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details). We explored the tidal stripping effects at
a spatial resolution (~100 pc) several times as
high as that of typical simulations of galaxy
clusters, checking 32 different orbital configu-
rations. We converted the stellar density maps
produced by our simulations into surface bright-
ness and processed them using the SExtractor
software in the same way as we did for the search
of cE galaxies in HST images.

Our simulations demonstrate the efficiency of
tidal stripping in reducing the stellar mass of a
disc galaxy. Even in cases of quasicircular orbital
configurations, the large-scale stellar disc was
heavily stripped, decreasing the galaxy stellar
mass by a factor of 2 (Fig. 3) on a time-scale of
600 to 700 million years. We compared the evo-
lution of total magnitude, surface brightness, and
internal velocity dispersion of a stripped galaxy to
observations (Fig. 1, top and middle). Interactions
on radial orbits resulted in heavier mass loss of
up to 90%, although a remnant became quickly
accreted by a cD galaxy. Presumably, by scaling
down the systems in mass, that is, by replacing a
giant disc with a low-luminosity or dwarf S0, it
should be possible to reproduce the formation of
UCD and transitional cE/UCD (28, 11) galaxies.

In our study, we used Virtual Observatory
data mining to reclassify cE galaxies from
“unique” to “common in certain environmental
conditions,” that is, more frequent than was
previously thought. We confirmed the nature of
21 galaxies selected by the VO workflow with
follow-up observations and archival data. We
also reproduced their properties with numerical
simulations. We can confirm that tidal stripping
of the stellar component plays an important role
in the morphological transformation of galaxies in
dense environments, producing remnants spanning
a luminosity range of four orders of magnitude.
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On the Elusive Twelfth Vibrational
State of Beryllium Dimer
Konrad Patkowski,1* Vladimír Špirko,2 Krzysztof Szalewicz1

The beryllium dimer has puzzled chemists for roughly 80 years on account of its unexpectedly
strong bonding interaction between two nominally closed-shell atoms. Recent spectroscopic
measurements characterized the molecule’s ground electronic state with sufficient resolution to
distinguish 11 vibrational levels; the possibility that a twelfth level lay just below the dissociation
threshold remained unresolved. Here we present a potential function, based on ab initio calculations
at the full configuration interaction level, that definitively supports the presence of this twelfth
vibrational state. “Morphed” versions of this potential, fitted to experimental data, closely reproduce
the observed spectra to within 0.1 cm−1, bolstering the strength of the assignment.

Merritt et al. (1) recently reported a
spectroscopic study of the beryllium
dimer, an unusual diatomic system that

is bound by about 2.5 kcal/mol and has an equi-
librium interatomic separation of 2.44 Å. This
bond is within the range of van der Waals inter-

actions, but is substantially stronger and shorter
than those between other similarly sized closed-
shell atoms. Spectroscopic measurements for Be2
are difficult to perform, and the experiment (1)
resulted in a markedly altered prediction of the
well depth for the ground electronic state: from
De = 790 T 30 cm

−1 (2, 3) to 929.7 T 2.0 cm−1 (1).
The study also increased the number of identified
vibrational levels from 5 to 11. The authors sus-
pected that one more level could exist, but their
empirical fit to the measured data predicted only
11 levels, with the vibrational quantum number v
ranging from 0 to 10. The existence of a twelfth
level, bound by a fraction of a wavenumber,
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would provide information about the shape of the
potential at large interatomic separations R and
could be relevant to experiments on ultracold
trapped atoms (4). We show here that the v = 11
state can be positively identified from ab initio
calculations.

Because Be2 is a fairly small system (only
eight electrons), it has been one of the bench-
marks for computational ab initio methods, with
more than 100 studies published [see (5, 6) for
lists of references]. The calculations are none-
theless difficult due to the sp near-degeneracy of
the atomic orbitals of beryllium (6). This near-
degeneracy, which is the reason that Be2 is more
strongly bound than He2 or Ne2, results in poor
performance of standard electron correlationmeth-
ods based on single-determinant reference func-
tions. Recent calculations using methods beyond
a single-determinant reference consistently gave
a well depth significantly deeper than the earlier
experimental prediction (2, 3). In particular, the
most extensive calculations gave a depth of 938 T
15 cm−1 (6), several standard deviations beyond
the experimental result up to that point. Thus, the
measurement of Merritt et al. (1) reconciled ex-
periment with theory and provided another ex-
ample of the predictive power of modern ab
initio methods.

