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Abstract. In this paper, we propose an infinite-dimensional version of the Stein variational5
gradient descent (iSVGD) method for solving Bayesian inverse problems. The method can generate6
approximate samples from posteriors efficiently. Based on the concepts of operator-valued kernels7
and vector-valued reproducing kernel Hilbert spaces, a rigorous definition is given for the infinite-8
dimensional objects, e.g., the Stein operator, which are proved to be the limit of finite-dimensional9
ones. Moreover, a more efficient iSVGD with preconditioning operators is constructed by generalizing10
the change of variables formula and introducing a regularity parameter. The proposed algorithms11
are applied to an inverse problem of the steady state Darcy flow equation. Numerical results confirm12
our theoretical findings and demonstrate the potential applications of the proposed approach in the13
posterior sampling of large-scale nonlinear statistical inverse problems.14
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1. Introduction. Driven by rapid algorithmic development and a steady in-18

crease of computer power, the Bayesian approach has enjoyed great popularity for19

solving inverse problems over the last decade. By transforming inverse problems into20

statistical inference problems, the approach provides a general framework to quantify21

uncertainties [1]. The posterior distribution automatically delivers an estimate of the22

statistical uncertainty in the reconstruction, and hence suggests “confidence” intervals23

that allow to reject or accept scientific hypotheses [44]. It has been widely used in24

many applications, e.g., artifact detecting in medical imaging [64].25

The approach begins with establishing an appropriate Bayes model. When the26

parameters are in a finite-dimensional space, the finite-dimensional Bayesian method27

can be employed [56]. A comprehensive account of the finite-dimensional theory can28

be found in [32]. When the inferred parameters are in the infinite-dimensional space,29

the problems are more challenging since the Lebesgue measure cannot be defined30

rigorously in this case [15]. Recently, some attempts have been made to handle the31

issue. For example, a general framework was designed for the Bayesian formula and32

the general theory was applied to inverse problems of fluid mechanic equations [12]. A33

survey can be found in [53] on the basic framework of the infinite-dimensional Bayes’34
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2 J. JIA, P. LI, AND D. MENG

approach for solving inverse problems. Inverse problems of partial differential equa-35

tions (PDEs) often involve infinite-dimensional spaces, and the infinite-dimensional36

Bayes’ theory has recently attracted more attention [5, 13, 24, 45, 46].37

As pointed out in [1], one of the challenges for the Bayesian approach is how to38

effectively extract information encoded in the posterior probability measure. To over-39

come the difficulty, the two main strategies are the point estimate method and the40

sampling method. The former is to find the maximum a posteriori (MAP) estimate41

which is equivalent to solve an optimization problem [5, 24]. In some situations, the42

MAP estimates are more desirable and computationally feasible than the entire pos-43

terior distribution [26, 55]. However, the point estimates cannot convey uncertainty44

information and are usually recognized as an incomplete Bayes’ method. The sampling45

type methods, such as the well known Markov chain Monte Carlo (MCMC), are often46

used to extract posterior information. They are well studied in the finite-dimensional47

setting [35]. Although the MCMC methods are accurate and effective, they are usually48

not robust under mesh refinement [13]. Multiple dimension-independent MCMC-type49

algorithms have been proposed [13, 14, 20, 51]. However, these MCMC-type algo-50

rithms are computationally too expensive to be adopted in such an application as51

seismic exploration [21].52

The finite-dimensional problems have been extensively studied and many efficient53

algorithms have been developed to quantify uncertainties effectively. In particular,54

the variational inference (VI) methods have been broadly investigated in machine55

learning [3, 43, 62, 63]. Under the mean-field assumption, the linear inverse problems56

were examined in [30, 29] by using a hierarchical formulation with Gaussian and57

centered-t noise distribution. The skewed-t noise distribution was considered for a58

similar setting in [23]. A new type of variational inference algorithm, called the Stein59

variational gradient descent (SVGD), was proposed in [39]. The method can achieve60

reliable uncertainty estimation by efficiently using an interacting repulsive mechanism.61

The SVGD has shown to be a fast and flexible method for solving challenging machine62

learning problems and inverse problems of PDEs [10, 11].63

Compared with the finite-dimensional problems, the infinite-dimensional prob-64

lems are much less studied for the variational inference (VI). When the approximate65

measures are restricted to be Gaussian, the novel Robbins–Monro algorithm was de-66

veloped in [45, 46] from a calculus-of-variations viewpoint. It was shown in [54] that67

the Kullback–Leibler (KL) divergence between the stochastic processes is equal to the68

supremum of the KL divergence between the measures restricted to finite marginals.69

Meanwhile, they developed a VI method for functions parameterized by Bayesian70

neural networks. Under the classical mean-field assumption, a general VI framework71

defined on separable Hilbert spaces was proposed recently in [28]. A function space72

particle optimization method including the SVGD was developed in [61] to solve the73

particle optimization directly in the space of functions. The function space algorithm74

was also employed to solve computer vision problems, e.g., the context of semantic75

segmentation and depth estimation [9]. However, the function spaced SVGD assumes76

that the random functions can be parameterized by a finite number of parameters,77

e.g., parameterized by some neural networks [61]. Hence, the probability measures78

on functions are implicitly defined through the probability distributions of a finite79

number of parameters, instead of the expected infinite-dimensional function space.80

This work concerns inverse problems of PDEs imposed on infinite dimensional81

function spaces. Motivated by the preconditioned Crank–Nicolson (pCN) algorithm82

[13], we aim to construct the SVGD on separable Hilbert spaces with random func-83

tions. Throughout, the iSVGD stands for SVGD defined on the infinite-dimensional84
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SVGD ON INFINITE-DIMENSIONAL SPACE 3

function space. The goal is to develop algorithms defined on Hilbert spaces and lay a85

foundation for appropriate discretizations. It contains three contributions:86

(1) We investigate the Bayesian formula in infinite-dimensional spaces. The rig-87

orous definition of the SVGD on separable Hilbert spaces is provided, the88

Stein operator is defined and the corresponding optimization problem on some89

Hilbert spaces is considered, and the finite-dimensional problem is proved to90

converge to the infinite-dimensional counterpart;91

(2) By introducing vector-valued reproducing kernel Hilbert space (RKHS) and92

operator-valued kernel, we improve the iSVGD with precondition information93

(e.g., Hessian information operator), which can accelerate the iSVGD algo-94

rithm significantly. This is the first work on such an iSVGD algorithm with95

precondition information;96

(3) Explicit numerical strategies are designed by using the finite-element ap-97

proach. Through theoretical analysis and numerical examples, we demon-98

strate that the regularity parameter s introduced in the abstract theory (see99

Assumptions 5 and 7 in Section 3.2) should belong to the interval (0, 0.5)100

and be close to 0.5. The scalability of the algorithm depends only on the101

scalability of the forward and adjoint PDE solvers. Hence, the algorithm is102

applicable to solve large-scale inverse problems of PDEs.103

The paper is organized as follows. The SVGD in finite-dimensional spaces is104

introduced in Section 2. Section 3 is devoted to the construction of the iSVGD. The105

basic concepts of operator-valued kernels and Hilbert scales are briefly reviewed; the106

Stein operator is defined on separable Hilbert spaces; it is shown that the infinite-107

dimensional version is indeed equivalent to the finite-dimensional version in some limit108

sense; Based on the Stein operator and the theory of reproducing kernel Hilbert space109

(RKHS), the update direction of the iSVGD is derived; In addition, the change of110

variables is studied and the iSVGD is constructed with preconditioning operators; a111

preliminary theoretical study is given for the corresponding continuous equations. In112

Section 4, the algorithm is applied to solve an inverse problem governed by the steady113

state Darcy flow equation. The paper is concluded with some general remarks and114

directions for future work in Section 5.115

2. A short review of SVGD. Let H be a separable Hilbert space endowed116

with the Borel σ-algebra B(H). Denote by G, u, and d the solution operator of some117

PDE, the model parameter, and the observation, respectively. We assume that u ∈ H118

and d ∈ RNd with Nd being a positive integer. The observation d is related to G(u)119

and the random noise ε through some functions [32], e.g., the additive noise model or120

the multiplicative noise model. We refer to Section 4 for a specific example.121

For statistical inverse problems, it is usually required to find a probability measure122

µd on H, which is known as the posterior probability measure and is specified by its123

density with respect to a prior probability measure µ0. The Bayesian formula on a124

Hilbert space is defined by125

dµd

dµ0
(u) =

1

Zd
exp

(
− Φ(u;d)

