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Quantum Metropolis sampling
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The original motivation to build a quantum computer came from
Feynman', who imagined a machine capable of simulating generic
quantum mechanical systems—a task that is believed to be intract-
able for classical computers. Such a machine could have far-
reaching applications in the simulation of many-body quantum
physics in condensed-matter, chemical and high-energy systems.
Part of Feynman’s challenge was met by Lloyd?, who showed how to
approximately decompose the time evolution operator of interact-
ing quantum particles into a short sequence of elementary gates,
suitable for operation on a quantum computer. However, this left
open the problem of how to simulate the equilibrium and static
properties of quantum systems. This requires the preparation of
ground and Gibbs states on a quantum computer. For classical
systems, this problem is solved by the ubiquitous Metropolis algo-
rithm®, a method that has basically acquired a monopoly on the
simulation of interacting particles. Here we demonstrate how to
implement a quantum version of the Metropolis algorithm. This
algorithm permits sampling directly from the eigenstates of the
Hamiltonian, and thus evades the sign problem present in classical
simulations. A small-scale implementation of this algorithm
should be achievable with today’s technology.

Since the early days of quantum mechanics, it has been clear that
there is a fundamental difficulty in studying many-body quantum
systems: the configuration space, or Hilbert space, of a collection of
particles grows exponentially with the number of particles. Many of
the important breakthroughs in quantum physics during the twentieth
century resulted from efforts to address this problem, leading to fun-
damental theoretical and numerical methods to approximate solutions
of the many-body Schrodinger equation. However, most of these
methods are limited to weakly interacting particles; unfortunately, it
is precisely when the interactions are strong that the most interesting
physics arises. Notable examples include high-transition-temperature
superconductors, electronic structure in large molecules and quark
confinement in quantum chromodynamics.

This problem with configuration space is not unique to quantum
mechanics: the task of simulating interacting classical particles is chal-
lenging for the same reason. It was only with the advent of computers
in the 1950s that a systematic way of simulating classical many-body
systems was made possible. In their seminal paper’, Metropolis et al.
devised a general method to calculate the properties of any substance
comprising individual molecules with classical statistics. This paper is
a cornerstone in the simulation of interacting systems and has had a
huge influence on a wide variety of fields (see, for example, refs 4-6).
The Metropolis method can also be used to simulate certain quantum
systems by means of a ‘quantum-to-classical map”. Unfortunately,
this quantum Monte Carlo method is only scalable when the mapping
conserves the positivity of the statistical weights, and fails in the case of
fermionic systems as a result of the infamous sign problem’.

As the reality of quantum computers comes closer, it is crucial to
revisit the original motivation of Feynman for building a quantum
simulator and to develop a general method, suitable for quantum
computing machines, to calculate the properties of any substance
comprising interacting quantum molecules. Such an algorithm would

have a multitude of applications. In quantum chemistry, it could be
used to compute the electronic binding energy as a function of the
coordinates of the nuclei, thus solving the central problem of interest.
In condensed-matter physics, it could be used to characterize the phase
diagram of the Hubbard model as a function of filling factor, inter-
action strength and temperature. Finally, it could conceivably be used
to predict the mass of elementary particles, solving a central problem in
high-energy physics.

The seminal work of Lloyd> demonstrated that a quantum computer
can reproduce the dynamical evolution of any quantum many-body
system. It did not address, however, the crucial problem of initial con-
ditions: how to prepare the quantum computer efficiently in a state of
physical interest such as a thermal (Gibbs) or ground state. Ground
states could in principle be prepared using the quantum phase estima-
tion algorithm®’, but this method is in general not scalable, because it
requires a variational state with a large overlap with the ground state.
Methods are known for systems with frustration-free interactions'® and
systems that are adiabatically connected to trivial Hamiltonians'', but
such conditions are not generically satisfied. Suggestions have been
made of how a quantum computer could sample from the thermal
state of a system. One'” is related to the Metropolis rule but left open
the problem of how to overcome the no-cloning result and construct
local updates that can be rejected. This shortcoming immediately leads
to an exponential running time of the algorithm'?. A second'? approach
to preparing thermal states is by simulating the system’s interaction
with a heat bath. However, this procedure seems to produce large errors
when run on a quantum computer with finite resources, and a precise
framework to describe these errors seems to be out of reach. Moreover,
certain systems such as polymers', binary mixtures' and critical spin
chains'>'® experience extremely slow relaxation when put into inter-
action with a heat bath. The Metropolis dynamics solves this problem
by allowing transformations that are not physically achievable, speed-
ing up relaxation by many orders of magnitude and bridging the micro-
scopic and relaxation timescales; this freedom is to a large extent
responsible for the tremendous empirical success of the Metropolis
method.