Our group has been working for some time
on extending the single-point calculations of (6)
to other interatomic separations. As in (6), the
interaction energies were constructed here from
contributions at several levels of theory up to the
frozen-core full configuration interaction method.
The effects beyond the frozen-core approximation
and relativistic effects were also included. All the
calculations used the largest basis sets that exist
for Be or that can be currently applied at a given
level of theory within reasonable computer re-
source constraints, and were extrapolated to com-
plete basis set limits. An analysis of the patterns
of convergence with the level of theory and size
of the basis sets provided estimated uncertainties
s(R) of the results. The ab initio interaction en-
ergies computed for 20 interatomic separations
were fitted by an analytic function of a form often
used for van der Waals interactions of atoms:

VvdWðRÞ¼ðAþ BRþ C=Rþ DR2 þ ER3Þ

� e−aR þ bR2
−∑

8

n¼3

f2nðbRÞC2n

R2n
ð1Þ

where fn(bR) are the Tang-Toennies damping
functions (7),

fnðbRÞ ¼ 1 − e−bR∑
n

m¼0

ðbRÞm=m! ð2Þ

Cn are the asymptotic coefficients (8) that were
kept constant during the fitting process, and the
parameters a, b, b, A, B,C,D, and Ewere obtained
in a nonlinear least-squares fitting procedure with
the ab initio results weighted according to their
uncertainties s(R). The unweighted root-mean

square error (rmse) of the fit is 0.78 cm−1. The
values of the fit parameters are given in table S1.

The fit was used to compute rovibrational
levels of Be2, and the results are presented in
Table 1. Our purely ab initio potential function
VvdW recovers the measured vibrational energies
(column “Exp.”) with rmse of only 3.4 cm−1, a
substantial improvement over the previous best
ab initio predictions (9–12), and furthermore pre-
dicts the existence of the v = 11 state 0.52 cm−1

below the dissociation limit. Merritt et al. found a
spectral feature quite close to this position [marked
by an arrow in Fig. 1 of (1)], which they attributed

to the onset of the continuum, but which could
correspond to the twelfth state. We have also
computed the transition intensities for the stimu-
lated emission pumping spectrum recorded in (1)
(fig. S1) and found that the transition to v = 11
should be strong enough to observe.

Our ab initio potential predicts a well 9 cm−1

deeper than the empirical potential of Merritt et al.
To rule out the possibility that this discrepancy
might account for the emergence of the v = 11
level in the calculation,we generated two additional
analytic potentials V+ and V−. These potentials
share the functional form and the asymptotic

Table 1. Comparison of spectra predicted by empirical, ab initio, and morphed potentials with exper-
iment. The energy unit is cm−1 and the equilibrium distances Re are given in Å. The D columns present
the difference between the values in the preceding column and the experimental values [Exp., from
(1)]. Emp. refers to the empirical potential in (1), VvdW to the ab initio potential, Ṽ(2)vdW to the two-
parameter morphed potential of Eq. 3 (with a = 0.99390732 and b = 1.00215597), and ṼRPC(3)

vdW and
ṼRPC(5)vdW to the potential morphed according to three- and five-parameter RPC algorithms, respectively.

v Exp. Emp. D VvdW D Ṽ(2)vdW D ṼRPC(3)
vdW D ṼRPC(5)

vdW D

1 222.6 222.7 0.1 222.3 −0.3 221.9 −0.7 221.9 −0.7 222.6 0.0
2 397.1 397.8 0.7 397.6 0.5 396.4 −0.7 396.4 −0.7 397.0 −0.1
3 518.1 518.2 0.1 520.3 2.2 518.2 0.1 518.2 0.1 518.2 0.1
4 594.8 595.4 0.6 597.9 3.1 595.1 0.3 595.1 0.3 594.8 0.0
5 651.5 652.4 0.9 655.1 3.6 652.0 0.5 651.9 0.4 651.5 0.0
6 698.8 699.4 0.6 702.6 3.8 699.2 0.4 699.1 0.3 698.7 −0.1
7 737.7 738.2 0.5 741.7 4.0 738.0 0.3 737.9 0.2 737.6 −0.1
8 768.2 768.8 0.6 772.4 4.2 768.3 0.1 768.2 0.0 768.2 0.0
9 789.9 790.7 0.8 794.3 4.4 789.7 −0.2 789.7 −0.2 790.0 0.1
10 802.6 803.4 0.8 807.1 4.5 802.0 −0.6 802.1 −0.5 802.5 −0.1
11* 811.9 (0.52) 806.4 (0.41) 806.6 (0.44) 807.1 (0.42)
rmse 0.6 3.4 0.4 0.4 < 0.1
De 929.7 938.7 933.0 933.2 934.6
Re 2.454 2.443 2.438 2.432 2.438
*The number in parentheses is the separation between the v = 11 state and the onset of the continuum. The empirical potential
does not support the v = 11 bound state.
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Fig. 1. The calculated wave functions of the v = 10 and v = 11 vibrational states of the ground
electronic state of Be2. The dashed horizontal lines are the positions of the two states.
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constants with VvdW, but are fitted to reproduce
the values of Eint + s and Eint − s, respectively,
instead of the ab initio interaction energies Eint.
BothV+ andV− support the v = 11 state, which lies
at respective frequencies 0.38 and 0.70 cm−1

below the onset of the continuum. Because the
minimum depth of V+ is 922.1 cm

−1 (i.e., 8 cm−1

shallower than the empirical potential), the well
depth is clearly not a determining factor in the
appearance of the v = 11 state.