)
,(1)126

127

where Φ ∈ C(H × RNd ;R) and exp(−Φ(u;d)) is integrable with respect to µ0. The128

constant Zd is chosen to ensure that µd is indeed a probability measure. The prior129

measure µ0 := N (0, C0) is assumed to be a Gaussian measure defined on H with C0130

being a self-adjoint, positive definite, and trace class operator. Let (λk, εk)∞k=1 be the131

eigensystem of C0 satisfying C0εk = λ2
kεk. Denote by PN and QN the orthogonal132
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4 J. JIA, P. LI, AND D. MENG

projections of H onto XN := span{ε1, ε2, . . . , εN} and X⊥ := span{εN+1, εN+2, . . .},133

respectively. Clearly, we have QN = Id − PN . Let uN := PNu ∈ XN and u⊥ :=134

QNu ∈ X⊥. Define CN0 = PNC0PN and let µN0 = N (0, CN0 ) be a finite-dimensional135

Gaussian measure defined on XN . Then an approximate measure µdN on XN can be136

defined by137

dµdN

dµN0
(uN ) =

1

ZNd
exp

(
− Φ(uN ;d)

)
,(2)138

139

where140

ZNd =

∫
XN

exp
(
− Φ(uN ;d)

)
µN0 (duN ).141

142

Some more properties of the above approximate measure can be found in [16,143

Subsection 5.6]. The probability measure µdN can be written as the pushforward144

of the posterior measure µd on RN , i.e., µdN = PN# µd := µd ◦ (PN )−1. Hence the145

measure µdN has a Lebesgue density denoted by pdN with the following form:146

pdN (uN ) ∝ exp
(
− Φ(uN ;d)− 1

2
‖uN‖2CN0

)
,(3)147

148

where ‖ · ‖CN0 represents ‖(CN0 )−1/2 · ‖`2 with ‖ · ‖`2 standing for the usual `2-norm.149

Obviously, the target distribution µdN is the solution to the optimization problem150

defined on the set P2(RN ) of probability measures ν such that
∫
‖uN‖2dνN (uN ) <∞151

by:152

min
νN∈P2(RN )

KL(νN ||µdN ),(4)153
154

where KL denotes the Kullback-Leibler (KL) divergence.155

Now, we present the Stein variational gradient descent (SVGD) algorithm. Denote156

KL(·||µdN ) : P2(RN ) → [0,+∞) as the functional νN 7→ KL(νN ||µdN ). In order to157

obtain samples from µdN , the SVGD applies a gradient descent-like algorithm to the158

functional KL(·||µdN ). The standard gradient descent algorithm in the Wasserstein159

space applied to KL(·||µdN ), at each iteration ` ≥ 0, is160

νN`+1 =

(
Id− ε∇ log

(
dνN`
dµdN

))
#

νN` ,(5)161

162

where ε > 0 is the step size. This corresponds to a forward Euler discretization of the163

gradient flow of KL(·||µdN ) with respect to Stein geometry [18]. Instead of the Wasser-164

stein gradient ∇ log
(
dνN` /dµ

dN
)

used in (5), the SVGD uses PνN` ∇ log
(
dνN` /dµ

dN
)

165

to generate the following iteration:166

νN`+1 =

(
Id− εPνN` ∇ log

(
dνN`
dµdN

))
#

νN` ,(6)167

168

where PνN` is the same as that in Subsection 3.1 of [33]. Let HNK be an N -dimensional169

reproducing kernel Hilbert space (RKHS) [52] with the kernel functionK : RN×RN →170

R. To define PνN` rigorously, it is necessary to introduce the kernel integral operator171

based on the kernel function K, which will not be used in the rest of the paper. Hence,172
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we omit it and refer to [33] for the details. The reason for introducing the operator173

PνN` is that we have174

PνN` ∇ log

(
dνN`
dµdN

)
(·) = −EuN∼νN`

[
K(uN , ·)∇uN log pdN (uN ) +∇uNK(uN , ·)

]
(7)175

176

under some mild conditions. For every ` ≥ 0, let uN,` be distributed according to νN` .177

Using (6)–(7), we obtain a particle update scheme178

uN,`+1 = uN,` + εφN` (uN,`),(8)179180

where181

φN∗` (·) = EuN∼qN`
[
K(uN , ·)∇uN log pdN (uN ) +∇uNK(uN , ·)

]
.(9)182

183

The basic SVGD algorithm is given in Algorithm 1. Inspired by applications in184

machine learning, the SVGD type algorithms have been widely studied over the last185

few years [17, 18, 33, 38, 39, 42].186

Algorithm 1 Finite-dimensional Stein variational gradient descent

Input: A target probability measure with density function pdN (uN ) and a set of

particles {uN,0i }mi=1.
Output: A set of particles {uNi }mi=1 that approximates the target probability mea-
sure.
for iteration ` do

uN,`+1
i ←− uN,`i + ε`φ

∗(uN,`i ),

where

φ∗(uN ) =
1

m

m∑
j=1

[
K(uN,`j , uN )∇uN,`j

log pdN (uN,`j ) +∇uN,`j
K(uN,`j , uN )

]
,

and ε` is the step size at the `-th iteration.
end for

3. SVGD on separable Hilbert spaces. This section is devoted to the con-187

struction of iSVGD and the preconditioning operators. The corresponding continuity188

equations are provided for a preliminary theoretical study of the method.189

3.1. Hilbert scale and vector-valued RKHS. For constructing iSVGD, we190

need to characterize the smoothness of functions that belong to some infinite dimen-191

sional spaces. The Sobolev spaces are usually employed to characterize the smoothness192

of functions. However, for presenting a general theory, we introduce the Hilbert scales193

defined by the prior covariance operator [19]. The reason is that different covariance194

operators employed in practical problems lead to the same form of Hilbert scales.195

However, they are related to different Sobolev spaces. Hence, the same form of the196

general theory can be flexibly adapted to different practical problems.197

Let C0 : H → H be the covariance operator introduced in Section 2. Denote198

by D(C0) and R(C0) the domain and range of C0, respectively. Let H = R(C0) ⊕199

R(C0)⊥ = R(C0) (the closure of R(C0)). It is clear to note that C−1
0 is a densely200
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6 J. JIA, P. LI, AND D. MENG

defined, unbounded, symmetric and positive-definite operator in H. Let 〈·, ·〉H and201

‖ · ‖H be the inner product and norm defined on the Hilbert space H, respectively.202

Define the Hilbert scales (Ht)t∈R with Ht := Sf
‖·‖Ht , where203

Sf :=

∞⋂
n=0

D(C−n0 ), 〈u, v〉Ht := 〈C−t/20 u, C−t/20 v〉H, ‖u‖Ht :=
∥∥∥C−t/20 u

∥∥∥
H
.204

205

The norms defined above possess the following properties (cf. [19, Proposition 8.19]).206

Lemma 1. Let (Ht)t∈R be the Hilbert scale induced by the operator C0 given above.207

Then the following assertions hold:208

1. Let −∞ < s < t < ∞. Then the space Ht is densely and continuously209

embedded into Hs.210

2. If t ≥ 0, then Ht = D(C−t/20 ), and H−t is the dual space of Ht.211

3. Let −∞ < q < r < s < ∞ then the interpolation inequality ‖u‖Hr ≤212

‖u‖
s−r
s−q
Hq ‖u‖

r−q
s−q
Hs holds when u ∈ Hs.213

Now, we introduce some basic notations of vector-valued reproducing kernel214

Hilbert space (RKHS). The following definition concerns the Hilbert space adjoint215

opertor [50].216

Definition 2. Let X and Y be Banach spaces, and T be a bounded linear operator217

from X to Y. The Banach space adjoint of T , denoted by T ′, is the bounded linear218

operator from Y∗ to X ∗ and is defined by (T ′`)(u) = `(Tu) for all ` ∈ Y∗, u ∈ X .219