In this Letter, we propose a direct quantum generalization of the
classical Metropolis algorithm and show how one iteration of the
algorithm can be implemented in polynomial time on a quantum
computer. Our quantum algorithm is not affected by the sign problem
and can be used to prepare ground and thermal states of generic
quantum many-body systems, bosonic and fermionic. Like the classical
Metropolis algorithm, the quantum Metropolis algorithm is not
expected to reach the ground state of an arbitrary Hamiltonian in
polynomial time. The ability to prepare the ground state of a general
Hamiltonian in polynomial time would allow the solution of quantum
Merlin Arthur (QMA)-complete problems'*, which is highly
unlikely. However, for realistic physical systems, the convergence rate
of the classical Metropolis algorithm is often very good, and it is con-
ceivable that the same is also true for the quantum Metropolis algo-
rithm. It also inherits all the flexibility and versatility of the classical
method, leading, for instance, to a quantum generalization of simu-
lated annealing®.
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Figure 1 | Building blocks for the quantum algorithm. a, The first step of the
quantum circuit: the input is an arbitrary state, |{/), and two r-qubit registers
initialized to |0)". Quantum phase estimation, ®, is applied to the state and the
second register. The energy value in this register is then copied to the first
register by a sequence of Controlled NOT gates. An inverse quantum phase
estimation (®7) is then applied to the state and the second register. b, The
elementary step in the quantum circuit: the input is the eigenstate |1/;) with
energy register |E;) and two registers initialized to |0)" and | 0), respectively. The
unitary transformation C is then applied, followed by a quantum phase
estimation step and the coherent Metropolis gate W. The state evolves as

To set the stage for the quantum Metropolis algorithm, let us first
recall the classical version. We can assume for definiteness that the
system is composed of 1 two-level particles, that is, Ising spins. A lattice
of 100 spins has 2190 different configurations, so it is inconceivable to
average them all. The key insight of Metropolis e al.* was to set up a
rapidly mixing Markov chain obeying detailed balance that samples
from the configurations with the most significant probabilities. This
can be achieved by randomly transforming an initial configuration to
a new one (for example by flipping a randomly selected spin): if the
energy of the new configuration, E,,., is lower than the original, E 4, we
retain the move, but if the energy is larger we retain the move only with
probability exp(B(Eoq — Enew))> where f is the inverse temperature.

The challenge we address is to set up a similar process in the
quantum case, that is, to initiate an ergodic random walk on the
eigenstates of a given quantum Hamiltonian with the appropriate
Boltzmann weights. In analogy to a spin flip, the random walk can
be realized by a random local unitary transformation, and the ‘move’
should be accepted or rejected following the Metropolis rule. There are,
however, three obvious complications. First, we do not know what the
eigenvectors of the Hamiltonian are (this is one of the problems that
we want to solve). Second, certain operations, such as energy measure-
ments, are fundamentally irreversible in quantum mechanics, but the
Metropolis method requires rejecting, and hence undoing, certain
transformations. Third, it is necessary to devise a criterion which
proves that the fixed point of the quantum random walk is the
Gibbs state.

follows: [1/;)|E;}|0)[0) — Cly;)|Ei)[0)]0) = 3=, xi[vy)|Ei}[0)[0) —
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ok X /1= W) |Ei) | Ex)|0) with fi =min(1, exp(— B(Ex —E)))). ¢, The
binary measurement checks whether the energy of the state |/} is the same as
the energy of the original one, |1};). This is done by using an extra register
containing phase estimation ancillas, a step that checks whether or not the
energy is equal to E;, and finally an undoing of the phase estimation step that
preserves coherence.

