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STEIN VARIATIONAL GRADIENT DESCENT ON
INFINITE-DIMENSIONAL SPACE AND APPLICATIONS TO
STATISTICAL INVERSE PROBLEMS*

JUNXIONG JIAT, PEIJUN LI¥, AND DEYU MENGS$

Abstract. In this paper, we propose an infinite-dimensional version of the Stein variational
gradient descent (iISVGD) method for solving Bayesian inverse problems. The method can generate
approximate samples from posteriors efficiently. Based on the concepts of operator-valued kernels
and vector-valued reproducing kernel Hilbert spaces, a rigorous definition is given for the infinite-
dimensional objects, e.g., the Stein operator, which are proved to be the limit of finite-dimensional
ones. Moreover, a more efficient iSVGD with preconditioning operators is constructed by generalizing
the change of variables formula and introducing a regularity parameter. The proposed algorithms
are applied to an inverse problem of the steady state Darcy flow equation. Numerical results confirm
our theoretical findings and demonstrate the potential applications of the proposed approach in the
posterior sampling of large-scale nonlinear statistical inverse problems.

Key words. statistical inverse problems, Bayes’ method, variational inference method, Stein
variational gradient descent, machine learning
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1. Introduction. Driven by rapid algorithmic development and a steady in-
crease of computer power, the Bayesian approach has enjoyed great popularity for
solving inverse problems over the last decade. By transforming inverse problems into
statistical inference problems, the approach provides a general framework to quantify
uncertainties [1]. The posterior distribution automatically delivers an estimate of the
statistical uncertainty in the reconstruction, and hence suggests “confidence” intervals
that allow to reject or accept scientific hypotheses [44]. It has been widely used in
many applications, e.g., artifact detecting in medical imaging [64].

The approach begins with establishing an appropriate Bayes model. When the
parameters are in a finite-dimensional space, the finite-dimensional Bayesian method
can be employed [56]. A comprehensive account of the finite-dimensional theory can
be found in [32]. When the inferred parameters are in the infinite-dimensional space,
the problems are more challenging since the Lebesgue measure cannot be defined
rigorously in this case [15]. Recently, some attempts have been made to handle the
issue. For example, a general framework was designed for the Bayesian formula and
the general theory was applied to inverse problems of fluid mechanic equations [12]. A
survey can be found in [53] on the basic framework of the infinite-dimensional Bayes’
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2 J. JIA, P. LI, AND D. MENG

approach for solving inverse problems. Inverse problems of partial differential equa-
tions (PDESs) often involve infinite-dimensional spaces, and the infinite-dimensional
Bayes’ theory has recently attracted more attention [5, 13, 24, 45, 46].

As pointed out in [1], one of the challenges for the Bayesian approach is how to
effectively extract information encoded in the posterior probability measure. To over-
come the difficulty, the two main strategies are the point estimate method and the
sampling method. The former is to find the maximum a posteriori (MAP) estimate
which is equivalent to solve an optimization problem [5, 24]. In some situations, the
MAP estimates are more desirable and computationally feasible than the entire pos-
terior distribution [26, 55]. However, the point estimates cannot convey uncertainty
information and are usually recognized as an incomplete Bayes’ method. The sampling
type methods, such as the well known Markov chain Monte Carlo (MCMC), are often
used to extract posterior information. They are well studied in the finite-dimensional
setting [35]. Although the MCMC methods are accurate and effective, they are usually
not robust under mesh refinement [13]. Multiple dimension-independent MCMC-type
algorithms have been proposed [13, 14, 20, 51]. However, these MCMC-type algo-
rithms are computationally too expensive to be adopted in such an application as
seismic exploration [21].

The finite-dimensional problems have been extensively studied and many efficient
algorithms have been developed to quantify uncertainties effectively. In particular,
the variational inference (VI) methods have been broadly investigated in machine
learning [3, 43, 62, 63]. Under the mean-field assumption, the linear inverse problems
were examined in [30, 29] by using a hierarchical formulation with Gaussian and
centered-t noise distribution. The skewed-t noise distribution was considered for a
similar setting in [23]. A new type of variational inference algorithm, called the Stein
variational gradient descent (SVGD), was proposed in [39]. The method can achieve
reliable uncertainty estimation by efficiently using an interacting repulsive mechanism.
The SVGD has shown to be a fast and flexible method for solving challenging machine
learning problems and inverse problems of PDEs [10, 11].

Compared with the finite-dimensional problems, the infinite-dimensional prob-
lems are much less studied for the variational inference (VI). When the approximate
measures are restricted to be Gaussian, the novel Robbins—Monro algorithm was de-
veloped in [45, 46] from a calculus-of-variations viewpoint. It was shown in [54] that
the Kullback—Leibler (KL) divergence between the stochastic processes is equal to the
supremum of the KL divergence between the measures restricted to finite marginals.
Meanwhile, they developed a VI method for functions parameterized by Bayesian
neural networks. Under the classical mean-field assumption, a general VI framework
defined on separable Hilbert spaces was proposed recently in [28]. A function space
particle optimization method including the SVGD was developed in [61] to solve the
particle optimization directly in the space of functions. The function space algorithm
was also employed to solve computer vision problems, e.g., the context of semantic
segmentation and depth estimation [9]. However, the function spaced SVGD assumes
that the random functions can be parameterized by a finite number of parameters,
e.g., parameterized by some neural networks [61]. Hence, the probability measures
on functions are implicitly defined through the probability distributions of a finite
number of parameters, instead of the expected infinite-dimensional function space.

This work concerns inverse problems of PDEs imposed on infinite dimensional
function spaces. Motivated by the preconditioned Crank-Nicolson (pCN) algorithm
[13], we aim to construct the SVGD on separable Hilbert spaces with random func-
tions. Throughout, the iSVGD stands for SVGD defined on the infinite-dimensional
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SVGD ON INFINITE-DIMENSIONAL SPACE 3

function space. The goal is to develop algorithms defined on Hilbert spaces and lay a
foundation for appropriate discretizations. It contains three contributions:

(1) We investigate the Bayesian formula in infinite-dimensional spaces. The rig-
orous definition of the SVGD on separable Hilbert spaces is provided, the
Stein operator is defined and the corresponding optimization problem on some
Hilbert spaces is considered, and the finite-dimensional problem is proved to
converge to the infinite-dimensional counterpart;

(2) By introducing vector-valued reproducing kernel Hilbert space (RKHS) and
operator-valued kernel, we improve the iSVGD with precondition information
(e.g., Hessian information operator), which can accelerate the iSVGD algo-
rithm significantly. This is the first work on such an iSVGD algorithm with
precondition information;

(3) Explicit numerical strategies are designed by using the finite-element ap-
proach. Through theoretical analysis and numerical examples, we demon-
strate that the regularity parameter s introduced in the abstract theory (see
Assumptions 5 and 7 in Section 3.2) should belong to the interval (0,0.5)
and be close to 0.5. The scalability of the algorithm depends only on the
scalability of the forward and adjoint PDE solvers. Hence, the algorithm is
applicable to solve large-scale inverse problems of PDEs.

The paper is organized as follows. The SVGD in finite-dimensional spaces is
introduced in Section 2. Section 3 is devoted to the construction of the iSVGD. The
basic concepts of operator-valued kernels and Hilbert scales are briefly reviewed; the
Stein operator is defined on separable Hilbert spaces; it is shown that the infinite-
dimensional version is indeed equivalent to the finite-dimensional version in some limit
sense; Based on the Stein operator and the theory of reproducing kernel Hilbert space
(RKHS), the update direction of the iISVGD is derived; In addition, the change of
variables is studied and the iISVGD is constructed with preconditioning operators; a
preliminary theoretical study is given for the corresponding continuous equations. In
Section 4, the algorithm is applied to solve an inverse problem governed by the steady
state Darcy flow equation. The paper is concluded with some general remarks and
directions for future work in Section 5.

2. A short review of SVGD. Let H be a separable Hilbert space endowed
with the Borel o-algebra B(#). Denote by G, u, and d the solution operator of some
PDE, the model parameter, and the observation, respectively. We assume that u € ‘H
and d € RY¢ with N, being a positive integer. The observation d is related to G(u)
and the random noise € through some functions [32], e.g., the additive noise model or
the multiplicative noise model. We refer to Section 4 for a specific example.

For statistical inverse problems, it is usually required to find a probability measure
u® on H, which is known as the posterior probability measure and is specified by its
density with respect to a prior probability measure pg. The Bayesian formula on a
Hilbert space is defined by

du? 1
(1) G (0= oo (— 2w d).
where ® € C(H x RN4;R) and exp(—®(u; d)) is integrable with respect to pg. The
constant Zg is chosen to ensure that u® is indeed a probability measure. The prior
measure g := N(0,Cp) is assumed to be a Gaussian measure defined on H with C
being a self-adjoint, positive definite, and trace class operator. Let (g, ex)52, be the
eigensystem of Cy satisfying Coei, = )\Zsk. Denote by PV and QY the orthogonal
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4 J. JIA, P. LI, AND D. MENG

projections of H onto X~ :=span{ey,e,...,en} and X+ :=span{enyi1,en412,.. .},
respectively. Clearly, we have QY = Id — PV. Let " := PNu € XV and ut :=
QNu € X+, Define C)Y = PNCyPY and let uY = N(0,C}) be a finite-dimensional
Gaussian measure defined on X. Then an approximate measure u* on X% can be
defined by

d,udN
dpdy

(2) (") =

75 O ( - <I>(uN;d)),

where

25 = [ oo (= o)) (™).

Some more properties of the above approximate measure can be found in [16,
Subsection 5.6]. The probability measure u%Y can be written as the pushforward
of the posterior measure u¢ on RV, ie., pudVN = Pgud = pd o (PN)~!. Hence the
measure u4N has a Lebesgue density denoted by p®V with the following form:

3) P () o oxp (B d) — 32y ),

where || - [[cx represents 1(C{)~/2 - |42 with || - ||;> standing for the usual £2-norm.
Obviously, the target distribution u%V is the solution to the optimization problem
defined on the set Py(RY) of probability measures v such that [ |ju[?dv™ (uV) < oo
by:

4 : KL [N,
(4) L ™| ™)

where KL denotes the Kullback-Leibler (KL) divergence.

Now, we present the Stein variational gradient descent (SVGD) algorithm. Denote
KL(+|[u®Y) : Po(RN) — [0, +00) as the functional vV +— KL(V||uY). In order to
obtain samples from p?V, the SVGD applies a gradient descent-like algorithm to the
functional KL(-||u?"). The standard gradient descent algorithm in the Wasserstein
space applied to KL(-||u2Y), at each iteration £ > 0, is

N = (1d - Vo (2 N
(5) Vip1 = —€eVlog dpdN Ve
#

where € > 0 is the step size. This corresponds to a forward Euler discretization of the
gradient flow of KL(-||z%") with respect to Stein geometry [18]. Instead of the Wasser-
stein gradient Vlog (dv}Y /du®Y) used in (5), the SVGD uses P,V log (dvl [dpsN)
to generate the following iteration:

N (10— PV log [ N
(6) Voy1 = — € Vévv 0og deN #Vév

where P~ is the same as that in Subsection 3.1 of [33]. Let HY be an N-dimensional

reproducing kernel Hilbert space (RKHS) [52] with the kernel function K : RN xRY —
R. To define P,~ rigorously, it is necessary to introduce the kernel integral operator
based on the kernel function K, which will not be used in the rest of the paper. Hence,
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SVGD ON INFINITE-DIMENSIONAL SPACE 5

we omit it and refer to [33] for the details. The reason for introducing the operator
Pylgv is that we have

dvl
(7) Pul{VVIOg (dU5N> () = _EuNmzuéV [K(uNa )VuN IngdN(uN) + VuNK(qu )]

under some mild conditions. For every ¢ > 0, let u™t be distributed according to Vév .

Using (6)—(7), we obtain a particle update scheme

(®) WM = Uy gl (),
where
9) V() = By gy [K (W, )V log p?N (u) + V,n K (u” .)} .

The basic SVGD algorithm is given in Algorithm 1. Inspired by applications in
machine learning, the SVGD type algorithms have been widely studied over the last
few years [17, 18, 33, 38, 39, 42].

Algorithm 1 Finite-dimensional Stein variational gradient descent

Input: A target probability measure with density function p?™(u’V) and a set of
particles {u, *}7 .

Output: A set of particles {uN }™ , that approximates the target probability mea-
sure.

for iteration ¢ do
uiv,e#»l - ui\’,f +ee¢*(uiv,£)7
where
1 « NV el N LT K (N N
EZ; o 1og p™ (u) + Vv K (u, )
=

and €y is the step size at the /-th iteration.
end for

3. SVGD on separable Hilbert spaces. This section is devoted to the con-
struction of iISVGD and the preconditioning operators. The corresponding continuity
equations are provided for a preliminary theoretical study of the method.