Let X and Y be Hilbert spaces, and C1 : X → X ∗ be the map that assigns to each220

u ∈ X , the bounded linear functional 〈u, ·〉X in X ∗. Let C2 : Y → Y∗ be defined221

similarly as C1. Then the Hilbert space adjoint of T is a map T ∗ : Y → X given222

by T ∗ = C−1
1 T ′C2.223

Next, we introduce operator-valued positive definite kernels, which constitute224

the framework for specifying vector-valued RKHS. Following Kadri et al. [31] to225

avoid topological and measurability issues, we focus on separable Hilbert spaces with226

reproducing operator-valued kernels whose elements are continuous functions. Denote227

by X and Y the separable Hilbert spaces and by L(X ,Y) the set of bounded linear228

operators from X to Y. When X = Y, we write L(Y,Y) briefly as L(Y).229

Definition 3. (Operator-valued kernels) An L(Y)-valued kernel K on X ×X is230

an operator K(·, ·) : X × X → L(Y);231

1. K is Hermitian if ∀u, v ∈ X , K(u, v) = K(v, u)∗;232

2. K is nonnegative on X if it is Hermitian and for every natural number r and233

all {(ui, vi)i=1,...,r} ∈ X × Y, the matrix with ij-th entry 〈K(ui, uj)vi, vj〉Y234

is nonnegative (positive-definite).235

Definition 4. (Vector-valued RKHS) Let X and Y be separable Hilbert spaces.236

A Hilbert space F of operators from X to Y is called a reproducing kernel Hilbert237

space if there is a nonnegative L(Y)-valued kernel K on X × X such that238

1. the operator v 7−→K(u, v)g belongs to F for all v, u ∈ X and g ∈ Y;239

2. for every f ∈ F , u ∈ X and g ∈ Y, we have 〈f(u), g〉Y = 〈f(·),K(u, ·)g〉F .240

Throughout the paper, we assume that the kernel K is locally bounded and sepa-241

rately continuous, which guarantee that F is a subspace of C(X ,Y) (the vector space242

of continuous operators from X to Y). If the kernel K is nice enough [7, 8], then it is243

the reproducing kernel of some Hilbert space F .244
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Since the kernel is an important part of the SVGD, we provide some intuitive ideas245

about the operator-valued kernel. Let u, v ∈ H and h > 0 be a positive constant. To246

construct the infinite-dimensional SVGD, we may introduce a scalar-valued kernel247

K(u, v) := exp
(
− 1
h‖u− v‖

2
H
)

and consider the operator-valued kernel248

K(u, v) = K(u, v)Id.(10)249250

For example, we can take H = L2(Ω) with Ω being a bounded open domain and have251

‖u− v‖2H =

∫
Ω

|u(x)− v(x)|2dx.(11)252
253

However, for solving inverse problems of PDEs, it is useful to introduce some precon-254

ditioning operators which require to consider operator-valued kernels. Here, we illus-255

trate this by a simple example. Let the prior measure µ0 = N (0, (Id−∆)−2), where256

∆ is the Dirichlet Laplace operator and H = L2(Ω). Intuitively we have H1 ≈ H2(Ω),257

where H2(Ω) is the usual Sobolev space. By the theory of Gaussian measures [48],258

we approximately have µ0(H2(Ω)) = 0 (not rigorously correct). Inspired by the pCN259

algorithm [13], we may choose the preconditioning operator T = Id−∆. If we choose260

the Gaussian kernel as (10), then the transformed kernel function becomes261

K(u, v) = exp

(
− 1

h
‖T (u− v)‖2L2

)
T−1(T−1)∗,(12)262

263

which is approximately equal to264

K(u, v) ≈ exp

(
− 1

h
‖u− v‖2H2

)
(Id−∆)−2.(13)265

266

Obviously, the kernel function equals to zero when u − v does not belong to H2(Ω),267

i.e., ‖u − v‖H2 < ∞ when u − v ∈ H2(Ω). Hence, the kernel function takes nonzero268

values and the algorithms can work only if the differences of any two particles re-269

side in a measure zero set. In our opinion, this restriction seems too strong in the270

infinite-dimensional setting to make the particles over concentrated (see our numerical271

example in Section 4 to demonstrate this in details).272

Based on the above discussion, we may introduce a parameter s and have an273

approximate transformed kernel274

K(u, v) ≈ exp

(
− 1

h
‖u− v‖2H2−2s

)
(Id−∆)−2.(14)275

276

However, to achieve this, we should not choose the original kernel (the kernel is not277

transformed by the operator T ) to be the usual scalar-valued kernel. The original ker-278

nel may be chosen as K0(u, v) = K0(u, v)(Id−∆)−2s, where K0(u, v) := e−
1
h‖u−v‖L2279

with h > 0 being a positive constant. In this setting, the preconditioning operator can280

be chosen as T := (Id −∆)1−s. These intuitive ideas indicate that it is necessary to281

construct the infinite-dimensional SVGD based on the more involved operator-valued282

kernel theory.283

3.2. iSVGD. In this subsection, we present an infinite-dimensional version of284

the SVGD, i.e., iSVGD. For a function u, denote by Du and Duk the Fréchet derivative285

and the directional derivative in the kth direction, respectively. For simplicity of286
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8 J. JIA, P. LI, AND D. MENG

notation, we shall use D and Dk instead of Du and Duk , and write Φ(u;d) as Φ(u).287

Let288

V (u) = Φ(u) +
1

2
‖u‖2H1 ,(15)289

290

where the potential functional Φ is required to satisfy the following assumptions.291

Assumption 5. Let X and H be two separable Hilbert spaces. For s ∈ [0, 1], we292

assume H1−s ⊂ X ⊂ H. Let M1 ∈ R+ be a positive constant. For each u ∈ X ⊂ H,293

we introduce DΦ : X → X ∗ and D2Φ : X → L(X ,X ∗), then the functional Φ : X → R294

satisfies295

−M1 ≤ Φ(u) ≤M2(‖u‖X ),296

‖DΦ(u)‖X∗ ≤M3(‖u‖X ),297

‖D2Φ(u)‖L(X ,X∗) ≤M4(‖u‖X ),298299

where M2(·), M3(·), and M4(·) are some monotonic non-decreasing functions.300

The above assumption is a local version of [16, Assumption 4], which can be301

verified for many problems, e.g., the Darcy flow model (Theorem 17 in Section 4).302

We now optimize φ in the unit ball of a general vector-valued RKHS HK with an303

operator valued kernel K(u, u′) ∈ L(Y):304

φ∗K = arg max
φ∈HK

{Eu∼µ[Sφ(u)], s.t. ‖φ‖HK ≤ 1 and Dφ : X → L1(X ,Y)} ,(16)305

306

where S is the generalized Stein operator defined formally as follows:307

Sφ(u) = −〈DV (u), φ(u)〉Y +

∞∑
k=1

Dk〈φ(u), ek〉Y ,(17)308

309

and L1(X ,Y) denotes the set of all trace class operators from X to Y. For the310

convergence of the infinite sum, we illustrate it in Theorem 9. Here, {ek}∞k=1 stands311

for an orthonormal basis of space Y and µ is a probability measure defined on H.312

Moreover, we assume that φ : X → Y is Fréchet differentiable, and the derivative is313

continuous to ensure the validity of (16).314

Remark 6. In the finite-dimensional case, the operator Dφ(u) naturally belongs315

to L1(X ,Y) (cf. [15, Appendix C]).316

The following assumption is also needed for the operator-valued kernels, which317

include many useful kernels, e.g., the radial basis function (RBF) kernel.318

Assumption 7. Let X , Y, and H be three separable Hilbert spaces. For s ∈ [0, 1],319

we assume that H−s−1 ⊂ Y and320

sup
u∈X
‖K(u, u)‖L(Y) <∞.(18)321

322

Remark 8. We mention that Condition (18) holds for the bounded scalar-valued323

kernel functionals since a scalar-valued kernel functional can be seen as a scalar-valued324

kernel functional composite with an identity operator as demonstrated in (10).325

To illustrate (16) and (17), we prove Theorem 9. For each particle u, we assume326

that u ∈ H1−s, which is based on the following two considerations:327
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• The SVGD with one particle is an optimization algorithm for finding maxi-328

mum a posterior (MAP) estimate. The MAP estimate belongs to the sepa-329

rable Hilbert space H1.330

• For the prior probability measure, the space H1 has zero measure [15]. Intu-331

itively, if all particles belong to H1, the particles tend to concentrate around332

a small set that leads to unreliable estimates of statistical quantities. Hence,333

we may assume that the particles belong to a larger space containing H1.334

Theorem 9. The generalized Stein operator (17) defined on Y can be obtained335

by taking N →∞ in the following finite-dimensional Stein operator:336

SNφN (uN ) = −〈DV (uN ), φN (uN )〉Y +

N∑
k=1

Dk〈φN (uN ), ek〉Y ,(19)337

338

where φN := PN ◦ φ.339

Proof. By straightforward calculations, we have340

Sφ(u)− SNφN (uN ) =−
(
〈DV (u), φ(u)〉Y − 〈DV (uN ), φN (uN )〉Y

)
+

( ∞∑
k=1

Dk〈φ(u), ek〉Y −
N∑
k=1

Dk〈φN (uN ), ek〉Y

)
=− I + II.

(20)341

342

For term I, we have343

I =〈D(V (u)− V (uN )), φN (uN )〉Y + 〈DV (u), φ(u)− φN (uN )〉Y
= I1(N) + I2(N).