To address the first obstacle, we assume for simplicity that the
Hamiltonian has non-degenerate eigenvalues, E;, and denote the cor-
responding eigenvectors [;). In the Supplementary Information, we
show that those conditions are unnecessary. We can use the phase
estimation algorithm®'**° to prepare a random energy eigenstate
and measure the energy of a given eigenstate. Then each quantum
Metropolis step (Fig. 1) takes as input an energy eigenstate |1};) with
known energy E; and applies a random local unitary transformation C,
creating the superposition C|y;) = Z . x;[;). The transformation C
could be a bit flip at a random location, as in the classical setting, or
some other simple transformation. The phase estimation algorithm is
then used in a coherent way, producing Z . x| )| Ex), where | Eg) is
an extra register encoding the energy in binary format. At this point,
we could measure the second register to read out the energy E; and
accept or reject the move following the Metropolis prescription.
However, such an energy measurement would involve an irreversible
collapse of the wave function, making it impossible to return to the
original configuration in the case of a reject step.

Classically, we overcome this second obstacle by keeping a copy of
the original configuration in the computer’s memory, allowing a
rejected move to be easily undone. Unfortunately, this solution is ruled
out in the quantum setting by the no-cloning theorem®'. The key to the
solution is to engineer a measurement that reveals as little information
as possible about the new state, and therefore only slightly disturbs it.
This can be achieved by a measurement that only reveals one bit of
information—accept or reject the move—rather than a full energy
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Figure 2 | Quantum Metropolis stochastic map. The circuit corresponds to a
single application of the map £. The first step, E, prepares an eigenstate of the
Hamiltonian. The second step, Q, measures whether we want to accept or reject
the proposed update. In the case of rejection, the complete quantum circuit

comprises a sequence of measurements of the Hermitian projectors Q; and P;.
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The recursion is aborted whenever the outcome P; is obtained, which indicates
that we have returned to a state with the same energy as the input. Because each
iteration has a constant success probability, the overall probability of obtaining
the outcome P; approaches one exponentially as the number of iterations
increases.
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Figure 3 | Decision tree for unwinding the measurement. Given an input
state, |i)), we first perform phase estimation to collapse to an eigenstate with
known energy, E. This graph represents the plan of action conditioned on the
different measurement outcomes of the binary P; and Q; measurements. Each

measurement. The circuit that generates this binary measurement is
shown at Fig. 1b. It transforms the initial state [1};) into
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where f{ =min(1, exp(— f(Ex — E;))). The state can be seen as a coher-
ent superposition of accepting the update or rejecting it. The ampli-

i|2 i
x| i
of the classical Metropolis rule. The measurement is completed by
measuring the last qubit in the computational basis. The outcome
|1) will project the other registers in the state ‘lﬁ;— ). On obtaining this
outcome, we can measure the second register to learn the new energy,
E;, and use the resulting energy eigenstate as input to the next
Metropolis step.

A measurement outcome |0) signals that the move must be rejected,
so we must return to the input state, |i};). As |1p,+ > is orthogonal to
}zpf >, we actually work in a simple two-dimensional subspace, that is,
a qubit. In such a case, it is possible to go back to the initial state by an
iterative scheme similar to one previously used in the context of QMA
amplification®. The circuit implementing this process is shown in
Fig. 2. In essence, it repeatedly implements two binary measurements.
The first is the one described in the previous paragraph. The second,
after a basis change, determines whether or not the computer is in the
eigenstate [i/;). A positive outcome to the latter measurement implies
that we have returned to the input state, completing the rejection; in
the case of a negative outcome, we repeat both measurements. Every
sequence of these two measurements has a constant probability of
achieving the rejection, so recursive repetition yields a success prob-
ability exponentially close to one (Fig. 3).