3.1. Hilbert scale and vector-valued RKHS. For constructing iSVGD, we
need to characterize the smoothness of functions that belong to some infinite dimen-
sional spaces. The Sobolev spaces are usually employed to characterize the smoothness
of functions. However, for presenting a general theory, we introduce the Hilbert scales
defined by the prior covariance operator [19]. The reason is that different covariance
operators employed in practical problems lead to the same form of Hilbert scales.
However, they are related to different Sobolev spaces. Hence, the same form of the
general theory can be flexibly adapted to different practical problems.

Let Co : H — H be the covariance operator introduced in Section 2. Denote
by D(Cy) and R(Cy) the domain and range of Cy, respectively. Let H = R(Co) $
R(Co)*t = R(Co) (the closure of R(Cp)). It is clear to note that Cy ' is a densely
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6 J. JIA, P. LI, AND D. MENG

defined, unbounded, symmetric and positive-definite operator in H. Let (-, -} and
| - [[4 be the inner product and norm defined on the Hilbert space H, respectively.

Define the Hilbert scales (H!);er with H! := SifH'H“t, where

Spi= (N PC™: (v = (€ *u Gy oh, ullws = |5 ]|

n=0

The norms defined above possess the following properties (cf. [19, Proposition 8.19]).

LEMMA 1. Let (H')ier be the Hilbert scale induced by the operator Cq given above.
Then the following assertions hold:
1. Let —00 < s < t < oo. Then the space H' is densely and continuously
embedded into H?®.
2. Ift >0, then H! = D(Catm), and H™t is the dual space of HE.
3. Let —0o < ¢ < 1 < s < o0 then the interpolation inequality ||ulpr <

;{% holds when u € H?5.

g lu

Now, we introduce some basic notations of vector-valued reproducing kernel
Hilbert space (RKHS). The following definition concerns the Hilbert space adjoint
opertor [50].

[[u

DEFINITION 2. Let X and ) be Banach spaces, and T be a bounded linear operator
from X toY. The Banach space adjoint of T, denoted by T', is the bounded linear
operator from V* to X* and is defined by (T'0)(u) = £(Tu) for all £ € Y*, u € X.
Let X and Y be Hilbert spaces, and C1 : X — X* be the map that assigns to each
u € X, the bounded linear functional (u,-)x in X*. Let Cy : Y — V* be defined
similarly as Cy1. Then the Hilbert space adjoint of T is a map T* : Y — X given
by T* = C7'T'Cy.

Next, we introduce operator-valued positive definite kernels, which constitute
the framework for specifying vector-valued RKHS. Following Kadri et al. [31] to
avoid topological and measurability issues, we focus on separable Hilbert spaces with
reproducing operator-valued kernels whose elements are continuous functions. Denote
by X and ) the separable Hilbert spaces and by £(X,)) the set of bounded linear
operators from X to ). When X =), we write £(),)) briefly as L(}).

DEFINITION 3. (Operator-valued kernels) An L())-valued kernel K on X x X is
an operator K(+,-) : X x X — L(Y);
1. K is Hermitian if Vu,v € X, K(u,v) = K(v,u)*;
2. K is nonnegative on X if it is Hermitian and for every natural number r and
all {(ui,vi)i=1,..r} € X x Y, the matriz with ij-th entry (K (u;, u;)v;,vj)y
is nonnegative (positive-definite).

DEFINITION 4. (Vector-valued RKHS) Let X and Y be separable Hilbert spaces.
A Hilbert space F of operators from X to Y is called a reproducing kernel Hilbert
space if there is a nonnegative L(Y)-valued kernel K on X x X such that
1. the operator v — K (u,v)g belongs to F for all v,u € X and g € Y;
2. for every f € F,u€ X and g € Y, we have {f(u),g)y = (f(-), K(u,-)g) .

Throughout the paper, we assume that the kernel K is locally bounded and sepa-
rately continuous, which guarantee that F is a subspace of C(X,)) (the vector space
of continuous operators from X' to )). If the kernel K is nice enough [7, 8], then it is
the reproducing kernel of some Hilbert space F.

This manuscript is for review purposes only.
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Since the kernel is an important part of the SVGD, we provide some intuitive ideas
about the operator-valued kernel. Let u,v € ‘H and h > 0 be a positive constant. To
construct the infinite-dimensional SVGD, we may introduce a scalar-valued kernel
K(u,v) :=exp (—|lu — v[|3,) and consider the operator-valued kernel

(10) K(u,v) = K(u,v)Id.

For example, we can take H = L?(Q) with Q being a bounded open domain and have

(1) Juolf = [ futa) = ofa) P

However, for solving inverse problems of PDEs, it is useful to introduce some precon-
ditioning operators which require to consider operator-valued kernels. Here, we illus-
trate this by a simple example. Let the prior measure g = AN(0, (Id — A)~2), where
A is the Dirichlet Laplace operator and H = L?(£). Intuitively we have H! ~ H?(Q),
where H?((2) is the usual Sobolev space. By the theory of Gaussian measures [48],
we approximately have po(H?(2)) = 0 (not rigorously correct). Inspired by the pCN
algorithm [13], we may choose the preconditioning operator T' = Id — A. If we choose
the Gaussian kernel as (10), then the transformed kernel function becomes

(12) K(w0) = exp (= [T o) ) 7740

which is approximately equal to
1
(13) K (u,v) ~ exp (h||uv|%[2) (Id — A)~2

Obviously, the kernel function equals to zero when u — v does not belong to H?(2),
ie., |lu—v|gz < oo when u —v € H?(2). Hence, the kernel function takes nonzero
values and the algorithms can work only if the differences of any two particles re-
side in a measure zero set. In our opinion, this restriction seems too strong in the
infinite-dimensional setting to make the particles over concentrated (see our numerical
example in Section 4 to demonstrate this in details).

Based on the above discussion, we may introduce a parameter s and have an
approximate transformed kernel

1
(14) K (u,v) = exp <—h|u—v||§{225> (Id — A)~2.

However, to achieve this, we should not choose the original kernel (the kernel is not
transformed by the operator T') to be the usual scalar-valued kernel. The original ker-
nel may be chosen as Ko(u,v) = Ko(u,v)(Id — A)~25, where Ko(u,v) := e~ nlu=vlr2
with h > 0 being a positive constant. In this setting, the preconditioning operator can
be chosen as T := (Id — A)!1=%. These intuitive ideas indicate that it is necessary to
construct the infinite-dimensional SVGD based on the more involved operator-valued
kernel theory.

3.2. iISVGD. In this subsection, we present an infinite-dimensional version of
the SVGD, i.e., iSVGD. For a function u, denote by D,, and D,,, the Fréchet derivative
and the directional derivative in the kth direction, respectively. For simplicity of
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8 J. JIA, P. LI, AND D. MENG

notation, we shall use D and Dy, instead of D,, and D, , and write ®(u;d) as ®(u).
Let

(15) V(w) = () + Slul,

where the potential functional ® is required to satisfy the following assumptions.

ASSUMPTION 5. Let X and H be two separable Hilbert spaces. For s € [0, 1], we
assume H'7% C X C H. Let M; € Rt be a positive constant. For each uw € X C H,
we introduce D® : X — X* and D*® : X — L(X,X*), then the functional ® : X — R
satisfies

—My < ®(u) < My(|Jullx),
[1D®(u) [ < Ma([[u]x),
D@ ()| £ ,200) < Ma([Jullx),

where Ma(+), M3(+), and My(-) are some monotonic non-decreasing functions.

The above assumption is a local version of [16, Assumption 4], which can be
verified for many problems, e.g., the Darcy flow model (Theorem 17 in Section 4).
We now optimize ¢ in the unit ball of a general vector-valued RKHS H g with an
operator valued kernel K (u,u’) € L(Y):

(16) O = aigglax {Eypu[So(u)], s.t. |¢]lne <1and Do : X — L1(X,V)},
EHK

where S is the generalized Stein operator defined formally as follows:

(17) S(u) = —(DV(u), ¢(uw)y + D Di(d(u), ex)y,
k=1

and £q(X,Y) denotes the set of all trace class operators from X to ). For the
convergence of the infinite sum, we illustrate it in Theorem 9. Here, {e;}72, stands
for an orthonormal basis of space ) and p is a probability measure defined on H.
Moreover, we assume that ¢ : X — ) is Fréchet differentiable, and the derivative is
continuous to ensure the validity of (16).

REMARK 6. In the finite-dimensional case, the operator Dé(u) naturally belongs
to L1(X,Y) (cf. [15, Appendiz C]).

The following assumption is also needed for the operator-valued kernels, which
include many useful kernels, e.g., the radial basis function (RBF) kernel.

ASSUMPTION 7. Let X, ), and H be three separable Hilbert spaces. For s € [0, 1],
we assume that H=5~1 C Y and

(18) sup || K (u, u)|| £(y) < .
ueX

REMARK 8. We mention that Condition (18) holds for the bounded scalar-valued
kernel functionals since a scalar-valued kernel functional can be seen as a scalar-valued
kernel functional composite with an identity operator as demonstrated in (10).

To illustrate (16) and (17), we prove Theorem 9. For each particle u, we assume
that u € H'~°, which is based on the following two considerations:

This manuscript is for review purposes only.
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e The SVGD with one particle is an optimization algorithm for finding maxi-
mum a posterior (MAP) estimate. The MAP estimate belongs to the sepa-
rable Hilbert space H!.

e For the prior probability measure, the space H! has zero measure [15]. Intu-
itively, if all particles belong to !, the particles tend to concentrate around
a small set that leads to unreliable estimates of statistical quantities. Hence,
we may assume that the particles belong to a larger space containing H'.

THEOREM 9. The generalized Stein operator (17) defined on Y can be obtained
by taking N — oo in the following finite-dimensional Stein operator:

N

(19) SN (W) = —(DV (M), oM (uN))y + > D6 (), ex)y,
k=1

where ¢ := PN o ¢.

Proof. By straightforward calculations, we have

So(u) = S¥o™ (V) = — ((DV(w), d(w)y — (DV (™), 6™ (uV))y)

s} N
(20) + (Z Di(d(u),ex)y — > Dilo™ (), €k>y>
k=1 =1
— 1411

For term I, we have

L=(D(V(u) = V(u")), ™ (u™))y + (DV (1), d(u) — ™ (u"))y

1) L(N) + To(V).

For term I (V), we find that
(22)  L(N)=(D(®@(u)—2(u™)),s" (™)) y+(Co /* (u—u),Cy PN (uN))y,

where the second term on the right-hand side is understood as the white noise mapping
[48]. According to Assumptions 5 and 7, we know that

Jim (D@ () ~ 2™y < Jim O D(@(u) ~ B(u™)) 51—

(23) < lim_ ClD(@(u) - B(u)) 51

< lim CMy(2||lullx)|lu — u™||g1-- =0,
N—o00

where C' is a generic constant that can be different from line to line. Hence, we obtain

(24) lim (D(®(u) — @(u™)), o™ (u))y = 0.

N—o00

Taking u,, € H? such that u,, — v in H'~°, we have

(€M 2w =), PN @M )y = Tim (G — ), Gy N (M)

= lim (PNCy ! (um — uy), d(u™))y
= Tim (9(), K (N, -) PNCy ™ (tm — 1)) 3tsc.

This manuscript is for review purposes only.
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As for the last term in the above equality, we have the following estimates:

(@C), K (u, ) PYCG (tm — up ) <

s (K (- >PNco (tt =), K (0, )PV Cy ™ (1t — 1))
< (0, (s PV E (W ) PV C (1t — 1), €5 (s — u))y
< C((), () e 1Co ™ (tm — uly) 135
< CLO), o NrselCo ™ (tm — w1

Replacing w,, — uX by (upm —uld) — (u—u

N, we deduce

(Co P (u—u), ¢ PN (@N))y = Tim (6(), K (N, ) PVCG (i — u ) rase
(25) =(6(), K (", ) PNCG (1= u™)) e
Hence, we obtain

lim (Cy % (u—u),Co 2N ()

N —o0
= ]\}gnoo<¢()7 K(U ) )PNC()_l(u - uN)>'HK
(26) . N N N Np—1 N -1 N
< Jm (0(), () asc (P K (u, u™)PTC (u—u),Co (u —u™))y

1—s

<CU0), 6w Jm G5 7 (w—uM)[3 =0,

Plugging (24) and (26) into (22), we arrive at limy_,o0 [1(N) = 0. For term I3(V), it
can be decomposed as follows:

27)  L(N) = (D®(u), ¢(u) — ¢" (uN))y+(Co /*u,Cy P (d(u) — oV (uM)))y.