(21)344

345

For term I1(N), we find that346

I1(N)=〈D(Φ(u)−Φ(uN )), φN (uN )〉Y+〈C−1/2
0 (u−uN ), C−1/2

0 φN (uN )〉Y ,(22)347
348

where the second term on the right-hand side is understood as the white noise mapping349

[48]. According to Assumptions 5 and 7, we know that350

lim
N→∞

‖D(Φ(u)− Φ(uN ))‖Y ≤ lim
N→∞

C‖D(Φ(u)− Φ(uN ))‖H−1−s

≤ lim
N→∞

C‖D(Φ(u)− Φ(uN ))‖H−1+s

≤ lim
N→∞

CM4(2‖u‖X )‖u− uN‖H1−s = 0,

(23)351

352

where C is a generic constant that can be different from line to line. Hence, we obtain353

lim
N→∞

〈D(Φ(u)− Φ(uN )), φN (uN )〉Y = 0.(24)354
355

Taking um ∈ H2 such that um → u in H1−s, we have356

〈C−1/2
0 (u− uN ), C−1/2

0 φN (uN )〉Y = lim
m→∞

〈C−1/2
0 (um − uNm), C−1/2

0 φN (uN )〉Y357

= lim
m→∞

〈PNC−1
0 (um − uNm), φ(uN )〉Y358

= lim
m→∞

〈φ(·),K(uN , ·)PNC−1
0 (um − uNm)〉HK

.359
360
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As for the last term in the above equality, we have the following estimates:361

〈φ(·),K(uN , ·)PNC−1
0 (um − uNm)〉HK

≤362

〈φ(·), φ(·)〉HK
〈K(uN , ·)PNC−1

0 (um − uNm),K(uN , ·)PNC−1
0 (um − uNm)〉HK

363

≤ 〈φ(·), φ(·)〉HK
〈PNK(uN , uN )PNC−1

0 (um − uNm), C−1
0 (um − uNm)〉Y364

≤ C〈φ(·), φ(·)〉HK
‖C−1

0 (um − uNm)‖2Y365

≤ C〈φ(·), φ(·)〉HK
‖C−

1−s
2

0 (um − uNm)‖2H.366367

Replacing um − uNm by (um − uNm)− (u− uN ), we deduce368

〈C−1/2
0 (u− uN ), C−1/2

0 φN (uN )〉Y = lim
m→∞

〈φ(·),K(uN , ·)PNC−1
0 (um − uNm)〉HK

369

=〈φ(·),K(uN , ·)PNC−1
0 (u− uN )〉HK

.(25)370371

Hence, we obtain372

lim
N→∞

〈C−1/2
0 (u− uN ), C−1/2

0 φN (uN )〉Y

= lim
N→∞

〈φ(·),K(uN , ·)PNC−1
0 (u− uN )〉HK

≤ lim
N→∞

〈φ(·), φ(·)〉HK
〈PNK(uN, uN )PNC−1

0 (u− uN ), C−1
0 (u− uN )〉Y

≤C〈φ(·), φ(·)〉HK
lim
N→∞

‖C−
1−s
2

0 (u− uN )‖2H = 0.

(26)373

374

Plugging (24) and (26) into (22), we arrive at limN→∞ I1(N) = 0. For term I2(N), it375

can be decomposed as follows:376

I2(N) = 〈DΦ(u), φ(u)− φN (uN )〉Y+〈C−1/2
0 u, C−1/2

0 (φ(u)− φN (uN ))〉Y .(27)377378

It follows from the continuity of φ that we have limN→∞〈DΦ(u), φ(u)−φN (uN )〉Y = 0.379

Using similar estimates as those for deriving (25), we obtain380

〈C−1/2
0 u, C−1/2

0 (φ(u)− φN (uN ))〉Y
= 〈φ(·),K(u, ·)C−1

0 u〉HK
− 〈φ(·),K(uN , ·)PNC−1

0 u〉HK
.

(28)381

382

By the continuity of K(·, ·), we obtain383

lim
N→∞

〈C−1/2
0 u, C−1/2

0 (φ(u)− φN (uN ))〉Y = 0.(29)384
385

Now, we conclude that limN→∞ I2(N) = 0. For term II, we have386

II =

N∑
k=1

Dk〈φ(u)− φ(uN ), ek〉Y +

∞∑
k=N+1

Dk〈φ(u), ek〉Y .(30)387

388

Let {ϕk}∞k=1 be an orthonormal basis in X , and then we have389

∞∑
k=N+1

Dk〈φ(u), ek〉Y =

∞∑
k=N+1

〈Dφ(u)ϕk, ek〉Y → 0 as N →∞,(31)390

391
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where we use the condition Dφ(u) ∈ L1(X ,Y). For the first term on the right-hand392

side of (30), we find that393

N∑
k=1

Dk〈φ(u)− φ(uN ), ek〉Y =

N∑
k=1

〈(Dφ(u)−Dφ(uN ))ϕk, ek〉Y .(32)394

395

Due to the continuity of the Fréchet derivative of φ, we know that the above sum-396

mation goes to 0 as N → ∞. Combining the estimates of I and II, we complete the397

proof.398

The following theorem gives explicitly the iSVGD update directions that are es-399

sential for the construction of iSVGD.400

Theorem 10. Let K(·, ·) : X 2 → L(Y) be a positive definite kernel that is Fréchet401

differentiable on both variables. In addition, we assume that402

Eu∼µ
[
Du′K(u, u′)C−1/2

0 g +

∞∑
k=1

DukDu′K(u, u′)ek

]
(33)403

404

belongs to L1(X ,Y) for each u′ ∈ X and g ∈ H−s. Then, the optimal φ∗K in (16) is405

φ∗K(·) ∝ Eu∼µ
[
K(u, ·)(−DΦ(u)− C−1

0 u) +

∞∑
k=1

DukK(u, ·)ek
]
,(34)406

407

where {ek}∞k=1 is an orthonormal basis of Y and the term K(u, ·)C−1
0 u is understood408

in the following limiting sense:409

K(u, ·)C−1
0 u := lim

m→∞
K(u, ·)C−1

0 um.(35)410
411

Here the limit is taken in HK and {um}∞m=1 ⊂ H2 such that ‖C−
1−s
2

0 (um − u)‖H → 0412

as m→∞.413

Proof. First, by taking φ(u) as an element in HK , we have414

〈DV (u), φ(u)〉Y = 〈DΦ(u), φ(u)〉Y + 〈C−1/2
0 u, C−1/2

0 φ(u)〉Y = I + II,(36)415416

where term II is understood as the white noise mapping. For term I, we have417

I = 〈φ(·),K(u, ·)DΦ(u)〉HK
,(37)418419

where the proposition (2) in Definition 4 is employed. For term II, we take um ∈ H2420

such that limm→∞ ‖C
− 1−s

2
0 (um − u)‖H = 0. It is clear to note that421

〈C−1/2
0 um, C−1/2

0 φ(u)〉Y = 〈C−1
0 um, φ(u)〉Y = 〈φ(·),K(u, ·)C−1

0 um〉HK
.(38)422423

Because424

|〈φ(·),K(u, ·)C−1
0 um〉HK

− 〈φ(·),K(u, ·)C−1
0 u〉HK

|2425

≤〈φ(·), φ(·)〉HK
〈K(u, ·)C−1

0 (um − u),K(u, ·)C−1
0 (um − u)〉HK

426

=〈φ(·), φ(·)〉HK
〈K(u, u)C−1

0 (um − u), C−1
0 (um − u)〉Y427

≤〈φ(·), φ(·)〉HK
〈K(u, u)C−1

0 (um − u), C−1
0 (um − u)〉Y428

≤C〈φ(·), φ(·)〉HK
‖C−

1−s
2

0 (um − u)‖2H,429430
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we find that limm→∞〈φ(·),K(u, ·)C−1
0 um〉HK

= 〈φ(·),K(u, ·)C−1
0 u〉HK

. Hence, let431

m→∞ in (38), we have432

〈C−1/2
0 u, C−1/2

0 φ(u)〉Y = 〈φ(·),K(u, ·)C−1
0 u〉HK

.(39)433434

Plugging (39) and (37) into (36), we obtain435

〈DV (u), φ(u)〉Y =〈φ(·),K(u, ·)DΦ(u) +K(u, ·)C−1
0 u〉HK

=〈φ(·),K(u, ·)DV (u)〉HK
.

