular dy-
namics simulation. Thus, numerous approaches have been
used to obtain ‘‘good’’ diatomic potentials [1–9]. The most
widely used method is to represent the potential by a suit-
able analytical function. To date, many functions have been
suggested, and they can be summarized in two types. The
first is Dunham type [10] based on a Taylor expansion of
E�R� at the equilibrium internuclear distance Re

 E�R� � �De �
X
n�2

fn
n!
�R� Re�n; (1)

where De and fn �
dnE�R�
dRn jR�Re are the dissociation energy

and the nth force constant, respectively. The second type is
centered on closed-form expressions [1–9] containing ad-
justable parameters.

If a perfect scaling in molecular spectroscopy can be
achieved, a universal diatomic potential will determine the
energy and spectroscopic behavior of a universal bond [1–
6,11–21], which can then be considered as the equivalent
of ‘‘the hydrogen atom in atom spectroscopy’’ [6]. The
search for a universal diatomic potential has also great in-
terest for a number of practical chemical processes such as
adhesion, cohesion, and chemisorption, where similar
binding-energy relations were discovered [11,12,22–25].
Motivated by these aspects, considerable efforts have been
made toward finding the universality of diatomic potentials
for the past 80 years. Since the actual diatomic potentials
span vibrational frequencies and dissociation energies [6]
which range over several orders of magnitude, the search
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for the universal potential turns into a quest for a suitable
scaling scheme that is able to bring the scattering data
points down to almost a single smooth line [1–6,26].
Through the years, much work has been done on this issue
[1,4,6,14–21]. However, various opinions persist whether
or not a universal two- or three-parameter potential really
exists [6]. The matter is certainly not yet solved [6]. Thus,
the following two questions raised before [1,5,11,15,19]
are still open: rigorously speaking, it could hardly be
expected that an exact universal potential function would
exist for all diatomic systems. Nevertheless, is it possible to
have an ‘‘approximate’’ universal function for diatomic
systems with similar linkage, i.e., those belonging to the
same group, at least in the neighborhood of the minimum?
And is it possible to find a simple globally accurate func-
tion for potential curves away from the vicinity of the
minimum?

In this Letter, we wish to shed some light on the two
questions and to suggest a reliable criterion to search for
the universality of diatomic potentials and spectroscopic
constants. Based on an accurate three-parameter potential
function reported recently [9] and the suggested criterion,
we demonstrate the existence of universal spectroscopic
constant relations and a global universal reduced potential
for bound ground-state diatomic systems with closed-shell
and/or S-type valence-shell constituents. Our study pro-
vides a unified description for diatomic systems ranging
from weakly to strongly bound neutral or ionic molecules,
and suggests a useful approach to predicting future mo-
lecular spectroscopic constants.

To find the universality of the potentials for bound
diatomic systems, we introduce a scaled length parameter,
Ln � �

n!De
fn
�1=n evaluated at Re, and a dimensionless length,

R� � R�Re
L2

[note: a� �
���
2
p
R� in Ref. [24] ], and also use

the Puppi’s definition [27] for a scaled dimensionless
energy " � E�R�

De
. First, we examine the universal scaling

features of spectroscopic constants based on Eq. (1) which
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can be rewritten as

 "�R�� � �1�
X
n�2

��nR��n; (2)

where �n �
L2

Ln
is a dimensionless quantity. Then, the five

well-known dimensionless quantities [1,5], � [known as
Sutherland parameter [28] ], a2

1, a2, F, and G, which have
been used to explore the universality of spectroscopic con-
stants for the bound diatomic systems, can be expressed as

 � �
f2

2De
R2
e �

�
Re
L2

�
2
; (3)

 a2
1 �

�
f3Re
3f2

�
2
� �6

3�; (4)

 a2 �
f4R

2
e

12f2
� �4

4�; (5)

 F � �1�
f3Re
3f2

� �1� �3
3

����
�
p

; (6)