The quantum Metropolis algorithm can be used to generate a
sequence of m states, |¢j), j=1,...,m, that reproduce the statistical
averages of the thermal state pg oce ~# for any observable X:

LS~ {119,y =exp +0(1/ /)
i=1

tudes x; \/ka’ correspond exactly to the transition probabilities,

To show that the fixed point of the quantum random walk is the Gibbs
state, we made use of the theoretical framework of ‘quantum detailed
balance’ (Supplementary Information). Let {[1};)} be a complete basis of
the physical Hilbert space and let {p;} be a probability distribution on this
basis. Assume that a completely positive map, £, obeys the condition

VPP (W) DIV = /i W) (W) )

Then o =Z;pyy;)(y;| is a fixed point of £ The quantum detailed
balance condition only ensures that the thermal state pg is a possible
fixed point of the quantum Metropolis algorithm. The uniqueness of

node in the graph corresponds to an intermediate state in the algorithm. One
iteration of the map is completed when we reach one of the final leaves labelled
either ‘Accept’ or ‘Reject’. The sequence E— Q, — L corresponds to accepting
the update; all other leaves correspond to a rejection.

this fixed point and the rate at which the algorithm converges to it
depend on the choice of the set of random unitary transformations {C}.
If the set of moves is chosen such that the map & is ergodic, the
uniqueness of the fixed point is ensured. The Metropolis step obeys
the quantum detailed balance condition if the probability of applying a
specific transformation C is equal to the probability of applying its
conjugate, C'. This can be seen as the quantum analogue of the classical
symmetry condition for the update probability. In some cases, it even
suffices to apply the same local unitary transformation at every step of
the algorithm (Fig. 4). In this case, the single unitary transformation
has to be Hermitian. The local unitary transformation can be seen to
induce ‘non-local’ transitions between the eigenstates because it is fol-
lowed by a phase estimation procedure.

In conclusion, even though an implementation of this algorithm for
full-scale quantum many-body problems may be out of reach with
today’s technological means, the algorithm is scalable to system sizes
that are interesting for actual physical simulations. In Supplementary
Information, we describe a small-scale implementation of the algorithm
that can be achieved with present-day technology. Moreover, a discus-
sion is included that sketches the basic steps necessary for the simu-
lation of some notoriously hard quantum many-body problems. Like in
the classical setting, the convergence rate and, hence, the run-time of the
algorithm are dictated by the spectral gap of the stochastic map. The
scaling of the gap depends on the Hamiltonian in the problem and the
choice of updates, {C}. Just as for the classical Metropolis algorithm,
efficient thermalization is not expected for an arbitrary Hamiltonian.
This would allow the solution of QMA-complete problems in poly-
nomial time>*. It is, however, expected that the algorithm will ther-
malize for realistic physical systems. The inverse gap of the quantum
Metropolis map for the XX chain in a transverse magnetic field at zero
temperature with a simple, single spin-flip update is shown in Fig. 4.
This plot indicates that the gap scales like O(1/N), where N is the
number of spins, even at criticality. To prove a polynomial scaling of
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Figure 4 | Inverse spectral gap of the completely positive map for the
quantum Ising model. Inverse gap, 1/4, of the quantum Metropolis map at
zero temperature as a function of the number of spins, N, in a chain with
Hamiltonian H =Y, Xg X1+ Yk Y41+ gZk. The update rule is a single spin
flip, X;. The observed linear scaling indicates that, at least in the case of one-
dimensional spin chains with nearest-neighbour Hamiltonians, the quantum
Metropolis algorithm seems to converge in polynomial time. Proving this

remains an interesting open problem.
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the gap for more complex Hamiltonians remains a challenging open
problem. Also, it is well known that the choice of updates, {C}, can have
a drastic impact on the convergence rate of the Markov chain in the
classical setting. Finding good updates in the quantum setting is a very
interesting open question, although the above example suggests that the
problem might be simpler in the quantum case than in the classical case.
The algorithm can be seen as a classical random walk on the eigenstates
of the Hamiltonian. All samples are thus computed with respect to the
actual eigenstates. This is why our method is suitable for the simulation
of fermionic systems by exploiting the Jordan-Wigner transforma-
tion*, as discussed in ref. 27. The fermionic sign problem is therefore
not an issue for the quantum Metropolis algorithm. It is worth noting
that an additional quadratic speed-up might be achievable using the
methods of refs 28-30.
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