(40)436

437

Next, let us calculate the second term on the right-hand side of (17). A simple438

calculation yields439

∞∑
k=1

Dk〈φ(u), ek〉Y =

∞∑
k=1

Dk〈φ(·),K(u, ·)ek〉HK
.(41)440

441

Since442

Dk〈φ(·),K(u, ·)ek〉HK
= lim
ε→0

1

ε
〈φ(·),K(u+ εϕk, ·)ek −K(u, ·)ek〉HK

= 〈φ(·), DkK(u, ·)ek〉HK
,

(42)443

444

we have445

∞∑
k=1

Dk〈φ(u), ek〉Y =
〈
φ(·),

∞∑
k=1

DkK(u, ·)ek
〉
HK

.(43)446

447

Combining (40) and (43) with (17), we obtain448

Sφ(u) =
〈
φ(·),−K(u, ·)DV (u) +

∞∑
k=1

DkK(u, ·)ek
〉
HK

.(44)449

450

Thus, the optimization problem (16) possesses a solution φ∗K(·) satisfying451

φ∗K(·) ∝ Eu∼µ
[
−K(u, ·)DV (u) +

∞∑
k=1

DkK(u, ·)ek
]
.(45)452

453

Based on condition (33), we know that Dφ∗K(u) belongs to L1(X ,Y) for each u ∈ X ,454

which completes the proof.455

Remark 11. The optimal φ∗K is given in (34) which is consistent with the finite-456

dimensional case. Since the first and second terms on the right-hand side of (34) are457

similar, we may just focus on the second term which is usually named as the repul-458

sive force term. For each u, v ∈ X , consider K(u, v) := K(u, v)Id with K(u, v) :=459

exp
(
− 1
h‖u− v‖

2
X
)
. Then, we have460

∞∑
k=1

DukK(u, v)ek =

∞∑
k=1

〈DuK(u, v)ek, ϕk〉X

=

∞∑
k=1

− 2

h
〈u− v, ϕk〉XK(u, v)ek.

(46)461

462
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Projecting (46) on one particular coordinate e` with ` ∈ N, we obtain463 ( ∞∑
k=1

DukK(u, v)ek

)
`

=

〈 ∞∑
k=1

− 2

h
〈u− v, ϕk〉XK(u, v)ek, e`

〉
Y

=− 2

h
〈u− v, ϕ`〉XK(u, v),

(47)464

465

which is similar to the `th coordinate of ∇uNK(uN , vN ) appearing in (9). Addition-466

ally, we mention that the assumption (33) given in Theorem 10 can be verified for467

many useful kernels. Detailed illustrations are provided in the supplementary material.468

By Theorem 10, we can construct a series of transformations as follows:469

T`(u) = u+ ε`Eu′∼µ`
[
−K(u′, u)DV (u′) +

∞∑
k=1

D(u′)kK(u′, u)ek

]
(48)470

471

with ` = 1, 2, . . .. In practice, we draw a set of particles {u0
i }mi=1 from some initial472

measure, and then iteratively update the particles with an empirical version of the473

above transformation in which the expectation under µ` is approximated by the em-474

pirical mean of particles {u`i}mi=1 at the `-th iteration. The iSVGD is summarized in475

Algorithm 2.476

Algorithm 2 Infinite-dimensional Stein variational gradient descent (iSVGD)

Input: A target probability measure µd that is absolutely continuous w.r.t the

Gaussian measure µ0 = N (0, C0) with dµd

dµ0
(u) ∝ exp(−Φ(u)) and a set of particles

{u0
i }mi=1.

Output: A set of particles {ui}mi=1 that approximates the target probability mea-
sure.
for iteration ` do

u`+1
i ←− u`i + ε`φ

∗(u`i),

where

φ∗(u) =
1

m

m∑
j=1

[
K(u`j , u)(−DΦ(u`j)− C−1

0 u`j) +

∞∑
k=1

D(u`j)k
K(u`j , u)ek

]
.

end for

3.3. iSVGD with precondition information. In the supplementary material,477

the numerical experiments indicate that the SVGD without preconditioning operators478

converges slowly for some inverse problems of PDEs. By the finite-dimensional SVGD479

[58], it may accelerate the convergence and give reliable estimates efficiently by intro-480

ducing preconditioning operators. For constructing the iSVGD with preconditioning481

operators, let us begin with a theorem concerning the change of variables.482

Theorem 12. Let X and Y be two separable Hilbert spaces, and let F0 be a RKHS483

with a nonnegative L(Y)-valued kernel K0 : X × X → L(Y). Let X̃ and Ỹ be two484

separable Hilbert spaces, and F be the set of operators from X̃ to Ỹ given by485

φ(u) = M(u)φ0(t(u)) ∀ φ0 ∈ F0,(49)486487
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where M : X̃ → L(Y, Ỹ) is a fixed operator and is assumed to be an invertible operator488

for all u ∈ X̃ , and t : X̃ → X is a fixed Fréchet differentiable one-to-one mapping. For489

all φ, φ′ ∈ F , we can identify a unique φ0, φ
′
0 ∈ F0 such that φ(u) = M(u)φ0(t(u))490

and φ′(u) = M(u)φ′0(t(u)). Define the inner product on F via 〈φ, φ′〉F = 〈φ0, φ
′
0〉F0 ,491

and then F is also a vector-valued RKHS, whose operator-valued kernel is492

K(u, u′) = M(u′)K0(t(u), t(u′))M(u)∗,(50)493494

where M(u)∗ denotes the Hilbert space adjoint.495

Proof. Let {(ui, gi)i=1,...,N} ⊂ X̃ × Ỹ, and we have496

〈K(ui, uj)gi, gj〉Ỹ = 〈M(uj)K0(t(ui), t(uj))M(ui)
∗gi, gj〉Ỹ

= 〈K0(t(ui), t(uj))M(ui)
∗gi,M(uj)

∗gj〉Y .
(51)497

498

Then, the nonnegativity of K(·, ·) follows from the nonnegative property of K0(·, ·).
To prove the theorem, it suffices to verify the two conditions shown in Definition
4. For every u, v ∈ X̃ and g ∈ Ỹ, we consider the operator f(v) = K(u, v)g =
M(v)K0(t(u), t(v))M(u)∗g. Because of M(u)∗g ∈ Y, we easily obtain

K0(t(u), t(v))M(u)∗g ∈ F0.

According to (49), we conclude that f(·) ∈ F .499

Next, let us verify the reproducing property of K(·, ·). For every u ∈ X̃ , g ∈ Ỹ,500

and φ ∈ F , we have501

〈φ(u), g〉Ỹ = 〈M(u)φ0(t(u)), g〉Ỹ = 〈φ0(t(u)),M(u)∗g〉Y502

= 〈φ0(·),K0(t(u), ·)M(u)∗g〉F0503

= 〈M(·)φ0(t(·)),M(·)K0(t(u), t(·))M(u)∗g〉F504

= 〈φ(·),K(u, ·)g〉F ,505506

where the fourth equality follows from

〈φ, φ′〉F = 〈φ0, φ
′
0〉F0

with φ′0(·) = K0(t(u), ·)M(u)∗g.507

Now we present a key result, which characterizes the change of kernels when508

applying invertible transformations on the iSVGD trajectory.509

Theorem 13. Let H, H̃, X , X̃ , Y, and Ỹ be separable Hilbert spaces satisfying510

X ⊂ Y, X̃ ⊂ Ỹ, X ⊂ Ỹ, X̃ ⊂ Y. Assume that Assumption 7 holds for the triples511

(X ,Y,H) and (X̃ , Ỹ, H̃) with two fixed parameters s ∈ [0, 1], respectively. Let T ∈512

L(Y, Ỹ) and assume that T is a bounded operator when restricted to be an operator513

from X to X̃ . Let µ, µd be two probability measures and µ̃, µ̃d be the measures of514

ũ = Tu when u is drawn from µ, µd, respectively. Introduce two Stein operators S515

and S̃ as follows:516

Sφ(u) = 〈−DV (u), φ(u)〉Y +

∞∑
k=1

Dk〈φ(u), ek〉Y , ∀u ∈ X ,517

S̃φ̃(ũ) = 〈−DũV (T−1ũ), φ̃(ũ)〉Ỹ +

∞∑
k=1

D(ũ)k〈φ̃(ũ), ẽk〉Ỹ , ∀ ũ ∈ X̃ ,518

519
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where {ek}∞k=1 and {ẽk}∞k=1 are orthonormal bases in Y and Ỹ, respectively. Then,520

we have521

Eu∼µ[Sφ(u)] = Eu∼µ̃[S̃φ̃(u)] with φ(u) := T−1φ̃(Tu).(52)522523

Therefore, in the asymptotics of infinitesimal step size (ε → 0+), it is equivalent524

to running iSVGD with kernel K0 on µ̃ and running iSVGD on µ with the ker-525

nel K(u, u′) = T−1K0(Tu, Tu′)(T−1)∗, in the sense that the trajectory of these two526