 G �
�
5f2

3

3f2
2

�
f4

f2

�
R2
e � �15�6

3 � 12�4
4��; (7)

 G �
�

15�
12�4

4

�6
3

�
�F� 1�2: (8)

All of them are related to the spectroscopic constants, !e
(vibrational frequency), Ie (moment of inertia), Be (rota-
tional constant), �e (anharmonicity constant), �e (rotation-
vibration interaction constant), and D (centrifugal distor-
tion constant), for example, � � !e

4BeDe
[see details in

Appendix B of Ref. [29] ]. Varshni [5] chose to represent
a1 as a function of �, rather than of

����
�
p

. As pointed out by
Graves and Parr [13] and by our analysis,

����
�
p

is the
preferred parameter for a1. Recently, three simple relations
between F and G, G � 6F2 � 18F� 3, G � 5:8F2 �

22:7F, and G � 27:4F4=3, have been suggested [20].
However, Eq. (8) shows an exact quadratic relation be-
tween G and F. If a universal potential "�R�� does exist for
all diatomic systems, the dimensionless quantity �n for
each diatomic system must have an identical or very simi-
lar value [29], i.e., �An ’ �Bn for diatomic systems A and B.
As a result, F,G, a2

1, and a2 will surely satisfy the universal
relations Eqs. (4)–(8) with respect to �. It should be
emphasized that Graves-Parr scaling hypothesis [13] is
still valid, but for diatomic systems having a same or close
value of �n. Hence, we propose the identification of the
determined values of �n for diatomic species as a criterion
to test the universality of diatomic potentials.

Based on insufficiently good data of 23 bound diatomic
systems, Goodisman [1] concluded that a universal three-
parameter potential would seem to be ruled out, except as a
rough approximation: F � 0:36� 0:11�, G � 9� 5�.
This approximation is obviously not in the forms of
Eqs. (6) and (7). Graves and Parr [13] devised a test of
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universality for 150 covalently or partially ionically
bonded diatomic systems based on the highly accurate
experimental values [30] of spectroscopic constants.
They found that a2

1 is not proportional to a2 and thus
concluded that the universal scaling features of potential
curves for diatomic systems are less well satisfied with a
completely universal function. Using the same data [13],
Jhung et al. [16] found a nonlinear relation between �2

1 �
a2

1

� and �2 �
a2

� . Particularly, they proved theoretically the
existence of a universal three-parameter function but were
unable to identify its analytical form [16]. [They suggested
Morse potential [4] as the best candidate.] Moreover,
Smith et al. [15] and Tellinghuisen et al. [17] pointed out
that it was necessary to separate the molecules into two
distinct classes, covalent and partially ionic, in testing the
universality of diatomic potentials. Indeed, they showed
that the parameters for the 88 covalently bonded molecules
clearly demonstrated a universal behavior, while the re-
maining 62 partially ionic molecules are the largely scat-
tering data points [15,16]. If the charge-transfer effect is
included in the generalized universal equation, all 150
diatomic molecules exhibit a universal behavior [15].
Based on the scaling analysis of about 300 diatomic mole-
cules [30], Hooydonk [6] pointed out that the Sutherland
parameter � can never be a universal scaling factor. Other
ever-continuing search [16,18–21] did not strongly sup-
port the universality. Stimulated by the well-known Badger
rule and Herschbach-Laurie and Calder-Ruedenberg clas-
sifications [31] exploring the relations between fn (n � 2,
3, 4) and Re, we realize the importance of classification of
diatomic types. Thus, we recheck the data of 13 types of
molecules reported by Graves and Parr [13] and list the
corresponding values of �3 and �4 in Table 1 of Ref. [29].
We find that the 13 types of molecules are distinguished
from each other by the unique values of �n. This supports
our above-mentioned proposal. Thus, if the bound dia-
tomic systems having identical or very similar values of
�n are put into a single group and sufficiently good data are
available, a single reduced potential function could be
found to describe all the group members. We are confirm-
ing this below.