It follows from the continuity of ¢ that we have limy_s o (D®(u), ¢(u)—¢Y (u™))y = 0.
Using similar estimates as those for deriving (25), we obtain

(Co Pu,Cy P (du) — N (uN)))y
= (¢(), K (u,-)Cy M upge — (0(), K (uN, ) PN Cy )

By the continuity of K(,-), we obtain

(28)

(29) lim (Cy "/ ?u,Cy 2 ((u) — 6N (u™)))y = 0.

N—o0
Now, we conclude that limy_,o Io(N) = 0. For term II, we have
(30) =" Di(d(u) —¢(u™),ex)y + D> Dild(u),ex)y
k=1 k=N+1

Let {¢r}72, be an orthonormal basis in X, and then we have

(31) Z Di(¢p(u),er)y = Z (Dé(u)pr,er)y =0 as N — oo,
k=N+1 k=N+1
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where we use the condition D¢(u) € L£1(X,Y). For the first term on the right-hand
side of (30), we find that

(32) ZDk => (D De(u™))pr, ex)y-

k=1

Due to the continuity of the Fréchet derivative of ¢, we know that the above sum-
mation goes to 0 as N — oco. Combining the estimates of I and II, we complete the
proof. 0

The following theorem gives explicitly the iSVGD update directions that are es-
sential for the construction of iSVGD.

THEOREM 10. Let K(-,-) : X2 — L(Y) be a positive definite kernel that is Fréchet
differentiable on both variables. In addition, we assume that

(33) Euep [Du/K(u, W)y %9+ 3" Dy DuK(u, u’)ek}
k=1

belongs to L1(X,Y) for each v’ € X and g € H™*°. Then, the optimal ¢¥¢ in (16) is
(B4 6k() X By | K () (~D(u) ZDMK Jer]

where {e}32, is an orthonormal basis of ¥ and the term K (u,-)Cy "u is understood
in the following limiting sense:

(35) K(u, )Cy'u = lim K(u,)Cy tm.

m—r o0

_1l=s
Here the limit is taken in Hx and {um}55_y C H? such that [|[Cy 2 (um —u)|lx — 0
as m — 00.

Proof. First, by taking ¢(u) as an element in Hx, we have

(36)  (DV(u), ¢(u))y = (DD(u), (u))y + (C5 /*u, Co M pu))y = T+11,

where term II is understood as the white noise mapping. For term I, we have

(37) I= (o), K(u, ) DP(u)) 3y,

where the proposition ( ) in Definition 4 is employed. For term II, we take u,, € H?

such that lim,, . ||Cy = (um — u)|lyg = 0. It is clear to note that

(38)  {Co Pum,Co P o(w))y = (Cq M, () = (&), K (1, )C i) e

Because

{6 (), K (u,)Cq ) s — (0(), K (u,)Co )|
(), O())pe (B (1, )Co (= w), K (1, )Co " (i — 1)) e
=(A(); B()) rtse (B (1, u)Cq " (e — 1), C (um — )y
(), O())pe (B (1w, u)Co (um — ), C (um — w))y

CLO), S NaurcICo 2 (ttm — w)Zes

IN
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431
432

134

436
437
438
439

440
441

443
444
445
446
447

448

461

462

12 J. JIA, P. LI, AND D. MENG

we find that limm%w(qﬁ(-),K(u,-)Co_lum>HK = <¢(-),K(u,-)C0_1u>HK. Hence, let
m — o0 in (38), we have

(39) (€ P Co o)y = (D), K ()5 )
Plugging (39) and (37) into (36), we obtain

(DV (u), d(u))y =(8(-), K (u, ) DP(u) + K (u,-)Cq )
=(6(), K(u, ) DV (u)) 34 -

Next, let us calculate the second term on the right-hand side of (17). A simple
calculation yields

(40)

(41) > Did(u),en)y = > Di(d(-), K (u,)ex) -
k=1 k=1

Since

(42) Dy, <¢(); K(U7 ')€k>7-LK = lg% %((b(), K(u + €pp, ')ek - K(UJ ')€k>7'lK

= <¢()7 DkK(ua ')6k>'HKa

we have
(43) >~ Dilolu),en)y = (6(). Y DiK(u)er)
k=1 k=1 o
Combining (40) and (43) with (17), we obtain
(44) 89(u) = (#(),~K(u,)DV(w) + Y DK (u,Jer,)
k=1 K

Thus, the optimization problem (16) possesses a solution ¢} (-) satisfying
o0

(45) Oic(4) X By | = K (u,)DV () + 3 DK (u, Je
k=1

Based on condition (33), we know that D¢} (u) belongs to £4(X,Y) for each u € X,
which completes the proof. 0

REMARK 11. The optimal ¢} is given in (34) which is consistent with the finite-
dimensional case. Since the first and second terms on the right-hand side of (34) are
similar, we may just focus on the second term which is usually named as the repul-
sive force term. For each u,v € X, consider K (u,v) := K(u,v)Id with K(u,v) :=
exp (—3/lu—v|%). Then, we have

M8

Z D,, K(u,v)e, =
k=1

<DuK(uv U)ekv (Pk>X

b
I
—

(46)

(u—v, pp)x K(u,v)eg.

SHEN)

M

E
I
—
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Projecting (46) on one particular coordinate ey with ¢ € N, we obtain

(Z D, K(u, v)ek> = <Z f%@ — v, o) 2 K (u,v)e, €g>
k=1

¢ k=1

2
= - E<u - U7¢€>XK(U7U)a

(47) y

which is similar to the (th coordinate of V.~ K(u™N,vN) appearing in (9). Addition-
ally, we mention that the assumption (33) given in Theorem 10 can be verified for
many useful kernels. Detailed illustrations are provided in the supplementary material.

By Theorem 10, we can construct a series of transformations as follows:
(48) Ty(u) = u+egEu/~W[—K(u w) DV (u —|—ZD () K (U, u)e

with £ = 1,2,.... In practice, we draw a set of particles {u{}",; from some initial
measure, and then iteratively update the particles with an empirical version of the
above transformation in which the expectation under p, is approximated by the em-
pirical mean of particles {uf}™, at the f-th iteration. The iSVGD is summarized in
Algorithm 2.

Algorithm 2 Infinite-dimensional Stein variational gradient descent (iISVGD)

Input: A target probability measure u¢ that is absolutely continuous w.r.t the
Gaussian measure po = N(0,Co) with %(u) x exp(—®(u)) and a set of particles
{u?

Output A set of particles {u;}7, that approximates the target probability mea-
sure.

for iteration ¢ do

Lo uf + €p0* (uf),
where

1 m B o0
EZ [ (—D®(u ) Oluﬁ)—i—ZD(uﬁ)kK(u?,u)ek]
k=1

Jj=1

end for

3.3. iISVGD with precondition information. In the supplementary material,
the numerical experiments indicate that the SVGD without preconditioning operators
converges slowly for some inverse problems of PDEs. By the finite-dimensional SVGD
[58], it may accelerate the convergence and give reliable estimates efficiently by intro-
ducing preconditioning operators. For constructing the iSVGD with preconditioning
operators, let us begin with a theorem concerning the change of variables.

THEOREM 12. Let X' and Y be two separable Hilbert spaces, and let Fo be a RKHS
with a nonnegative L£(Y)-valued kernel Ko : X x X — L(Y). Let X and Y be two

separable Hilbert spaces, and F be the set of operators from X to ) given by

(49) $(u) = M(u)po(t(u)) ¥ ¢o € Fo,
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where M : X — L(Y, y) is a fixed operator and is assumed to be an invertible operator
forallue X, andt: X — X is a fized Fréchet differentiable one-to-one mapping. For
all ¢,¢" € F, we can identify a unique ¢o, ¢y € Fo such that ¢(u) = M (u)do(t(u))
and ¢'(u) = M (u)pg(t(w)). Define the inner product on F via (¢, d"Yx = (Po, dh) Fo s
and then F is also a vector-valued RKHS, whose operator-valued kernel is

(50) K (u,u') = M (u/)Ko(t(u), t(u)) M (u)",

where M (u)* denotes the Hilbert space adjoint.

Proof. Let {(u;,9i)i=1,.. N} C X x Y, and we have

.....

(K (ui, uj)gi, 950y = (M (uj) Ko(t(us), t(u;)) M (ui)* gi5 95)
= (Ko(t(ui), t(u;)) M (ui)*gi, M (u;)*g;)y-

Then, the nonnegativity of K (-,-) follows from the nonnegative property of Ko(, ).
To prove the theorem, it suffices to verify the two conditions shown in Definition
4. For every u,v € X and g € ), we consider the operator f(v) = K(u,v)g =
M (v)Ko(t(u),t (v))M( )*g. Because of M (u)*g € V, we easily obtain

(51)

Ko(t(u),t(v)) M (u)*g € Fo.

According to (49), we conclude that f(-) € F. . )
Next, let us verify the reproducing property of K(-,-). For every u € X,g € Y,
and ¢ € F, we have

where the fourth equality follows from

(9,9") 7 = (b0, b0) 7,
with ¢(-) = Ko(t(u), )M (u)*g. o

Now we present a key result, which characterizes the change of kernels when
applying invertible transformations on the iSVGD trajectory.

THEOREM 13. Let H, H, X, X, Y, and Y be separable Hilbert spaces satisfying
X c), X C 5)7 X C 527 X C Y. Assume that Assumption 7 holds for the triples
(X, V,H) and (2\?,5),7—2) with two fized parameters s € [0,1], respectively. Let T €
LY, )7) and assume that T is a bounded operator when restricted to be an operator
from X to X. Let w, p? be two probability measures and fi, ji® be the measures of
@ = Tu when u is drawn from p, p®, respectively. Introduce two Stein operators S

and S as follows:

Sé(u) = (—DV (u y-i—ZDk ern)y, YueX,

Sq;(ﬁ) = <7DﬂV(T71ﬂ)a é(ﬁ»j} + Z D(ﬁ)k <$(ﬁ)a ék>5}, Vue ‘)2,

This manuscript is for review purposes only.
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SVGD ON INFINITE-DIMENSIONAL SPACE 15

where {ex}32, and {€x}32, are orthonormal bases in Y and Y, respectively. Then,
we have

(52) EunulSo(w)] = EunplSo(u)]  with ¢(u) :== T~ ¢(Tw).

Therefore, in the asymptotics of infinitesimal step size (¢ — 07 ), it is equivalent
to running iSVGD with kernel Ky on i and running tSVGD on p with the ker-
nel K(u,u’) = T-YKo(Tu, Tu')(T~1)*, in the sense that the trajectory of these two
SVGD can be mapped to each other by the map T (and its inverse).

Proof. Let us introduce a mapping defined by v = f(u) = u + ep(u). Denote
f4p as the probability measure po f~1. Let @' ~ Ty (fyji) which is obtained by

i =Tu =T(u+ep(u)) = T(T '+ ep(T ')
(53) =0+ eTH(T ')
=u+ E&(ﬁ)a

where we use the definition ¢(u) = T~'¢(Tu) in (52). According to [39, Theorem
3.1 ] and [58, Theorem 3|, we have EuNNP#\I“[SN(ﬁN(U,N)] = EuNNPi#Vﬁ[SN¢N(uN)],
where
N
NN () = —(DV (™), 6" (uM))y + Y Do (™), ex)y,
k=1

N
SYON () = —(Dan V(T 7'aN), 6N (@) g + ZD(aN)k@N(ﬁN)»ékh%

k=1
It is clear to note that there is no Jacobian matrix given by the transformation in
Dy~ V(T @) since the Jacobian matrix does not depend on " for linear mappings,
i.e., the derivative is zero. Following the proof for Theorem 9, we take N — oo and
obtain E,,[Sé(u)] = Eui[Sé(u)]. From Theorem 12, when ¢ is in F with kernel
Ky(u,v'), ¢ is in F with kernel K(u,u’). Therefore, maximizing E,,[S¢(u)] in F
is equivalent to E,; [S¢(u)] in F. This suggests that the trajectory of iSVGD on %
with K and that on u¢ with K are equivalent, which completes the proof. ]

REMARK 14. Similar to the matriz-valued case [58], Theorem 13 suggests a con-
ceptual procedure for constructing proper operator kernels to incorporate desirable pre-
conditioning information. Different from the finite-dimensional case, the map T is
only allowed to be linear at this stage. For a nonlinear map, there is a Jacobian
matric in SNéN(ﬂN). It is difficult to analyze the limiting behavior of the Jacobian
matriz related term. Practically, linear maps seem to be enough since even in the
finite-dimensional case nonlinear maps will yield an unnatural algorithm [58].