SVGD can be mapped to each other by the map T (and its inverse).527

Proof. Let us introduce a mapping defined by u′ = f(u) = u + εφ(u). Denote528

f#µ as the probability measure µ ◦ f−1. Let ũ′ ∼ T#(f#µ̃) which is obtained by529

ũ′ = Tu′ = T (u+ εφ(u)) = T (T−1ũ+ εφ(T−1ũ))

= ũ+ εTφ(T−1ũ)

= ũ+ εφ̃(ũ),

(53)530

531

where we use the definition φ(u) = T−1φ̃(Tu) in (52). According to [39, Theorem532

3.1 ] and [58, Theorem 3], we have EuN∼PN# µ[SNφN (uN )] = EuN∼PN# µ̃[S̃N φ̃N (uN )],533

where534

SNφN (uN ) = −〈DV (uN ), φN (uN )〉Y +

N∑
k=1

Dk〈φN (uN ), ek〉Y ,535

S̃N φ̃N (ũN ) = −〈DũNV (T−1ũN ), φ̃N (ũN )〉Ỹ +

N∑
k=1

D(ũN )k〈φ̃
N (ũN ), ẽk〉Ỹ .536

537

It is clear to note that there is no Jacobian matrix given by the transformation in538

DũNV (T−1ũN ) since the Jacobian matrix does not depend on ũN for linear mappings,539

i.e., the derivative is zero. Following the proof for Theorem 9, we take N → ∞ and540

obtain Eu∼µ[Sφ(u)] = Eu∼µ̃[S̃φ̃(u)]. From Theorem 12, when φ̃ is in F̃ with kernel541

K0(u, u′), φ is in F with kernel K(u, u′). Therefore, maximizing Eu∼µ[Sφ(u)] in F542

is equivalent to Eu∼µ̃[S̃φ̃(u)] in F̃ . This suggests that the trajectory of iSVGD on µ̃d543

with K0 and that on µd with K are equivalent, which completes the proof.544

Remark 14. Similar to the matrix-valued case [58], Theorem 13 suggests a con-545

ceptual procedure for constructing proper operator kernels to incorporate desirable pre-546

conditioning information. Different from the finite-dimensional case, the map T is547

only allowed to be linear at this stage. For a nonlinear map, there is a Jacobian548

matrix in S̃N φ̃N (ũN ). It is difficult to analyze the limiting behavior of the Jacobian549

matrix related term. Practically, linear maps seem to be enough since even in the550

finite-dimensional case nonlinear maps will yield an unnatural algorithm [58].551

In the last part of this subsection, we provide some examples of preconditioning552

operators that are frequently used in statistical inverse problems.553

3.3.1. Fixed preconditioning operator. In Section 5 of [16], the Langevin554

equation was considered by using C0 as a preconditioner, and an analysis was carried555

out for the pCN algorithm. For the Newton based iterative method, we usually take556

the inverse of the second-order derivative of the objective functional as the precondi-557

tioning operator [41]. Here, we consider a linear operator T that has similar properties558

as C−
1−s
2

0 . Specifically, we require559

T ∈ L(H1−s,H) ∩ L(H−1−s,H−2).(54)560561
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Then, we specify the Hilbert space appearing in Theorem 12 as X = H1−s, Y =562

H−1−s, X̃ = H, Ỹ = H−2 with s ∈ [0, 1]. For the kernel K0(·, ·) : X̃ × X̃ → Ỹ, we563

assume that564

sup
ũ∈H
‖K0(ũ, ũ)‖L(H−2) <∞.(55)565

566

It follows from Theorem 13 that we may use a kernel of the form567

K(u, u′) := T−1K0(Tu, Tu′)(T−1)∗,(56)568569

where u, u′ ∈ H1−s. Obviously, the kernel K given above satisfies570

sup
u∈H1−s

‖T−1K0(Tu, Tu)(T−1)∗‖L(H−1−s) <∞.(57)571

572

As an example, we may take K0 to be the scalar-valued Gaussian RBF kernel com-573

posed with operator Cs0 :574

K0(u, u′) := exp
(
− 1

h
‖u− u′‖2H

)
Cs0 ,(58)575

576

which yields577

K(u, u′) = exp
(
− 1

h
‖T (u− u′)‖2H

)
T−1Cs0(T−1)∗,(59)578

579

where h is a bandwidth parameter. Define KT
0 (u, u′) := K0(Tu, Tu′). Let P :=580

T−1Cs0(T−1)∗. By simple calculations, we find that the iSVGD update direction of581

the kernel in (56) is582

φ∗K(·)=PEu∼µ
[
KT

0 (u, ·)(−DΦ(u)−C−1
0 u) +

∞∑
k=1

DkK
T
0 (u, ·)ek

]
= Pφ∗KT

0
,(60)583

584

which is a linear transform of the iSVGD update direction of the kernel KT
0 with the585

operator T−1Cs0(T−1)∗.586

3.3.2. The C0 operator. Choosing T := C−
1−s
2

0 , we can see that the condition
(54) holds. Given the Kernel K0 in (58), the kernel K defined in (59) can be written
as

K(u, u′) = exp
(
− 1

h
‖C−

1−s
2

0 (u− u′)‖2H
)
C0.

The operator P used in (60) is just C0. If there is only one particle, the iSVGD update587

direction is then reduced to φ∗K(·) = C0(DΦ(u) + C−1
0 u).588

3.3.3. The Hessian operator. For statistical inverse problems, the forward589

operator G is usually nonlinear, e.g., the inverse medium scattering problem [26, 27].590

Around each particle ui with i = 1, 2, . . . ,m, the forward map can be approximated591

by the linearized map592

G(u) ≈ G(ui) +DG(ui)(u− ui).(61)593594

Assume that the potential function Φ takes the form Φ(u) = 1
2‖Σ

−1/2(G(u) − d)‖2`2 ,595

where Σ is a positive definite matrix. Using the approximate formula (61), we have596

V (u) ≈ Ṽ (u) :=
1

2
‖Σ−1/2(DG(ui)u−DG(ui)ui + G(ui)− d)‖2`2 +

1

2
‖C−1/2

0 u‖2H.597
598
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It follows from a simple calculation that D2Ṽ (ui) = DG(ui)
∗Σ−1DG(ui) + C−1

0 .599

For the Newton-type iterative method, we can take the linear transformation T =600

Cs/20 ( 1
m

∑m
i=1(DG(ui)

∗Σ−1DG(ui) + C−1
0 ))1/2. If G is a linear operator (e.g., the ex-601

amples in [25]), it is easy to verify the condition (54). For nonlinear problems, it is602

necessary to employ the regularity properties of the direct problems, which is beyond603

the scope of this work. Hence we will not verify this condition in this paper and leave604

it as a future work. With this choice of T , the kernel (59) and the iSVGD update605

direction (60) can be easily obtained. If there is only one particle, the iSVGD update606

direction is degenerated to the usual Newton update direction when evaluating MAP607

estimate.608

3.3.4. Mixture preconditioning. Using a fixed preconditioning operator, we609

can not specify different preconditioning operators for different particles. Inspired by610

the mixture precondition [58], we propose an approach to achieve point-wise precon-611

ditioning. The idea is to use a weighted combination of several linear preconditioning612

operators. This involves leveraging a set of anchor points {v`}m`=1, each of which is613

associated with a preconditioning operator T` (e.g., T` = Cs/20 (DG(v`)
∗Σ−1DG(v`) +614

C−1
0 )1/2). In practice, the anchor points {v`}m`=1 can be set to be the same as the par-615

ticles {ui}mi=1. We then construct a kernel by K(u, u′) =
∑m
`=1K`(u, u

′)w`(u)w`(u
′),616

where617

K`(u, u
′) := T−1

` K0(T`u, T`u
′)(T−1

` )∗,(62)618619

and w`(u) is a positive scalar-valued function that determines the contribution of620

kernel K` at point u. Here w`(u) should be viewed as a mixture probability, and621

hence should satisfy
∑m
`=1 w`(u) = 1 for all u. In our empirical studies, we take622

w`(u) =
exp

(
− 1

2‖T`(u− v`)‖
2
H

)
∑m
`′=1 exp

(
− 1

2‖T`′(u− v`′)‖
2
H

) .(63)623

624

In this way, each point u is mostly influenced by the anchor point closest to it, which625

allows to apply different preconditioning for different points. In addition, the iSVGD626

update direction has the form627

φ∗K(·) =

m∑
`=1

w`(·)Eu∼µ
[
− w`(u)K`(u, ·)(DΦ(u) + C−1

0 u)