The ab initio potential reproduces measured
transitions with errors about six times larger than
the empirical potential of (1). To find out if a
closer recovery of the transitions does not lead to
disappearance of the v = 11 level, we developed a
semi-empirical, “morphed” form of VvdW. In the
morphing process, the ab initio potential is fine-
tuned by introducing a small number (up to five
in this work) of adjustable parameters with values
fitted to experimental data. The simplest form of
morphing is a variation of the energy and length
scales in the potential

Ṽ
(2)
vdW(R) ¼ aVvdW(bRÞ ð3Þ

via two fitted scaling factors a,b. The second
approach (8), an extended version (13, 14) of the
reduced potential curve (RPC) method proposed
by Jenč and Plíva (15), can be viewed as a more
general form of scaling. The experimental data
points used in the morphing procedure were the
vibrational energies and rotational transitions. The
fit and the RPCmorphing parameters are given in
tables S1 and S2.

The predictions of our three morphed poten-
tials are compared with experimental values in

Table 1. All show better agreement with mea-
sured data than the empirical potential obtained
byMerritt et al. (1). Moreover, there is an order of
magnitude improvement relative to the predic-
tions of our ab initio potential, whichwas distorted
to an only minor extent by the morphing (shown
by the values of De and Re). All morphed poten-
tials predict the existence of the v = 11 level at a
position 0.41 to 0.44 cm−1 below the dissociation
limit, in good agreement with the purely ab initio
value. The v = 11 vibrational state is not only
bound, but supports two excited rotational states.

The failure of the fit of Merritt et al. (1) to
predict the v = 11 state can be attributedmainly to
its poor asymptotic behavior. Our ab initio cal-
culations were performed for R up to 8 Å, and we
used nearly exact van der Waals constants in our
fit. Thus, the long-R portion of our fit is very
accurate. Merritt et al. used a purely exponential
form of the fit, which has an unphysical decay at
large R. Indeed, the discrepancies of this fit rel-
ative to VvdW are up to 2.4 cm−1 in the 5 to 8 Å
range where the interaction potential ranges be-
tween −87 and −5 cm−1. This region is critical for
the high-v states, as shown in Fig. 1. The vi-
brational wave function of the v = 11 state has a
maximum magnitude around 10 Å. Because this
wave function is mainly sensitive to the region of
the potential well approximated by the asymp-
totic −C6/R

6 term, one can use the semi-classical
near-dissociation theory of Le Roy and Bernstein
(16) to determine the number of bound levels. If
the experimental dissociation energies of the v =
9 and v = 10 states are used as input, this theory
predicts that there exists one more bound vibra-
tional state above these two. It is gratifying to see

that the simple qualitative picture of the near-
dissociation theory agrees with our quantitative
ab initio description of vibrational levels in the
beryllium dimer.
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From Hydrogenases to Noble
Metal–Free Catalytic Nanomaterials
for H2 Production and Uptake
Alan Le Goff,1 Vincent Artero,2* Bruno Jousselme,1 Phong Dinh Tran,2 Nicolas Guillet,3
Romain Métayé,1 Aziz Fihri,2 Serge Palacin,1* Marc Fontecave2,4

Interconversion of water and hydrogen in unitized regenerative fuel cells is a promising
energy storage framework for smoothing out the temporal fluctuations of solar and wind power.
However, replacement of presently available platinum catalysts by lower-cost and more abundant
materials is a requisite for this technology to become economically viable. Here, we show that the
covalent attachment of a nickel bisdiphosphine–based mimic of the active site of hydrogenase
enzymes onto multiwalled carbon nanotubes results in a high–surface area cathode material with
high catalytic activity under the strongly acidic conditions required in proton exchange membrane
technology. Hydrogen evolves from aqueous sulfuric acid solution with very low overvoltages
(20 millivolts), and the catalyst exhibits exceptional stability (more than 100,000 turnovers). The
same catalyst is also very efficient for hydrogen oxidation in this environment, exhibiting
current densities similar to those observed for hydrogenase-based materials.

One dilemma inherent in the widespread
use of solar cells andwindmills for power
generation is that temporal fluctuations

in worldwide energy demand do not strictly cor-

relate with the availability of sunlight and wind.
An efficient, reversible means of storing excess
energy is necessary, and unitized regenerative
fuel cells are an attractive option for that purpose.

The devices operate by storing energy in hydro-
gen generated via electrolysis of water and then
releasing it as necessary through the reverse re-
action. The devices are compact and have low
internal resistance. However, they currently rely
on platinum for catalysis, which is too scarce and
thus too expensive for widespread adoption (1).
A competitive alternative may be found in micro-
organisms that metabolize hydrogen using hy-
drogenase enzymes (2, 3). These metalloproteins
bidirectionally catalyze interconversion between
H2 and a pair of protons and electrons (the same
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