In the last part of this subsection, we provide some examples of preconditioning
operators that are frequently used in statistical inverse problems.

3.3.1. Fixed preconditioning operator. In Section 5 of [16], the Langevin
equation was considered by using Cy as a preconditioner, and an analysis was carried
out for the pCN algorithm. For the Newton based iterative method, we usually take
the inverse of the second-order derivative of the objective functional as the precondi-

tioning operator [41]. Here, we consider a linear operator 7' that has similar properties
1—

as Cy L Specifically, we require

(54) TeLH T H)NLH 5 H?).

This manuscript is for review purposes only.
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Then, we specify the Hilbert space appearing in Theorem 12 as X = 7:[1*5,)7 =
H 175, X =H,Y =H 2 with s € [0,1]. For the kernel Ky(-,-) : X x X — ), we
assume that

(55) sup [[Ko(@, @) 22 < o.
aueEH

It follows from Theorem 13 that we may use a kernel of the form
(56) K(u,u') := T Ko(Tu, Tu')(T™)*,
where u,u’ € H'~*. Obviously, the kernel K given above satisfies

(57) sup |7 Ko (T, Tu)(T)" | 1) < 0.

ueHl—s
As an example, we may take K, to be the scalar-valued Gaussian RBF kernel com-
posed with operator Cj:

1
(58) Ko(u,u) i= exp (= - lu— |} )€,
which yields
/ 1 AN A —1ps —1\*
(59) K (u,u') = exp (= 3|7 (u— )|}, ) TCHT )",

where h is a bandwidth parameter. Define K7 (u,u’) := Ko(Tu,Tu'). Let P :=
T-1C5(T~1)*. By simple calculations, we find that the iISVGD update direction of
the kernel in (56) is

(60) O ()=PEuny | Kq (u,)(=D(u)=Cou) + ) DKy (u,-Jex | = Poier,
k=1

which is a linear transform of the iSVGD update direction of the kernel K{ with the
operator T~1C5(T—1)*.

1—s

3.3.2. The C, operator. Choosing T :=C, ? , we can see that the condition
(54) holds. Given the Kernel Ky in (58), the kernel K defined in (59) can be written

as
1—s

1,
K () = exp (= 311G 7 (u—)[3)Co.

The operator P used in (60) is just Cy. If there is only one particle, the iSVGD update
direction is then reduced to ¢ (-) = Co(D®(u) + Cy 'u).

3.3.3. The Hessian operator. For statistical inverse problems, the forward
operator G is usually nonlinear, e.g., the inverse medium scattering problem [26, 27].

Around each particle u; with i = 1,2,..., m, the forward map can be approximated
by the linearized map
(61) G(u) = G(u;) + DG (u;)(u — ;).

Assume that the potential function @ takes the form ®(u) = (|S7Y/2(G(u) — d)||%,
where ¥ is a positive definite matrix. Using the approximate formula (61), we have

- 1 1,
Viw) & V() i= 557 2(DG(wi)u — DG(us)us +G(ws) — )| + 5165l
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It follows from a simple calculation that D2V (u;) = DG(u;)*Y~'DG(u;) + Cy 't
For the Newton-type iterative method, we can take the linear transformation T' =
08/2(% S (DG (u)* S7EDG(u;) + Cyt))Y2. 1If G is a linear operator (e.g., the ex-
amples in [25]), it is easy to verify the condition (54). For nonlinear problems, it is
necessary to employ the regularity properties of the direct problems, which is beyond
the scope of this work. Hence we will not verify this condition in this paper and leave
it as a future work. With this choice of T, the kernel (59) and the iISVGD update
direction (60) can be easily obtained. If there is only one particle, the iISVGD update
direction is degenerated to the usual Newton update direction when evaluating MAP
estimate.

3.3.4. Mixture preconditioning. Using a fixed preconditioning operator, we
can not specify different preconditioning operators for different particles. Inspired by
the mixture precondition [58], we propose an approach to achieve point-wise precon-
ditioning. The idea is to use a weighted combination of several linear preconditioning
operators. This involves leveraging a set of anchor points {v,}}”,, each of which is
associated with a preconditioning operator Ty (e.g., Ty = CS/Q(Dg(w)*Z”DQ(w) +
Cy 1)1/?). In practice, the anchor points {v,}7, can be set to be the same as the par-
ticles {u;}7,. We then construct a kernel by K (u,u') = >, | Ko(u, v )we(u)we(u'),
where

(62) Ky(u, o) =T, Ko(Tou, Tl )T, 1),

and wy(u) is a positive scalar-valued function that determines the contribution of
kernel K; at point u. Here wy(u) should be viewed as a mixture probability, and
hence should satisfy >, w(u) =1 for all u. In our empirical studies, we take

(63) we(w) = meXP ( — 31 Te(u — W)||%) |
Sy exp (- 3T (u—ve)l,)

In this way, each point u is mostly influenced by the anchor point closest to it, which
allows to apply different preconditioning for different points. In addition, the iSVGD
update direction has the form

¢k () =D wi(-)Eunp { — we(u) Ko (u, ) (DP(u) + Cy ' u)
(64) =t .
+ > Di(we(w)Ko(u,-)er) |,
k=1

which is a weighted sum of a number of iSVGD update directions with linear precondi-
tioning operators. The implementation details of (64) are given in the supplementary
material.

REMARK 15. For the kernel defined above, the particles should belong to the
Hilbert space H'~*. Based on the studies the finite-dimensional problems [58], we
may let the parameter s be equal to 0. However, when the parameter s = 0, each par-
ticle u; belongs to H' which is the Cameron—-Martin space of the prior measure. By
the classical Gaussian measure theory [15], we know that H' has zero measure. This
fact implies that all of the particles belong to a set with zero measure, which may lead
to too concentrated particles and deviates from our purpose. Hence we should choose
s > 0 to ensure the effectiveness of the SVGD sampling algorithm. These observations
are illustrated by our numerical experiments in Section /.
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18 J. JIA, P. LI, AND D. MENG

3.4. Some insights about iSVGD. We have constructed the well-defined
iSVGD algorithms with or without preconditioning operators, which is the first step
to extend the finite-dimensional SVGD to the infinite-dimensional space. Some math-
ematical studies have been carried out for the finite-dimensional SVGD, e.g., gradient
flow on probability space [38] and mean field limit theory related to the macroscopic
behavior [42]. These results provide in-depth understandings of the SVGD algorithm
and motivate many new algorithms [37]. In this subsection, we intend to provide a
preliminary mathematical study on the iSVGD under a simpler setting.

We consider the kernel operator K (u,v) := K(||lu — v||3)Id with u,v € H and
K(-) being a scalar function. Let m be the sample number and V(u) be defined in
(15). Similar to the finite-dimensional case, the iterative procedure in Algorithm 2
can be viewed as a particle system:

%Ui(t) = —(DK * pun (1)) (ui(t)) — (K % DV pna (1)) (s (1)),

where {u}, are the initial particles, d,, () denotes the Dirac measure concentrated
on u;(t) withi = 1,2,...,m, “«” denotes the usual convolution operator, and DK (u—
v) =Y poy Dy, K(u — v)ey. For convenience, we write the two convolution terms in
the following forms:

(DK s i) 0i(0) = - >~ DK (ui(t) ~ (1),
(K + DV i (0) () = - >~ K (us(0) = s () DV (5 (1)

Il
-

J
Similarly, we consider the weak form equation about the measure-valued function:

(66) %W(t% o) = (u(t), L(p(t)e),

1(0) = v,

where v is the probability measure employed to generate initial particles, ¢ is the test
function, and

(67) L(p(t))p = (DK  pu(t), Do)y + (K % DV pu(t), Do)

Let W12(H, i) be the usual Sobolev space defined for a Gaussian measure p [47].

THEOREM 16. Let pg and ® be the prior measure and potential function defined
in (1), respectively. Assume K(-) € WY2(H, o) and e=®Cd) € L2(H, po). Then, the
posterior measure u® defined in (1) is an invariant solution to Eq. (66), i.e., when
v = pd, the solution pu(t) of (66) is equal to 2.

The proof is given in the supplementary material. Clearly, this theorem holds in
the finite-dimensional setting. We point out that the integration by parts may not
hold for the infinite-dimensional case. In the finite-dimensional setting, the analysis of
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the corresponding particle system (65) and Eq. (66) have been given recently in [42].
It is sophisticated to define meaningful solutions for the above interacting particle
system (65) and the measure-valued function equation (66), which are beyond the
scope of this study and are left for future work. One of the major difficulties for the
infinite-dimensional case is that C ! (the precision operator of the prior measure) is
usually an unbounded operator [16]. Nearly all of the estimates presented in [42] for
the finite-dimensional case cannot be adopted for the infinite-dimensional setting.

Numerical experiments indicate that the SVGD without preconditioning opera-
tors can hardly provide accurate estimates for some inverse problems. The SVGD
with preconditioning operators can accelerate the convergence and give reliable es-
timates efficiently. In addition, the unboundedness issue induced by the precision
operator Cy ! may be overcome by introducing preconditioning operators. A detailed
analysis of the iISVGD with preconditioning operators may be a good starting point
for future theoretical studies.

At the end of this subsection, we mention a critical difference between finite- and
infinite-dimensional theories. It follows from Theorem 2.7 in [42] and Theorem 1.1 in
[57] that the empirical measure constructed by particles in finite-dimensional SVGD
can approximate the continuous counterpart with accuracy ¢ when the number of
particles are of order O(e?), where d is the discrete dimension. Obviously, an infinite
number of particles is needed if the dimension d goes to infinity, which indicates that
the infinite-dimensional theory may be meaningless.

The above statement explains that not every finite-dimensional setting can be
meaningfully generalized to the infinite-dimensional space. The assumption on prior
measure is important for the infinite-dimensional theory (the current assumption may
be slightly relaxed, e.g., the Besov type measure). According to the general analysis for
the convergence and concentration of empirical measures given in [34], we believe that
the prior measures used here can be approximated by the empirical measures under the
Wasserstein distance on infinite-dimensional Hilbert space. Specifically, the estimate
of the convergence speed is not relevent to the dimension when considering some
finite-dimensional spaces as the projected infinite-dimensional space. If a theorem
similar as Theorem 2.7 in [42] for the system (65)—(66) can be proved, we are able to
confirm that the particles obtained by iSVGD can approximate the posterior measure
for certain accuracy with particle numbers independent of the discrete dimension.
However, it is higly non-trivial to carry out an in-depth study of the system (65)—(66)
and is beyond the scope of the current work. In Subsection 6.3 of the supplementary
material, we give a numerical illustration to address this issue.

4. Applications. The proposed framework is valid for Bayesian inverse prob-
lems governed by any systems of PDEs. Due to the page limitation, we present one
example of an inverse problem governed by the steady state Darcy flow equation. The
second example concerns an inverse problem of the Helmholtz equation and is given
in the supplementary material.

Consider the following PDE model:

-V (e"Vw)=f in{,

68
(68) w=0 on 0,

where 2 C R? is a bounded Lipschitz domain, f(z) denotes the sources, and et(®)
describes the permeability of the porous medium. This model is used as a benchmark
problem in many works, e.g., the preconditioned Crank—Nicolson (pCN) algorithm
[13] and the sequential Monte Carlo method [2]. We will compare the performance
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20 J. JIA, P. LI, AND D. MENG

of the proposed iSVGD approach with the pCN [13] and the randomized maximum a
posterior (rMAP) method [59].

4.1. Basic settings and finite-element discretization. For numerical im-
plementations, it is essential to compute all of the related gradients and Hessian
operators before discretization (i.e., pushing the discretization to the last step). A
direct calculation yields the gradient and Hessian operators of the operator-valued
kernel, but the adjoint method [41] needs to be employed for the potential ® involv-
ing PDEs. More discussions on finite- and infinite-dimensional approaches can be
found in the supplementary material, which might be helpful for readers who are not
familiar with infinite-dimensional approach. Let F be the solution operator that maps
the parameter u to the solution of (68), and M be the measurement operator defined
as d = M(w) = (ly, (w), ey (W), ..., Lay, (w))T, where

1 .
(69) la; (w) = /Q 9752 efﬁumf‘r]ww(x)dx
with § > 0 being a sufficiently small number and z; € Q fori =1,..., N;g. The forward
map can be defined as G := M o F, and the problem can be written in the abstract
form d = G(u) + € with € ~ N(0,1d). Then we have ®(u) = 51| M(w) —d||?. The
gradient D®(u) acting in any direction 4 is given by

(70) (D®(u),a) = /Qﬁe“Vw - Vpdz,

where the adjoint state p satisfies the adjoint equation

Ng
“ 1 ) S NI .
—V - (e"Vp) = —— E 553 ° 257 lz—=;l (£e; (w) —d;) in Q,
j=1

(71)
p=0 on 0f.