Recently, a molecular-orbital theory-based approach has
been proposed to arrive at accurate few-parameter poten-
tial functions for diatomic groups based on the classifica-
tion of the valence-shell types of constituents [9]. For
example, an accurate three-parameter potential function
is found to describe 200 bound diatomic systems with
closed-shell and/or S-type valence-shell constituents [9],

 E�R;�;�; �� �
J1�R;�� � K1�R;�; ��

1� S0�R�
; (9)

where �, �, and � are adjustable parameters and J1, K1,
and S0 are given in detail in Ref. [9]. The advantage of this
diatomic group is the inclusion of a number of weakly or
strongly bound, neutral or ionic diatomic systems (e.g.,
CdNe, H2, He�2, Li�2 , AlHe2�, YHe3�), and the reliable
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accuracy of their potential functions given by Eq. (9). [For
example, our vibrational level calculations reported in
Table 2–7 in the supplementary material of Ref [9] showed
that the relative errors between theory and experiment are
within only few percent, such as 0.1% to 2.2% for Li2, 0.5%
for SrHe, 0.6% for BaHe, and 0.1% for CaHe. And as
shown in Table 2 of Ref. [29], we fit De exactly, and Re
with an average relative error of 0.021% and a root mean
square error of 0.017% to the accurate literature data.]
Thus, it is a good example to test and confirm the universal
criterion discussed above. Based on Eq. (9), we have
derived the values of Ln at Re for 200 diatomic systems
and report their relations in Fig. 1. [The detailed values of
L2, �3, and �4 for diatomic systems are listed in Tables 2
and 3 of Ref. [29]. It should be noted that Re and De are
functions of �, �, and � and they are determined by fitting
accurate experimental or theoretical data and are specifi-
cally listed in Refs. [9,29].] We find that there exist good
linear scale relations between Ln (n � 2, 3, 4), which
give approximate universal constants �n (n � 3, 4), i.e.,
�3 � �0:972 354 and �4 � 0:836 198 for the 200 systems.
Thus, we obtain from Eqs. (4)–(8) the universal relations:
a2

1 � 0:850�, a2 � 0:493�, F � �1� 0:922
����
�
p

, G �
0:0682� (G in units of 102), a2

1 � 1:722a2, and G �
0:0804�F� 1�2. On the other hand, the five dimensionless
quantities, �, a2

1, a2, F, and G, are derived directly from
Eq. (9). [The detailed values are listed in Table 3 of
Ref. [29].] As expected, universal relations between these
dimensionless quantities are well satisfied (see Fig. 2). The
fitting results given in Fig. 2 agree well with those eval-
uated by using the approximate universal constants �3 and
�4 obtained from Fig. 1. We emphasize that our dimen-
sionless scaling for the 200 systems has given a unified
description of both weakly and strongly bound, both neu-
tral and ionic diatomic systems with closed-shell and/or
S-type valence-shell constituents, and contrary to the state-
ment of Ref. [6], the Sutherland parameter � is still valid as
a universal scaling factor. Finally, three remarks are in
order. First, our derived spectroscopic constants for 35
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FIG. 1 (color online). Relations between Ln (n � 2, 3, 4) for
200 bound diatomic systems [9]. Solid lines are the fitting
results: L2 � ��0:972 354� 0:002 059�L3, L2 � �0:836 198�
0:002 829�L4.
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diatomic systems are compared with the actual experimen-
tal values [30] in Table 5 of Ref. [29]. This quantitative
assessment shows the reliability of our potential energy
function. Second, given!e, De, and Re, either from experi-
ments or modern ab initio methods, spectroscopic con-
stants for this class of diatomic systems can be predicted
by using the above-derived universal relations [see Table 6
in Ref. [29] ]. For example, our predicted spectroscopic
constants (e.g., �e � 0:00287, �e � 0:00136 cm�1) for a
new diatomic ion, Th3�O2�, are in good agreement with a
recent experiment [32]. Last, the universality for diatomic
systems with other-type valence-shell constituents may
also be found if sufficiently good data are available [see
Fig. A and B in Ref. [29] ].