+

∞∑
k=1

Dk(w`(u)K`(u, ·)ek)
]
,

(64)628

629

which is a weighted sum of a number of iSVGD update directions with linear precondi-630

tioning operators. The implementation details of (64) are given in the supplementary631

material.632

Remark 15. For the kernel defined above, the particles should belong to the633

Hilbert space H1−s. Based on the studies the finite-dimensional problems [58], we634

may let the parameter s be equal to 0. However, when the parameter s = 0, each par-635

ticle ui belongs to H1 which is the Cameron–Martin space of the prior measure. By636

the classical Gaussian measure theory [15], we know that H1 has zero measure. This637

fact implies that all of the particles belong to a set with zero measure, which may lead638

to too concentrated particles and deviates from our purpose. Hence we should choose639

s > 0 to ensure the effectiveness of the SVGD sampling algorithm. These observations640

are illustrated by our numerical experiments in Section 4.641
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3.4. Some insights about iSVGD. We have constructed the well-defined642

iSVGD algorithms with or without preconditioning operators, which is the first step643

to extend the finite-dimensional SVGD to the infinite-dimensional space. Some math-644

ematical studies have been carried out for the finite-dimensional SVGD, e.g., gradient645

flow on probability space [38] and mean field limit theory related to the macroscopic646

behavior [42]. These results provide in-depth understandings of the SVGD algorithm647

and motivate many new algorithms [37]. In this subsection, we intend to provide a648

preliminary mathematical study on the iSVGD under a simpler setting.649

We consider the kernel operator K(u, v) := K(‖u − v‖H)Id with u, v ∈ H and650

K(·) being a scalar function. Let m be the sample number and V (u) be defined in651

(15). Similar to the finite-dimensional case, the iterative procedure in Algorithm 2652

can be viewed as a particle system:653

d

dt
ui(t) = −(D̃K ∗ µm(t))(ui(t))− (K ∗DV µm(t))(ui(t)),

µm(t) =
1

m

m∑
j=1

δuj(t),

ui(0) = u0
i , i = 1, 2, . . . ,m,

(65)654

655

where {u0
i }mi=1 are the initial particles, δui(t) denotes the Dirac measure concentrated656

on ui(t) with i = 1, 2, . . . ,m, “∗” denotes the usual convolution operator, and D̃K(u−657

v) =
∑∞
k=1DukK(u − v)ek. For convenience, we write the two convolution terms in658

the following forms:659

(D̃K ∗ µm(t))(ui(t)) =
1

m

m∑
j=1

D̃K(ui(t)− uj(t)),660

(K ∗DV µm(t))(ui(t)) =
1

m

m∑
j=1

K(ui(t)− uj(t))DV (uj(t)).661

662

Similarly, we consider the weak form equation about the measure-valued function:663

d

dt
〈µ(t), ϕ〉 = 〈µ(t), L(µ(t))ϕ〉,

µ(0) = ν,
(66)664

665

where ν is the probability measure employed to generate initial particles, ϕ is the test666

function, and667

L(µ(t))ϕ = 〈D̃K ∗ µ(t), Dϕ〉H + 〈K ∗DV µ(t), Dϕ〉H.(67)668669

Let W 1,2(H, µ) be the usual Sobolev space defined for a Gaussian measure µ [47].670

Theorem 16. Let µ0 and Φ be the prior measure and potential function defined671

in (1), respectively. Assume K(·) ∈W 1,2(H, µ0) and e−Φ(·;d) ∈ L2(H, µ0). Then, the672

posterior measure µd defined in (1) is an invariant solution to Eq. (66), i.e., when673

ν := µd, the solution µ(t) of (66) is equal to µd.674

The proof is given in the supplementary material. Clearly, this theorem holds in675

the finite-dimensional setting. We point out that the integration by parts may not676

hold for the infinite-dimensional case. In the finite-dimensional setting, the analysis of677
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the corresponding particle system (65) and Eq. (66) have been given recently in [42].678

It is sophisticated to define meaningful solutions for the above interacting particle679

system (65) and the measure-valued function equation (66), which are beyond the680

scope of this study and are left for future work. One of the major difficulties for the681

infinite-dimensional case is that C−1
0 (the precision operator of the prior measure) is682

usually an unbounded operator [16]. Nearly all of the estimates presented in [42] for683

the finite-dimensional case cannot be adopted for the infinite-dimensional setting.684

Numerical experiments indicate that the SVGD without preconditioning opera-685

tors can hardly provide accurate estimates for some inverse problems. The SVGD686

with preconditioning operators can accelerate the convergence and give reliable es-687

timates efficiently. In addition, the unboundedness issue induced by the precision688

operator C−1
0 may be overcome by introducing preconditioning operators. A detailed689

analysis of the iSVGD with preconditioning operators may be a good starting point690

for future theoretical studies.691

At the end of this subsection, we mention a critical difference between finite- and692

infinite-dimensional theories. It follows from Theorem 2.7 in [42] and Theorem 1.1 in693

[57] that the empirical measure constructed by particles in finite-dimensional SVGD694

can approximate the continuous counterpart with accuracy ε when the number of695

particles are of order O(εd), where d is the discrete dimension. Obviously, an infinite696

number of particles is needed if the dimension d goes to infinity, which indicates that697

the infinite-dimensional theory may be meaningless.698

The above statement explains that not every finite-dimensional setting can be699

meaningfully generalized to the infinite-dimensional space. The assumption on prior700

measure is important for the infinite-dimensional theory (the current assumption may701

be slightly relaxed, e.g., the Besov type measure). According to the general analysis for702

the convergence and concentration of empirical measures given in [34], we believe that703

the prior measures used here can be approximated by the empirical measures under the704

Wasserstein distance on infinite-dimensional Hilbert space. Specifically, the estimate705

of the convergence speed is not relevent to the dimension when considering some706

finite-dimensional spaces as the projected infinite-dimensional space. If a theorem707

similar as Theorem 2.7 in [42] for the system (65)–(66) can be proved, we are able to708

confirm that the particles obtained by iSVGD can approximate the posterior measure709

for certain accuracy with particle numbers independent of the discrete dimension.710

However, it is higly non-trivial to carry out an in-depth study of the system (65)–(66)711

and is beyond the scope of the current work. In Subsection 6.3 of the supplementary712

material, we give a numerical illustration to address this issue.713

4. Applications. The proposed framework is valid for Bayesian inverse prob-714

lems governed by any systems of PDEs. Due to the page limitation, we present one715

example of an inverse problem governed by the steady state Darcy flow equation. The716

second example concerns an inverse problem of the Helmholtz equation and is given717

in the supplementary material.718

Consider the following PDE model:719

−∇ · (eu∇w) = f in Ω,

w = 0 on ∂Ω,
(68)720

721

where Ω ⊂ R2 is a bounded Lipschitz domain, f(x) denotes the sources, and eu(x)722

describes the permeability of the porous medium. This model is used as a benchmark723

problem in many works, e.g., the preconditioned Crank–Nicolson (pCN) algorithm724

[13] and the sequential Monte Carlo method [2]. We will compare the performance725
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of the proposed iSVGD approach with the pCN [13] and the randomized maximum a726

posterior (rMAP) method [59].727

4.1. Basic settings and finite-element discretization. For numerical im-728

plementations, it is essential to compute all of the related gradients and Hessian729

operators before discretization (i.e., pushing the discretization to the last step). A730

direct calculation yields the gradient and Hessian operators of the operator-valued731

kernel, but the adjoint method [41] needs to be employed for the potential Φ involv-732

ing PDEs. More discussions on finite- and infinite-dimensional approaches can be733

found in the supplementary material, which might be helpful for readers who are not734

familiar with infinite-dimensional approach. Let F be the solution operator that maps735

the parameter u to the solution of (68), andM be the measurement operator defined736

as d =M(w) = (`x1
(w), `x2

(w), . . . , `xNd (w))T , where737

`xj (w) =

∫
Ω

1

2πδ2
e−

1
2δ2
‖x−xj‖2w(x)dx(69)738

739

with δ > 0 being a sufficiently small number and xi ∈ Ω for i = 1, . . . , Nd. The forward740

map can be defined as G :=M◦ F , and the problem can be written in the abstract741

form d = G(u) + ε with ε ∼ N (0, σ2Id). Then we have Φ(u) = 1
2σ2 ‖M(w)−d‖2. The742

gradient DΦ(u) acting in any direction ũ is given by743

〈DΦ(u), ũ〉 =

∫
Ω

ũeu∇w · ∇pdx,(70)744
745

where the adjoint state p satisfies the adjoint equation746

−∇ · (eu∇p) = − 1

σ2

Nd∑
j=1

1

2πδ2
e−

1
2δ2
‖x−xj‖2(`xj (w)− dj) in Ω,

p = 0 on ∂Ω.