The Hessian acting in direction @ and @ reads

(D*®(u). i), ) = /

wue"Vw - Vpdx + / ue"Vw - Vpdx
Q

(72) .

+/ ue"Vp - Vivdzx,
Q
where the state w satisfies the incremental forward equation

(73) -V (e*Vw) =V - (4e"Vw) in Q,

2 ~ U 1 P | 2 R
(74) -V - (e"Vp) =V - (1e"Vp) — Ims2g2 Zwe wzllz==il™ iy Q,

p=0 on 9.

In experiments, we choose €2 to be a rectangular domain Q = [0,1]? C R?, set
H = L?(f2), and consider the prior measure o = N (ug,Co) with the mean function ug
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and the covariance operator Cy := A~2, where A = (I — A) (a > 0) with the domain
of A given by D(A) := {u € H*Q) : 8 =0on 89}. Here, H?(Q) is the usual
Sobolev space. Assume that the mean function ug resides in the Cameron—Martin
space of .

Based on (70) and (72), we can prove the following results, which satisfy Assump-
tions 5. The proof is given in the supplementary material.

THEOREM 17. Let H=(Q) be the usual Sobolev space with the reqularity index
—1. Assume X = H'~* with the parameter s < 0.5, and then we have

0 < ®(u) < C(L+ ||f ]| )22l
DD ()| - < C(L+ || f]lgr—2)2e >,
D2 (u) | 2.0y < C (1 + || ]| 1) 2Bl

In the following, we use the Gaussian kernel, i.e., K (u,u’) = exp (—#|lu — v'||%)),
for the iISVGD without preconditioning operators. For numerical examples with pre-
conditioning operators, we employed the kernel given in Subsection 3.3.4.

For finite-dimensional approximations, we consider a finite-dimensional subspace
Vi, of L?(Q) originating from the finite element discretization with the continuous
Lagrange basis functions {¢;}7_;, which correspond to the nodal points {z;}}_;,
such that ¢;(x;) = d;; fori,j € {1,...,n}. Instead of statistically inferring parameter
functions v € L?(2), we consider the approximation u; = Z?Zl u;p; € Vi. Under
this finite-dimensional approximation, we can employ the numerical method provided
in [4] to discretize the prior, and construct finite-dimensional approximations of the
Gaussian approximation of the posterior measure. Based on our analysis in Subsection
3.3, we need to calculate the fractional powers of the operator Cy. Here, we employ
the matrix transfer technique (MTT) [6]. The main idea of MTT is to indirectly
discretize a fractional Laplacian using a discretization of the standard Laplacian. As
discussed in [4], the operator M is taken as

(75) M = (Mij)ﬁjzl and Mz'j = /ngz(x)gb](:r)dx, i,j S {1, .. .,n}.

The matrix M'/? is approximated by the diagonal matrix diag(Mlllm7 . ,M,lw/?).

Finally, we mention that the finite element discretization is implemented by em-
ploying the open software FEniCS (Version 2019.1.0) [40]. All programs were run
on a personal computer with Intel(R) Core(TM) i7-7700 at 3.60 GHz (CPU), 32 GB
(memory), and Ubuntu 18.04.2 LTS (OS).

4.2. Numerical results. In the experiments, the noise level is fixed to be 1%
since the goal is to test algorithms rather than demonstrating the Bayesian modeling.
We compare the iSVGD with the mixture preconditioning operator (iISVGDMPO)
with the preconditioned Crank—Nicolson (pCN) sampling algorithm [16] and the ran-
domized maximum a posteriori (rMAP) algorithm [59]. Since the rMAP sampling
algorithm is not accurate for nonlinear problems, we choose o = 0.5 in the prior
probability measure. It should be mentioned that we choose the anchor points in
the iISVGDMPO just to be the same as the particles and the anchor points will be
updated during the iterations. The initial particles of the iSVGD are generated from
a probability measure by using the method proposed in [4].

For the current settings, the gradient descent based method seems hardly to find
appropriate solutions in reasonable iterative steps. Hence, the optimization method
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(a) Variance (b) Variance (c) Variance
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F1c. 1. The comparison of the variances estimated by the pCN, rMAP, iSVGDMPO with
different s. (a): s =0; (b): s =0.4; (¢): adpatively chosen s.

with preconditioning operators, e.g., the Newton-conjugate gradient method, is em-
ployed. The term Ey/,, [K (v, u)DV(u')] in (48) is an averaged gradient descent
component in the whole iterative term, which drives all of the particles to be con-
centrated. We anticipate that Algorithm 2 cannot work well due to the inefficiency
of the gradient descent algorithm. Due to the page limitation, numerical results are
given in the supplementary material, which show that Algorithm 2 does not perform
well in some cases. This is one of the main motivations for us to study the iISVGD
with preconditioning operators.

We compare the iISVGD with the mixture preconditioning operator (iISVGDMPO)
with those obtained by the pCN and rMAP sampling algorithms. As illustrated in
Remark 15, the parameter s should not be zero. Intuitively, the particles should belong
to a space with probability approximately equal to one under the prior measure pyg.
By the Gaussian measure theory [15], we may take s > 0.5 since pg(H'~*) = 1 for
any s > 0.5. Since the posterior measure is usually concentrated on a small support
set of the prior measure, the parameter s should be slightly smaller than 0.5. Thus,
we set s = 0.3 or 0.4 in our examples. Usually, the initial particles are scattered, and
the variances of the initial particles are larger than the final particles obtained by the
iISVGDMPO. We design the following adaptive empirical strategy for s:

||var|| g

(76) s=-05

. +0.5,
[[varo||¢2

where var is the current estimated variance, varg is the estimated variance of the
initial particles, and | - ||,2 is the usual £>-norm. Obviously, for the initial particles,
we have s = 0. The particles are forced to be concentrated. When the variance is
reduced, the parameter s approaches 0.5 to avoid that the particles are concentrated
on a set with zero measure. Since the pCN is a dimension independent MCMC type
sampling algorithm, we take the results obtained by the pCN as the baseline (accurate
estimate). To make sure that the pCN algorithm yields an accurate estimate, we
iterate 105 steps and withdraw the first 10° samples. Several different step-sizes are
tried and the traces of some parameters are plotted, and then the most reliable one
is picked as the baseline.

In Figure 1, we show the estimated variances obtained by the iISVGDMPO (blue
solid line), rTMAP (green dotted line), and the pCN (orange dashed line) sampling
algorithms. The estimated variances of the iISVGDMPO are shown for s =0 and s =
0.4 on the left and in the middle, respectively. On the right, we exhibit the estimated
variances when the empirical adaptive strategy (76) is employed. As expected, the
estimated variances are too small when s = 0, which indicates that the particles are
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Variances Variances
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Fic. 2. The comparison of the wariances estimated by the iSVGDMPO with s =
10, 20, 30, 40, 50.

concentrated on a small set. Choosing s = 0.4 or using the empirical strategy, we
obtain similar estimates, which is more similar to the baseline obtained by the pCN
compared with the estimates obtained by the tMAP.

One important question arises: how does s influence the convergence of the
iSVGDMPO? The detailed numerical comparisons are given in the supplementary ma-
terial. Here we state the conclusions: The convergence speeds are similar for s = 0.4
and the adaptively chosen s. When specifying s = 0.5, the variances will gradually
approach the background truth, but the convergence speed seems much slower than
s = 0.4 or the adaptively chosen s. In the following numerical experiments, we use
the empirical adaptive strategy to specify the parameter s.

In addition, we provide three videos to exhibit the dynamic changing procedure of
the estimated variances in the supplementary material. The update perturbation with
and without repulsive force term are exhibited. These videos can further illustrate
our theoretical findings. We can see that the repulsive force terms indeed prevent the
particles from being over concentrated.

Apart from the parameter s, how many samples should be taken to guarantee
a stable statistical quantity estimate is important for using the iSVGDMPO. When
the particle number is too small, we cannot obtain reliable estimates. However, the
computational complexity increases when the particle number increases. In Figure 2,
we show the estimated variances when particle number equals to 10, 20, 30, 40, and
50. Denote by m the number of samples. On the left in Figure 2, we show the results
obtained when m = 10,20, 30. Obviously, when m = 10, the estimated variances are
significantly smaller than those obtained when m = 20,30. On the right in Figure
2, we find that the estimated variances are similar when m = 30,40, 50. Hence, it is
enough for our numerical examples to take m = 20 or 30, which attains a balance
between efficiency and accuracy. So far, we have only compared the variances with
different parameters in the iSVGDMPO. In the following, qualitative and quantitative
comparisons of other statistical quantities are provided to illustrate the effectiveness
of the iSVGDMPO.

Now, we specify the sampling number m = 30 and set the parameter s by the
proposed empirical strategy (76). In Figure 3, we show the background truth and the
estimated mean and variance functions obtained by the pCN, rMAP, and iSVGDMPO,
respectively. The iterative number of the iSVGDMPO is set to be 30. From the first
line, we observe that the mean functions obtained by the rMAP and iSVGDMPO are
similar, which are slightly smoother than the one obtained by the pCN algorithm.
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(a) Background truth (b) Mean (pCN) (c) Mean (rMAP) (d) Mean (iSVGDMPO)
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(f) Variances (pCN) (h) Variances (iSVGDMPO)
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Fic. 3. The background truth and the estimated mean and variance functions by the pCN,
rMAP, and iSVGDMPO. (a): The background truth; (b): The estimated mean function by the
pCN; (c): The estimated mean function by the TMAP; (d): The estimated mean function by the
1ISVGDMPO; (e): The estimated mean function on mesh points by the pCN (blue solid line), TMAP
(light blue dotted line), and iSVGDMPO (red dashed line); (f): The estimated variances by the
pCN; (g): The estimated variances by the rMAP; (h): The estimated variances by the iSVGDMPO.

This may be caused by the inexact matrix-free Newton-conjugate gradient algorithm
[4]. As investigated in [59], many more powerful Newton-type algorithms can be
employed to improve the performance both of the rMAP and iSVGDMPO. For the
variances, the iSVGDMPO gives more reliable estimates compared with the TMAP,
as can be seen from Figure 3 (f), (g), and (h).

Next, we provide some more comparisons of statistical quantities between the
results obtained by the pCN, rMAP, and iSVGDMPO. The samples are discretization
of functions. As introduced in [49], the mean, variance and covariance functions are
the main statistics for functional data. The variance function denoted by var, (z) can
be defined as var,(z) = = > (u;(2) — 4(z))?, where 2 € 2 is a point residing in
the domain €2, @ is the mean function, and m is the sample number. The covariance
function can be defined as cov, (21, 22) = —15 21" (ui(w1) — (1)) (wi(w2) — U(w2)),
where x1,22 € 2 and m, @ are defined as in var,(z). For simplicity, we compute
these quantities on the mesh points and exhibit the results in Figure 4. In all of the
subfigures in Figure 4, the estimates obtained by the pCN, rMAP, and iSVGDMPO
are drawn in blue solid line, gray dotted line, and red dashed line, respectively. In
Figure 4 (a), we show the variance function calculated on all of the mesh points,

ie., {varu(xi)}iv:gl (Ng is the number of mesh points). In Figure 4 (c) and (e), we

show the covariance function calculated on the pairs of points {(z;, xi+50)}£v=”1_50 and

{(z;, xi+100)}£\[:91_100, respectively. Compared with the estimates given by the rMAP,
we can find that the estimates obtained by the iSVGDMPO are visually more similar
to the estimates provided by the pCN. In Figure 4 (b), (d), and (f), we provide the
same estimates shown in (a), (c), and (e) with points indexing from 1000 to 1200,
which give more detailed comparisons. The results also confirm that the iISVGDMPO
provides more similar estimates to the pCN.

This manuscript is for review purposes only.



902
903
904
905

SVGD ON INFINITE-DIMENSIONAL SPACE 25

(a) Variances of grad points (b) Variances of grad points
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F1G. 4. The estimated variances and covariances by the pCN (blue solid line), rMAP (gray

dotted line), and iSVGDMPO (red dashed line). (a): The estimated variances {varu(xi)}f-v:gl
on all mesh points; (b): The estimated variances for mesh points with indezes from 1000 to

1200 (show details); (c): The estimated covariances {covu(xi,mi+50)}f\gl_5o on mesh point pairs
{(xi,xi+50)}?£1750; (d): The estimated covariances shown in (c) with indezes from 1000 to 1200

100

(show details); (e): The estimated covariances {covu(wi,xprlog)}i-v:gf on mesh point pairs

{(wi,mi-&-loo)}f\gfmo; (f): The estimated covariances shown in (e) with indexes from 1000 to 1200

(show details).