The above tests of universality probed the relationship
only in the vicinity of Re. This is a severe test since
predictions of third and fourth derivatives were involved.
Is it possible to find a simple globally accurate function for
potential curves away from the vicinity of Re? To answer
this question, we test the global universality of the closed-
form expression Eq. (9) for the 200 systems investigated
above. Figure 3(a) presents the results for H2, H�2 , and He2

based on two scaling schemes: the usual one [33] with a
dimensionless length Rs �

R�Re
Re

and Kratzer’s one [34]

with � � R�Re
R . The weakly bound He2 is distinguished

from the strongly bound H2 and H�2 . Thus, the two schemes
show that there is no single binding-energy relation for
weakly and strongly bound diatomic systems although
both H2 and H�2 , as shown in Fig. 3(a) and in Ref. [5],
may have a reduced curve for the usual scheme [33].
However, using the dimensionless length R�, we find that
172 diatomic systems out of the 200 systems, as shown in
Fig. 3(b) and in Fig. C of Ref. [29], can have a universal
reduced potential curve (similar to that of H�2 ) away from
the vicinity of Re. The remaining 28 diatomic systems
show some deviations from the reduced curve at R� > 2.
Thus, while the values De and L2 vary from system to
system, the reduced curve "�R�� for the 172 seemingly
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p
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[inset: the comparison between our result and
that (triangles) of Refs. [11,14,24] for H�2 ].
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diverse systems does not. As for the remaining 28 diatomic
systems, this expression is inadequate at R� > 2. It may be
due to insufficiently good data available in the literature, or
the asymptotic exponential behavior [9] of Eq. (9) in the
large-R limit. Note that our reduced potential curve for H�2
agrees well with that [11,14,24] obtained from Rydberg
function, " � ��1�

���
2
p
R��e�

��
2
p
R� [see the inset in

Fig. 3(b)], which was found to be a good representation
of the potential curves of covalently bonded materials and
has been used in a wide range of situations such as
diatomic-molecule energetics, chemisorption, bimetallic
adhesion, cohesion in solids, and even interactions in nu-
clear matter [11,12,15,19,25]. In this sense, our universal
reduced potential energy function may find possible appli-
cations in these fields.

In conclusion, we have proposed a reliable criterion to
search for the universality of diatomic potentials and spec-
troscopic constants. Our study has provided a unified de-
scription of both weakly and strongly bound diatomic
systems ranging from neutral to ionic molecules, and
suggests a useful empirical approach to predict the spec-
troscopic constants of new diatomic molecules.

This work was partially supported by Robert A. Welch
Foundation Grant No. A-1261, DARPA, and ONR.
R. H. X. thanks D. R. Herschbach, G. W. Bryant, A. N.
Witt, M. C. Heaven, J. Gong, and N. Erez for helpful
discussions.
[1] J. Goodisman, Diatomic Interaction Potential Theory
(Academic, New York, 1973), Vol. 1 & 2.

[2] A. J. Stone, The Theory of Intermolecular Forces
(Clarendon, Oxford, 1996).

[3] J. S. Winn, Acc. Chem. Res. 14, 341 (1981); J. Koperski,
Phys. Rep. 369, 177 (2002).

[4] P. M. Morse, Phys. Rev. 34, 57 (1929).
[5] A. A. Frost and B. Musulin, J. Am. Chem. Soc. 76, 2045

(1954); Y. P. Varshni, Rev. Mod. Phys. 29, 664 (1957);
D. Steele, E. R. Lippincott, and J. T. Vanderslice, Rev.
Mod. Phys. 34, 239 (1962); Y. P. Varshni and R. C.
Shukla, Rev. Mod. Phys. 35, 130 (1963).
24320
[6] G. V. Hooydonk, Eur. J. Inorg. Chem., 1617 (1999).
[7] K. T. Tang, J. P. Toennies, and C. L. Yiu, Phys. Rev. Lett.

74, 1546 (1995).
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