In addition, a quantitative comparison among the pCN, rMAP, and iSVGDMPO
are given in Table 1. We compute the £2-norm differences of the variance and covari-
ance functions on the mesh points obtained by the pCN, rMAP, and iISVGDMPO. In
the table, the notation covy (x;, z;4+%) (K = 10,20,...,110) means the covariance func-
tion values on the pair of mesh points {(z;, xi+k)}£\;‘“’1. The numbers below this nota-
tion are the ¢2 differences between the vectors obtained by the rMAP and iSVGDMPO
with the pCN, respectively. All of the ¢? differences of the iISVGDMPO with the pCN
are much smaller than the corresponding values of rMAP, which show the superiority
of the iSVGDMPO.

5. Conclusion. In this paper, the approximate sampling algorithm is proposed
for the infinite-dimensional Bayesian approach. We introduce the Stein operator on
Hilbert spaces and show that it is the limit of a particular finite-dimensional version.
Besides, we construct the update perturbation of the SVGD on infinite-dimensional
space (called iISVGD) by using the properties of operator-valued RKHS. To accelerate
the convergence speed of iSVGD, we investigate the change of variables formula and
introduced preconditioning operators. As examples, we present the fixed precondition-
ing operators and mixture preconditioning operators. Then, we calculate the explicit
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TABLE 1
The €2-norm error of the variance and covariance functions on mesh points for the rMAP and
1ISVGDMPO (the estimates of the pCN are seen as the background truth).

vary (z;) covy (Zi, Tit10) €OV (Ti, Tit20)  COV(Ti, Tit30)
rMAP 0.00759 0.00100 0.00075 0.00092
iISVGDMPO 0.00038 0.00012 0.00009 0.00010
covy (Ti, Tita0)  Covu(Ti, Tits0)  covu(Ti, Titeo)  covy(Ti, Tit70)
rMAP 0.00227 0.00038 0.00043 0.00056
iSVGDMPO 0.00015 0.00007 0.00006 0.00007
COVy (ﬂﬂi, $i+80) COVy (wi, $i+90) COVu(xi, $i+100) COVy (ﬂﬁi, 96i+110)
rMAP 0.00142 0.00029 0.00031 0.00047
iSVGDMPO 0.00012 0.00006 0.00006 0.00007

form of the update directions for the iSVGD with mixture preconditioning operators
(iISVGDMPO). Finally, we apply the constructed algorithms to an inverse problem of
the steady state Darcy flow equation. Comparing with the pCN and rMAP sampling
algorithms, we demonstrate by numerical experiments that the proposed algorithms
can generate accurate estimates efficiently.

The iISVGD is analyzed by studying the limiting behavior of the finite-dimensional
objects. This work presents an infinite-dimensional version of the approach given in
[58]. It is worth mentioning that our results not only provide an infinite-dimensional
version but also indicate that an intuitive trivial generalization of algorithms given in
[58] may not be suitable since particles will belong to a set with zero measure. Our
results also show that it is necessary to introduce the parameter s, which has not been
considered in the existing work.

The current work may be extended to combine the generalizations of the kernel
using Hessian operators in the Wasserstein space [36]. The proposed approach may be
combined with other algorithms, such as the accelerated information gradient flows
[60] and the mean-field type MCMC algorithms [22], to generate new and more efficient
algorithms. It is also interesting and important to do more theoretical studies, e.g.,
introduce infinite-dimensional Stein geometry [33] and develop systematic theories of
the interacting particle system and the mean field limit equation [42]. We will report
the progress on these aspects elsewhere in the future.
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1. EXAMPLE OF KERNEL SATISFYING ASSUMPTION (33) IN THEOREM 10

In this section, we present an example of the kernel that satisfies the assumption
(33) given in Theorem 10. Let us recall the assumption (33)

Euey [DU,K(u, u)Cy g+ DiDw K(u, u')ek} : (1.1)
k=1
which belongs to £1(X,Y) for each v’ € X and g € H™*.
Taking K (u,u') = K(u,u')Id with

1
K(ud) = oxp (- fllu 1% )
being a scalar-valued kernel, we have

1
Dy K(u,u') = —E<u —u Y K(u,u),

1
DDy K (u,u')ep = —

3 (ug — up)(u — v, ) 2 K (u, v )eg.
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Let {¢;}32, be an orthonormal basis of X, and recall that {e;}32; represents an
orthonormal basis of ). Plugging the above formula into (1.1), we find that

(Eymp [DU/K(U, u’)Co_l/Qg + Z Dy Dy K (u,u')ex | 0, €5) = EUN#{I + II},

I

j=1 k=1
where
T— li«u—u' VK (0, )05 g, ;)
— h P X ) 0 g,€5)y
Jj=1
1 o0 o0 , ,
EZZ k—uk ek u,@j>x,ej>yK(u,u).
Jj=1 k=1
For term I, we have
1 e 12 /S 1/2
LK) (St ued) (e es)
j=1 j=1
C —1/2 1.2
<K ()l — G 2y 42
C ! !/
<5 B u)fu —ulalglly-- < oo.

For term II, we have

1 o0
<5 K( u) D (u—d ) x((uy — uf)es,e5)y
j=1
1 > 12 , 1/2
<o K () (Y= 0)% ) (zuﬁu ’) (13)
j=1
1 / 112
< K () Ju = o < o

Combining estimates (1.2) and (1.3) yields

3 (Eumn [DU/K(u, W)y g+ DiDuw K (u, u')ek} pie)) <o,  (14)
j=1 k=1

which implies that (1.1) belongs to £1(X,)). Taking X = H1,Y = H~ !, s = 0,
and projecting all of the quantities to XV, we then obtain the finite-dimensional
SVGD as reviewed in Section 2 of the main text.

2. IMPLEMENTATION DETAILS FOR THE MIXTURE PRECONDITIONING

In Subsection 3.3, we present the mixture preconditioning operators, which can
specify different preconditioning operators for different particles. Here, we provide
some more implementation details.
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In practice, we approximate the expectation E,.,, by empirical mean of particles
{u;},. Hence, the formula (56) reduces to

¢*K Z Z —we u] Kf(ujv )(DU](I)(U’J) + C(;luj)
= A (2.1)

oo

+ 3 Dilwe(u;) Ko(ug, -Jer) | -
k=1

Taking Ky in (54) with
Ty = Cy/*(DG(ug)* S DG (ug) + C5 1) V/2,

we get

Ko(uj,)(Dy, ®(u;) + Cy ' uy)

~(DG(ue) S DG (ue) + €5 )™ (D, Bl + €5 My esxp ( — TI1Talu; —)I)-

For the term Dy, (we(u;)Ky(u;,-)ex), it is clear to note

Dy, (we(uj) Ko(ug,-)er) = Diwe(uj) Ko(uj, ek + we(u;) D Ke(uj, Jex.  (2.2)
For the first term, we have

Dywe(ui) Ko(uj, Jer, = — (Te(uj — we), Topr)zwe(ug) Ke(uy, ek

2.3
= Jpwe(u;) Ke(uj, ey, 23)
where
Sy (Tl — wer), Trwheexp (= 31To (u; — uer) 3,
Ji = — : . (2.4)
Si_yexp (= $1Te (u; — ue)I,)
For the second term, we have
2
we(uj) DKo (g, Jew = — 3 welu;){Te(w; ), Tepr)nKe(ug, ek (2.5)
Combining (2.3), (2.4) and (2.5), we obtain
oo 2 oo
> Dy(we(u;) Ko(uy,-)ex) = —pwe(ug) ) (Te(uj =) Tepr) uEKe(uj,-)ex
k=1 k=1
— we(u) > (To(uj — ue), Tep)n Ko(uj, Jer  (2.6)
k=1
— we(uy) Z Z T (uj — ), Torpr) nKe(uy, -Jex My,
V=1k=1
where
exp (= 41Ty — )3,
My = 2.7)

Sy exp (= 31Ty — uen) )
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For specific examples, we have the explicit form

oo

> (To(uj =), Teor)uKo(ug, -ex. (2.8)
k=1

For example, we take X, Y, X, and ) as in the fixed precondition case and specify
K as in (51) with T replaced by T;. Then, we have

oo

> (To(uj =), Teor)nKo(ug, -)ex
k=1 (2.9)

1 —1ps—1\*—sp*
= exp (= 2Ty = )3T G5 (1) € T Tl =),
Hence, it is not required to calculate the orthonormal basis {ex}72 ; and {¢;}52; in

spaces )Y and X explicitly in the implementations.

3. PROOF OF THEOREM 16
Blow is the proof of Theorem 16.
Proof. Denote by E(H) the set of all the exponential functions and let
on(x) =@M g heH. (3.1)

By [18], the function space £(H) is dense in L?(H, o), where i is the prior mea-
sure. Let K,,, o, € E(H) satisly

nh—>H<§o HKn — K||W1=2(7-L,uo) = O7 hm Hwn — exp( )HLz('H,#o) = 0.

n—oo
For the prior probability measure, we have Coer, = Aiep with k = 1,2,..., ie.,
{2 e }32, is the eigensystem of Cp. It follows from [18, Lemma 1.5] that we have
|| Dt = i @polai) = = [ Ko=) Dt (ol
1 (3.2)
32 [ (= Db @polda),
kJH
where Uy, = (u,ex), k = 1,2,.... By a simple calculation, we have
- - - - . u -
~ [ Dkt e ipalan) = [ o) (i@ + 35 ) @)
H H k

Taking n’ — oo in the above equality leads to
/ DKo (1 — @)D _ K, (u— ) DV (i)e 2D o (dit) = (3.3)
where V(+) is defined in (9). Taking n — oo, we arrive at
/ DiK(u—)e~® @D — K(u — a)DpV(@)e @D po(da) =0,  (3.4)
which implies

/H<DK(U — @), Dp(u))p + (K (u— @)DV (@), Dp(u))upu(da) = 0, (3.5)
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where ¢ € £(H) is a test function. Through simple calculations based on (3.5), we
further obtain

/ (DK  p?, D)y + (K % DV pu?, Do)y (du) = 0, (3.6)
H
which implies

(ut, L(n®)p) = 0 (3.7)
with L being defined in (59). Recalling the weak form of the equation (58), we
complete the proof. O

4. PROOF OF THEOREM 17

Let H}(Q) and H~1(Q) be the usual Sobolev spaces. Consider the boundary

value problem
-V - (e"Vw) = in Q,
(") = f )
w=0 on JN.

The following estimate is crucial to our proofs.

Theorem 4.1. Let u € L>®(Q) and f € H *(Q), then Eq. (4.1) has a unique
solution w € H}(Q) satisfies

w2 ) < Celtlle=@ | f|| ;r-1(q), (4.2)
where C' is a positive constant independent of u.

Using Theorem 4.1, we can derive the estimates for the adjoint, incremental
forward, and incremental adjoint equations. For the adjoint equation, we have

Ng

L lw—a;?
Pl a3 0y < Cellz= Y " emsz o=l (e, (w) —dj)|| (4.3)
=1 L
Let || be the volume of domain 2. Since
He—#\lx—lelv < |Q‘1/2 (4.4)
L2
and
la, (w) < Qw2 for j=1,..., Na, (4.5)
we deduce
Ng
‘Q|1/2
Ipllirgcay < S S (el + 1902 ol 2
j=1
Ng|Q|'/? o (4.6)
< =05 (lldll + cle /et £ )

<O (14l fl),
which implies

Iplliry () < CLA+ I flla-1)el e (4.7)
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For the incremental forward equation, we have
oy < Cellz= |V - (e V) -1

< Cellvle=||geu V|| 12

< CMIe= | oo | V|| 2 )
< 0= || s ||| o
Similarly, based on Theorem 4.1, we have
16l p < Cellle= 1 + 1], (4.9)
where
L= IV - (ae"Vp)llg-r, (4.10)
1 . >
L=g—52 I ()ezz o=l (4.11)
j=1
For I;, we have
I < [lae"Vp| 2 < el 1= a1 | Vp|| 12 (4.12)
< O [ flla-2)e = Jaf| o
For Iy, we get
I < gz < CelIle || ]| s || Lo (4.13)

Combining (4.9) with estimates of I; and I, we obtain the estimate of the adjoint
equation

1Bl gy < CQ+ || £l zr—2)e == |fai]| Lo (4.14)
It is clear to note that
[ullee < Clluflgr-s = Cllullx (4.15)

holds for s < 0.5, which can be deduced based on similar arguments given in [10,
Lemma 16 or Theorem 28]. Since the Hilbert scale is based on the covariance
operator Cy [1, 13], the space H!~* is different from the one introduced in [10]. The
space H ™ in our paper is approximately equal to the space H2(1=) defined in
[10]. Next, we give the three estimates shown in Theorem 17.

First is to estimate ®(u). A simple calculation gives

1
®(u) = 57 [M(w) = d|* < C(L+ [[w]2)*

(4.16)
< CA+[|fllg-2)eHx,
where the last inequality used estimates (4.2) and (4.15).
Next is to estimate D®(u). For any u € X, we get
(D®(u),u) = / @e"Vw - Vpdr < ||| poeel™1e || Vw]| 12| Vpl| 12
Q
(4.17)

< O+ |If |- )Pe = ]| o
< CA+f 1) e a)
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where estimates (4.2) and (4.7) are used to derive the second inequality and estimate
(4.15) is used for obtaining the third inequality. Clearly, it follows from (4.17) that

1D ()2 < CL+ || fllg-1)PetTel>. (4.18)

It is also required to estimate D?®(u). For any 4,7 € X, we obtain

(D*®(u), @), a) = I + I> + I3, (4.19)
where
L = /Qaﬂe“Vw - Vpdz, (4.20)
I = /Qde“Vw - Vpdz, (4.21)
I3 = /Qﬂe“Vp-dex. (4.22)

For I;, we have

I < i) o [al| oo el 12> [ Vew]| 2 | V]l 2
< Ollaf| o | oo el 12 (14 | £[] -1 )%= (4.23)
< O+ f -2 el

where (4.2) and (4.7) are used for deriving the second inequality and (4.15) is
employed to derive the third inequality. By similar calculations, we obtain from
(4.3), (4.8), (4.14), and (4.15) that

I < COUA [ f =)0 1 1] (4.24)
and
I < O(L+ || fllir—+)2e 1% @] e[| - (4.25)
substituting (4.23), (4.24), and (4.25) into (4.19), we obtain
(D*@(u),a), @) < CL+ || f )% 1> ]| @l (4.26)
Hence
ID?®(w)l| cex,x+) < C(LA+ || flla—)2efM I, (4.27)

which completes the proof.

5. MORE NUMERICAL RESULTS FOR THE DARCY FLOW MODEL

In this section, we provide more numerical results for the Darcy flow model given
in Section 4 of the main text. We intend to answer the following two questions:
how do different optimization methods affect the estimates; how does s influence
the convergence speed of the algorithm.
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(a) True parameter (b) Initial parameter

00 02 04 06 08 10 00 02 04 06 08 10
x X

(c) Estimation (NewtonCG) (d) Estimation (gradent descent)

FIGURE 1. Comparison between the results obtained by the gradient
descent (GD) and IMFNCG algorithms for the Darcy flow model. (a):
The background truth; (b): The initial guess of the parameter; (c): The
MAP estimate obtained by the IMFNCG algorithm with 10 steps; (d):
The MAP estimate obtained by the GD algorithm with 1000 steps.

5.1. Comparison of optimization methods. We compare different optimiza-
tion methods for solving the inverse problem of the Darcy flow equation. Specifi-
cally, we present the maximum a posteriori (MAP) estimate obtained by the gra-
dient descent (GD) algorithm and an inexact matrix-free Newton-conjugate gradi-
ent (IMFNCG) algorithm. The latter is suitable for computing large-scale inverse
problems. For more details about the IMFNCG algorithm, we refer to [5, 21] and
references therein. The step length of GD and IMFNCG are determined by the
Armijo line search, and the initial guess is set to be a zero function.

Figure 1 shows the estimates obtained by the GD and IMFNCG. On the top
left, we show the background truth function w. On the top right, we show the
initial zero function. In the second row, we show the MAP estimates obtained by
the IMFNCG and GD algorithms, respectively. It can be seen that the IMFNCG
algorithm with only 10 steps of iteration gives a reasonable estimate. However, the
GD algorithm with Armijo line search cannot provide an accurate estimate even
after 1000 iterative steps. The iSVGD sampling algorithm with no precondition
is reduced to the GD algorithm when only one particle is considered. Hence, it is
expected that the iISVGD sampling algorithm cannot work well since particles can
hardly concentrate due to the inefficiency of the optimization procedure. Figure
2 exhibits the estimates of the variance and covariance functions calculated on
mesh points by iISVGD and iSVGDMPO when the initial particles are generated by
Gaussian approximation of the posterior measure [5]. The results shown in Figure
2 confirm our intuition.

In addition, these numerical results verify that it is necessary to introduce the
iSVGD with preconditioning operators to enhance the optimization procedure.
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FIGURE 2. Comparison of the variances and covariance estimated by
the pCN, iSVGD (1000 iterative steps) and iSVGDMPO (25 iterative
steps) for the Darcy flow model. (a): Variances of grad points esti-
mated by pCN, iSVGD and iSVGDMPO (adpative s); (b): Local en-
larged draw of variances in (a); (c): Covariances of point with coordinate
(0.465,0.035) with all other points on the grid estimated by pCN, iSVGD
and iISVGDMPO (adpative s); (d): Local enlarged draw of covariances
in (c).

Only with an efficient optimization procedure, the concentrate force (i.e., the first
term in the bracket of (40)) and the repulsive force (i.e., the second term in the
bracket of (40)) can sufficiently play their roles to provide accurate samplings.

5.2. Convergence speed comparison for different values of s. When choos-
ing a kernel and the prior measure as in Section 4 of the main text, the parti-
cles should belong to the Hilbert space H'~°. From the analysis, we know that
po(H'=%) = 0 or 1, when s = 0 or s > 0.5, respectively. The intuitive idea for
specifying the parameter s can be explained as follows:

(1) The particles should not belong to a set with zero measure, which may lead
to inaccurate estimates;

(2) The particles should reside in a small support region of the prior probability
measure.

Based on the above two criteria, we may choose s around 0.5. Here, we provide
some numerical results to answer the important question: how does s influence the
convergence speed of the iSVGDMPO algorithm.

Figure 3 show the detailed comparisons for the Darcy flow model. We present the
estimated variances when the iterative numbers equal to 10,20 and 30 in (a), (b) and
(c) of Figure 3, respectively. In (d), (e) and (f) of Figure 3, we depict the estimated
variances only for some parameters, which provide more detailed illustrations. In
these figures, estimated variances for s = 0,0.4, 0.5, and the adaptively chosen one
are shown, which indicate the following results:
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(@) Iterative number = 10 (b) Iterative number = 20 (©) Iterative number = 30
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FIGURE 3. For s = 0,0.4,0.5 or adaptively chosen s, comparison for
the estimated variances of iISVGDMPO when iterative numbers are
10,20, 30, respectively. (a): The estimated variances when iterative
number equal to 10; (b): The estimated variances when iterative num-
ber equal to 20; (c): The estimated variances when iterative number
equal to 30; (e): The estimated variances (part of the parameters) for
the pCN and iSVGDMPO (iterative number equal to 10); (f): The esti-
mated variances (part of the parameters) for the pCN and iISVGDMPO
(iterative number equal to 20); (g): The estimated variances (part of

the parameters) for the pCN and iSVGDMPO (iterative number equal
to 30).

(1) When the iterative number is smaller than 10, the convergence speeds for
s = 0,0.4, and that adaptively chosen are almost the same. The conver-
gence speed for s = 0.5 is obviously slower than other cases;

(2) When the iterative number approximates 30, the estimated variances for
s = 0 is much smaller than the estimations given by the pCN and iSVGDMPO
algorithm with s = 0.4,0.5, and the adaptively chosen s.

In summary, the convergence speeds are similar for s = 0.4 or that adaptively
chosen. The obtained estimates, at least for the variance function, are more accurate
when the results of pCN are chosen as the background truth. In the main text,
the comparisons for other statistical quantities are given when the parameter s is
specified adaptively. When specifying s = 0.5, the variances will gradually approach
the background truth, but the convergence speed seems much slower than s = 0.4
or the adaptively chosen s.

6. DISCUSSIONS ON THE FINITE- AND INFINITE-DIMENSIONAL APPROACHES

Since SVGD is constructed usually for the finite-dimensional problems in the field
of machine learning, it would be better for us to provide some detailed explanations
about finite- and infinite-dimensional approaches, which should be useful for readers
who are not familiar with the infinite-dimensional approach.
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6.1. General illustration. The SVGD algorithm is related to optimization prob-
lems since it reduces to an optimization problem for computing maximum a poste-
rior estimate when only one particle is considered. In the following, we firstly recall
some discussions from the perspective of PDE-constrained optimization problems.
For PDE-constrained optimization problems, there are two typical approaches:

e Discretize-then-optimize: Discretize the PDEs to formulate a finite dimen-
sional optimization problem, then all of the optimization techniques devel-
oped on finite-dimensional space can be applied.

e Optimize-then-discretize: Formulate infinite-dimensional optimization prob-
lems and construct the optimization schemes on some appropriate infinite-
dimensional spaces. The discretizations are pushed to the last step to gen-
erate practical numerical schemes.

Discretize-then-optimize and optimize-then-discretize are the finite- and infinite-
dimensional approaches mentioned in the main context, respectively. For the advan-
tages of the approach of optimize-then-discretize, we refer to page 43—44 of [15] and
Chapters 2 and 3 of [12]. More specifically, the advantages of infinite-dimensional
approach are mainly two-folds:

e [t is important to have a better understanding of the function space struc-
ture of the numerical algorithms in order to design optimal numerical
schemes for related PDEs (e.g., when forward PDEs are not self-adjoint, we
may need to design certain numerical schemes to calculate forward PDEs
and adjoint PDEs then to calculate the gradient).

e The approach is mesh independent. The mesh independence implies that
the convergence behavior (e.g., convergence rate and number of iterations)
of an infinite-dimensional method reflects the behavior of properly dis-
cretized problems, when the mesh size is sufficiently small.

Another method for solving inverse problems of PDEs is the Bayesian inverse
methods studied in the current work. Similar to the PDE-constrained optimization
methods, the Bayesian inverse methods also contain two typical approachs:

o Discretize-then-Bayesianize: The PDEs are initially discretized to approxi-
mate the original problem in some finite-dimensional space, and the reduced
approximate problem is then solved by using the Bayes’ method.

e Bayesianize-then-discretize: The Bayes’ formula and algorithms are ini-
tially constructed on infinite-dimensional space, and after the infinite di-
mensional algorithm is built, some finite-dimensional approximation is car-
ried out.

Discretize-then-Bayesianize and Bayesianize-then-discretize are the finite- and in-
finite-dimensional approaches mentioned in the main contexts, respectively. Simi-
lar as the optimization case, these two approaches both have their own advantages
and disadvantages, and also either could be suggested to be used dependent on the
specific properties of the investigated inverse problems of PDEs. By our under-
standing, the advantages of Bayesianize-then-discretize are similar as the case of
Optimize-then-discretize:

e [t is important to have a better understanding of the function space struc-
tures in order to design optimal numerical schemes of PDEs, especially
when the gradient information is employed. To design sampling algorithms,
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infinite-dimensional theories will be helpful to design appropriate discretiza-
tion of probability measures.

e Bayesianize-then-discretize approach is mesh independent. The sampling
efficiency will not highly depend on the dimension of the discretization,
which is an important expected property for solving inverse problems of
PDEs.

The book [14] provides a comprehensive discussions on the finite-dimensional ap-
proach, i.e., discretize-then-Bayesianize approach. For the infinite-dimensional ap-
proach, we refer to [20, 9, 5, 4, 8] and the references there in.

6.2. A simple example. In Subsection 6.1, general discussions on finite- and
infinite-dimensional approaches are given, which can hardly provide some intu-
itions on the differences of the numerical schemes. In the following, we consider
a simple example that illustrates the implementation differences between “op-
timize (Bayesianize)-then-discretize” and “discretize-then-optimize (Bayesianize)”
approach. Let us consider the following equation:

{—O.lAw +w = u, in Q,

(6.1)
u =0, on 09},

where Q = [0,1]2. Denote the forward operator F(u) := w and the measurement

operator M(w) := (w(xy),...,w(zy,))” where {z;}Y9 reside in Q and N, is a
positive integer. Define G := M o F. We then have the following formulation:
d=G(u)+e, (6.2)

where d is the noisy data and € is the random noise. The simplest way for estimating
u from d is to solve the following minimization problem:

muin F(u) (6.3)

with F(u) := 1[|G(u) — d||%. Now, we employ the finite-element method to dis-
cretize the above problem. Denote the finite element mass matrix by M, the
stiffness matrix of equation (6.1) by K, and the measurement matrix by S. The

forward operator G then has the following discretized form:
d=SK 'Mu +e¢, (6.4)

where wu is the discretized vector of the function wu.
Discretize-then-optimize (Bayesianize): For using discretize-then-optimize
(Bayesianize) approach, we need to formulate the following discrete problem:

1
minEHSK_lMu— d|2. (6.5)
u
Using the gradient descent method, we obtain the following iterative scheme:
upi1 = up —Y(SK'M)T(SK'Mu — d), (6.6)

where ~y is the step size.

Optimize (Bayesianize)-then-discretize: For using optimize (Bayesianize)-
then-discretize approach, we need to firstly formulate the infinite-dimensional prob-
lem:

min 2 |G(u) — d?%. (6.7)
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FIGURE 4. Left: Logarithm of the step norms computed by “discretize-
then-optimize (Bayesianize)” approach with different discretized dimen-
sions d = 400, 900, 1600, 2500, 3600. Right: Logarithm of the step norms
computed by “optimize (Bayesianize)-then-discretize” approach with

different discretized dimensions d = 400, 900, 1600, 2500, 3600.

Then we derive the gradient descent iteration on infinite-dimensional space to ob-
tain:

U1 = up —797(G(u) — d), (6.8)

where G* is the adjoint-operator of G. According to Subsection 3.3 of [5], we may
obtain the following iterative scheme on finite-dimensional space:

U1 = up — YM Y(SK'M)T(SK~'Mu - d). (6.9)

Comparing iterative schemes (6.6) and (6.9), we can see the difference. At a glance,
this is a small difference. However, such a small difference leads to different be-
haviors of the two iterative schemes. We implement the two iterative schemes with
different discretized dimensions d = 20 x 20,30 x 30,40 x 40,50 x 50,60 x 60 to
visually see such different behavior. The step size y is set to be 0.01 for all of the
iterative schemes. We define the step norm as follows:

The k-th step norm = |lupt+1 — ugl| 2. (6.10)

In the left of Figure 4, we draw the step norms of the iterative scheme (6.6).
We can see that the step norms decay rapidly when the dimension grows. This
indicate that the convergence speed of iterative scheme (6.6) depends highly on the
discretized dimension. In contrast, the step norms of the iterative scheme (6.9)
are almost the same for different discretizations. From this simple toy example,
we can see that the “discretize-then-optimize (Bayesianize)” approach can hardly
keep the infinite-dimensional natural. Hence, it usually lacks mesh independence
property. However, the “optimize (Bayesianize)-then-discretize” approach pushes
the discretization implementation to the final step which makes it easier to catch the
infinite-dimensional natural of the inverse problems of PDEs. The finally obtained
algorithm usually has mesh independence property, which is important for solving
inverse problems of PDEs.

6.3. Mesh independence of iISVGD. In Subsection 6.2, we just provide a simple
example. For the proposed iSVGD, we need more standard techniques that can be
found in some typical literatures [5, 11, 15, 19, 21, 6]. The lecture notes provided in
“https:/ /uvilla.github.io/inversel7/” are also beneficial for taking implementations.
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FIGURE 5. Left: Pointwise sample variances computed by different
discretized dimensions d = 400, 900, 1600, 2500, 3600 (All of the vari-

ance functions are projected on a grid with d = 400 for compari-
041

son). Right: Decay of the averaged step norm = Y7 |lu; ™' — uf| 12
w.r.t. the number of iterations for different discretized dimensions

d = 400, 900, 1600, 2500, 3600.

Now, let us illustrate that the proposed iSVGD algorithm possesses the mesh
independence property. That is to say, if the finite element mesh is refined, we
indeed need more computational resources since the computations of each partial
differential equation are more expensive. However, it might not need more iterations
and particles when the finite element mesh is refined since discrete problems derived
by refined mesh also approximate the infinite-dimensional formulation. For clearly
illustrating this, we choose different discretized grids such that the dimensions of
the function parameter are d = 20 x 20,30 x 30,40 x 40,50 x 50,60 x 60. Using
the same settings as in Section 4 of the main text, we only change the discretized
dimension to see how discretized dimensions affect the behavior of the algorithm. In
Figure 5, we show the numerical results which demonstrate the mesh independence
as expected for Bayesianize-then-discretize approach.

Specifically speaking, we draw the variance functions with different discretized
dimensions in the left of Figure 5. The variance functions are calculated by the
iSVGDMPO with discretized dimensions d = 400, 900, 1600, 2500, 3600. When the
algorithm generates the final particles, we calculate the variance functions and
project the estimated variance functions on a mesh with dimension d = 20 x 20.
Then, we draw part of the grid point values of the variance functions calculated by
different meshes. From the figure, it can be seen that the grid point values are sim-
ilar. This validates that the estimated variance function obtained by iISVGDMPO
is not sensitive to one particular discretization. Similar to other mesh independence
methods such as TMAP used for comparison in our numerical experiments, it may
be difficult to obtain exactly the same values due to the quantities being evaluated
approximately, especially the gradients and Hessian operators, are not evaluated
accurately. For discretize-first type methods, we can calculate the gradients of the
discretized system exactly. However, the gradients and Hessian operators defined
on infinite-dimensional space could only be calculated approximately.
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In the right of Figure 5, we draw the averaged step norm defined as follows:
Lo~ ¢
3t = (6.11)
i=1

where uf stands for the ith particle at the fth iteration and m is the number of
particles. Obviously, the averaged step norms are similar for different discretized
dimensions. It is evident that the curves under different discretized dimensions
can hardly be distinguished, indicating that the algorithm has mesh independence
property. The convergence speed is not affected by discretized dimensions, which
is not true for many algorithms developed under the finite-dimensional setting.

At last, we should admit that more theoretical works are needed to ensure the
mesh independence property. Specifically speaking, we may need to do further
research based on Subsection 3.4 in the main text on infinite-dimensional particle
interacting system and the measure-valued evolution equation. The well-posedness
of these complicated equations should be proved and a theorem like Theorem 2.7
in [16] needs to be established. Along this direction, we may consult to the studies
on the semilinear Mckean—Vlasov stochastic evolution equation in Hilbert space [2]
and the theoretical analysis of the pCN algorithm [17].

7. NUMERICAL RESULTS FOR THE HELMHOLTZ EQUATION

In this section, we present numerical experiments for the Helmholtz equation
—Aw — e?*w =0in Q,
Jw (7.1)

a—nzgmaﬁ,

where w is the acoustic field, u is the logarithm of the distributed wave number field
on Q (2 is a bounded domain), n is the unit outward normal on 0%, and g is the
prescribed Neumann source on the boundary. The boundary value problem (7.1)
may not have a unique solution due to possible resonances [7]. Hence, we can hardly
verify Assumption 6 for this example. However, this model was studied for the
randomized maximum a posteriori (rMAP) method [21], which is an approximate
method used for our comparison in the main text. From the proof in Subsection 4,
we may verify Assumption 6 under more suitable settings for the inverse medium
scattering problem, e.g., Lemma 2.3 in [3] gives a similar estimate to the Darcy
flow model.

Basic settings and the finite-element discretization are similar to the Darcy flow
model considered in the main text. The only difference is that the measurement
data are collected on the boundary of the domain, i.e., x; € 02 for i = 1,..., Ny.
Figure 6 shows the estimates of the variances obtained by the pCN, rMAP, and
iISVGDMPO with parameter s = 0, 0.4, or choosing adaptively according to formula
(68) in the main text. Similarly, the estimated variances are too small when s = 0,
which implies that the particles are concentrated on a small set. When s is taken as
0.4 or chosen adaptively, we obtain similar estimates, which is more similar to the
baseline provided by pCN compared with the estimates obtained by the rMAP. As
in the main text, we use the empirical adaptive strategy to specify the parameter
s in the following.

As for the sample numbers, we also compare the estimated variances when the
particle number m equals to 10,20, 30,40, and 50. On the left and right in Figure
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FIGURE 6. Comparison of the variances estimated by the pCN, TMAP,
iISVGDMPO with different s for the Helmholtz equation model. (a):
Variances estimated by pCN, rMAP, and iSVGDMPO (s = 0); (b):
Variances estimated by pCN, rtMAP, and iSVGDMPO (s = 0.4); (c):
Variances estimated by pCN, rMAP, and iSVGDMPO (adpative s).
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FIGURE 7. Comparison of the variances estimated by the iISVGDMPO
when s = 10, 20, 30, 40, 50 for the Helmholtz equation model.

7, we show the results obtained when m = 10,20,30 and m = 30, 40, 50, respec-
tively. Obviously, we find that m = 10 is not enough to give reliable estimates and
the estimated variance functions are similar when m = 30,40, 50. Hence, for the
Helmholtz problem, it is enough to take m = 20 or 30 for our numerical examples,
which attains a fine balance between efficiency and accuracy.

For the following numerical experiments, we take m = 30 and set the parameter
s by the empirical strategy (68) as presented in the main text. In Figure 8, we
demonstrate the background truth and the estimated mean and variance functions
obtained by the pCN, rMAP, and iSVGDMPO, respectively. The iterative number
of iISVGDMPO is set to be 30. The same observation can be made from the results.
The mean functions obtained by the TMAP and iSVGDMPO are similar, which
are slightly smoother than the one obtained by the pCN algorithm. Regarding
the variance function, it can be seen from (f), (g), and (h) of the figure that the
iISVGDMPO gives more reliable estimates than the rMAP does.

Now, we provide some more comparisons of statistical quantities among the re-
sults obtained by the pCN, rMAP, and iSVGDMPO. Similarly, we compute variance
and covariance functions on the mesh points and exhibit the results in Figure 9. In
all of the subfigures in Figure 9, the estimates obtained by the pCN, rMAP, and
iSVGDMPO are drawn in blue solid line, gray dotted line, and red dashed line,
respectively. All the notations here are the same as those used in the main text.
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FIGURE 8. The background truth and estimated mean and variance
functions by pCN, rMAP, and iSVGDMPO for the Helmholtz equation
model. (a): Background truth; (b): Estimated mean function by pCN;
(c): Estimated mean function by tMAP; (d): estimated mean function
by iSVGDMPO; (e): Estimated mean function on mesh points by pCN
(blue solid line), rMAP (light blue dotted line), and iISVGDMPO (red
dashed line); (f): Estimated variances by pCN; (g): Estimated variances
by rMAP; (h): Estimated variances by iSVGDMPO.

We can also obtain the same conclusions from the results: the estimates obtained
by the iISVGDMPO are visually more similar to the estimates provided by the pCN
compared with the results obtained by the TMAP.

TABLE 1. The ¢2-norm error of variance and covariance functions on
mesh points for the rMAP and iSVGDMPO (estimates of the pCN are
seen as the background truth)

vary, (z;) covy (i, Tiys) €OV (T4, Tit10)
rMAP 0.01525 0.00155 0.00237
iISVGDMPO 0.00092 0.00026 0.00063
covy (i, Tiv1s) €OV (X, Tipa0) €OV (X4, Titas)
rMAP 0.00295 0.00353 0.00153
iISVGDMPO 0.00036 0.00059 0.00035
covy (i, Tit30) €OV (X, Titss) €OV (X4, Titan)
rMAP 0.00148 0.00154 0.00219
iISVGDMPO 0.00055 0.00037 0.00048

Besides these visual comparisons, a quantitative comparison of the differences
among the pCN, rMAP, and iISVGDMPO are also given in Table 1. Again, all the
notations have the same meaning as those used in the main text. It can be seen
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FIGURE 9. The estimated variances and covariances by the pCN (blue
solid line), rMAP (gray dotted line), and iSVGDMPO (red dashed line).
(a): Estimated variances {Varu(xi)}f\gl on all mesh points; (b): Esti-
mated variances for mesh points with indexes from 300 to 400 (show
details); (c): Estimated covariances {covu(aci,xwgo)}fv:gfzo on mesh
point pairs {(x;, Zi4+20) 2\31—20; (d): Estimated covariances shown in (c)
with indexes from 300 to 400 (show details); (e): Estimated covariances
{covu(xi,xi“o)}ﬁi"l_w on mesh point pairs {(z;, xi+4g)}fv:91_40; (f): Es-
timated covariances shown in (e) with indexes from 300 to 400 (show
details).

from Table 1 that all the £2-norm differences of the iSVGDMPO with the pCN are
evidently smaller than the corresponding values of the rMAP.
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