(71)747

748

The Hessian acting in direction ũ and û reads749

〈〈D2Φ(u), û〉, ũ〉 =

∫
Ω

ûũeu∇w · ∇pdx+

∫
Ω

ũeu∇w · ∇p̂dx

+

∫
Ω

ũeu∇p · ∇ŵdx,
(72)750

751

where the state ŵ satisfies the incremental forward equation752

−∇ · (eu∇ŵ) = ∇ · (ûeu∇w) in Ω,

ŵ = 0 on ∂Ω,
(73)753

754

and the state p̂ satisfies the incremental adjoint equation755

−∇ · (eu∇p̂) = ∇ · (ûeu∇p)− 1

2πδ2σ2

Nd∑
j=1

ŵe−
1

2δ2
‖x−xj‖2 in Ω,

p̂ = 0 on ∂Ω.

(74)756

757

In experiments, we choose Ω to be a rectangular domain Ω = [0, 1]2 ⊂ R2, set758

H = L2(Ω), and consider the prior measure µ0 = N (u0, C0) with the mean function u0759
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and the covariance operator C0 := A−2, where A = α(I−∆) (α > 0) with the domain760

of A given by D(A) :=
{
u ∈ H2(Ω) : ∂u

∂n = 0 on ∂Ω
}
. Here, H2(Ω) is the usual761

Sobolev space. Assume that the mean function u0 resides in the Cameron–Martin762

space of µ0.763

Based on (70) and (72), we can prove the following results, which satisfy Assump-764

tions 5. The proof is given in the supplementary material.765

Theorem 17. Let H−1(Ω) be the usual Sobolev space with the regularity index766

−1. Assume X = H1−s with the parameter s < 0.5, and then we have767

0 ≤ Φ(u) ≤ C(1 + ‖f‖H−1)2e2‖u‖X ,768

‖DΦ(u)‖X∗ ≤ C(1 + ‖f‖H−1)2e4‖u‖X ,769

‖D2Φ(u)‖L(X ,X∗) ≤ C(1 + ‖f‖H−1)2e6‖u‖X .770771

In the following, we use the Gaussian kernel, i.e., K(u, u′) = exp
(
− 1
h‖u− u

′‖2H
)
,772

for the iSVGD without preconditioning operators. For numerical examples with pre-773

conditioning operators, we employed the kernel given in Subsection 3.3.4.774

For finite-dimensional approximations, we consider a finite-dimensional subspace775

Vh of L2(Ω) originating from the finite element discretization with the continuous776

Lagrange basis functions {φj}nj=1, which correspond to the nodal points {xj}nj=1,777

such that φj(xi) = δij for i, j ∈ {1, . . . , n}. Instead of statistically inferring parameter778

functions u ∈ L2(Ω), we consider the approximation uh =
∑n
j=1 ujφj ∈ Vh. Under779

this finite-dimensional approximation, we can employ the numerical method provided780

in [4] to discretize the prior, and construct finite-dimensional approximations of the781

Gaussian approximation of the posterior measure. Based on our analysis in Subsection782

3.3, we need to calculate the fractional powers of the operator C0. Here, we employ783

the matrix transfer technique (MTT) [6]. The main idea of MTT is to indirectly784

discretize a fractional Laplacian using a discretization of the standard Laplacian. As785

discussed in [4], the operator M is taken as786

M = (Mij)
n
i,j=1 and Mij =

∫
Ω

φi(x)φj(x)dx, i, j ∈ {1, . . . , n}.(75)787
788

The matrix M1/2 is approximated by the diagonal matrix diag(M
1/2
11 , . . . ,M

1/2
nn ).789

Finally, we mention that the finite element discretization is implemented by em-790

ploying the open software FEniCS (Version 2019.1.0) [40]. All programs were run791

on a personal computer with Intel(R) Core(TM) i7-7700 at 3.60 GHz (CPU), 32 GB792

(memory), and Ubuntu 18.04.2 LTS (OS).793

4.2. Numerical results. In the experiments, the noise level is fixed to be 1%794

since the goal is to test algorithms rather than demonstrating the Bayesian modeling.795

We compare the iSVGD with the mixture preconditioning operator (iSVGDMPO)796

with the preconditioned Crank–Nicolson (pCN) sampling algorithm [16] and the ran-797

domized maximum a posteriori (rMAP) algorithm [59]. Since the rMAP sampling798

algorithm is not accurate for nonlinear problems, we choose α = 0.5 in the prior799

probability measure. It should be mentioned that we choose the anchor points in800

the iSVGDMPO just to be the same as the particles and the anchor points will be801

updated during the iterations. The initial particles of the iSVGD are generated from802

a probability measure by using the method proposed in [4].803

For the current settings, the gradient descent based method seems hardly to find804

appropriate solutions in reasonable iterative steps. Hence, the optimization method805
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Fig. 1. The comparison of the variances estimated by the pCN, rMAP, iSVGDMPO with
different s. (a): s = 0; (b): s = 0.4; (c): adpatively chosen s.

with preconditioning operators, e.g., the Newton-conjugate gradient method, is em-806

ployed. The term Eu′∼µ` [K(u′, u)DV (u′)] in (48) is an averaged gradient descent807

component in the whole iterative term, which drives all of the particles to be con-808

centrated. We anticipate that Algorithm 2 cannot work well due to the inefficiency809

of the gradient descent algorithm. Due to the page limitation, numerical results are810

given in the supplementary material, which show that Algorithm 2 does not perform811

well in some cases. This is one of the main motivations for us to study the iSVGD812

with preconditioning operators.813

We compare the iSVGD with the mixture preconditioning operator (iSVGDMPO)814

with those obtained by the pCN and rMAP sampling algorithms. As illustrated in815

Remark 15, the parameter s should not be zero. Intuitively, the particles should belong816

to a space with probability approximately equal to one under the prior measure µ0.817

By the Gaussian measure theory [15], we may take s > 0.5 since µ0(H1−s) = 1 for818

any s > 0.5. Since the posterior measure is usually concentrated on a small support819

set of the prior measure, the parameter s should be slightly smaller than 0.5. Thus,820

we set s = 0.3 or 0.4 in our examples. Usually, the initial particles are scattered, and821

the variances of the initial particles are larger than the final particles obtained by the822

iSVGDMPO. We design the following adaptive empirical strategy for s:823

s = −0.5
‖var‖`2
‖var0‖`2

+ 0.5,(76)824
825

where var is the current estimated variance, var0 is the estimated variance of the826

initial particles, and ‖ · ‖`2 is the usual `2-norm. Obviously, for the initial particles,827

we have s = 0. The particles are forced to be concentrated. When the variance is828

reduced, the parameter s approaches 0.5 to avoid that the particles are concentrated829

on a set with zero measure. Since the pCN is a dimension independent MCMC type830

sampling algorithm, we take the results obtained by the pCN as the baseline (accurate831

estimate). To make sure that the pCN algorithm yields an accurate estimate, we832

iterate 106 steps and withdraw the first 105 samples. Several different step-sizes are833

tried and the traces of some parameters are plotted, and then the most reliable one834

is picked as the baseline.835

In Figure 1, we show the estimated variances obtained by the iSVGDMPO (blue836

solid line), rMAP (green dotted line), and the pCN (orange dashed line) sampling837

algorithms. The estimated variances of the iSVGDMPO are shown for s = 0 and s =838

0.4 on the left and in the middle, respectively. On the right, we exhibit the estimated839

variances when the empirical adaptive strategy (76) is employed. As expected, the840

estimated variances are too small when s = 0, which indicates that the particles are841
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Fig. 2. The comparison of the variances estimated by the iSVGDMPO with s =
10, 20, 30, 40, 50.

concentrated on a small set. Choosing s = 0.4 or using the empirical strategy, we842

obtain similar estimates, which is more similar to the baseline obtained by the pCN843

compared with the estimates obtained by the rMAP.844

One important question arises: how does s influence the convergence of the845

iSVGDMPO? The detailed numerical comparisons are given in the supplementary ma-846

terial. Here we state the conclusions: The convergence speeds are similar for s = 0.4847

and the adaptively chosen s. When specifying s = 0.5, the variances will gradually848

approach the background truth, but the convergence speed seems much slower than849

s = 0.4 or the adaptively chosen s. In the following numerical experiments, we use850

the empirical adaptive strategy to specify the parameter s.851

In addition, we provide three videos to exhibit the dynamic changing procedure of852

the estimated variances in the supplementary material. The update perturbation with853

and without repulsive force term are exhibited. These videos can further illustrate854

our theoretical findings. We can see that the repulsive force terms indeed prevent the855

particles from being over concentrated.856

Apart from the parameter s, how many samples should be taken to guarantee857

a stable statistical quantity estimate is important for using the iSVGDMPO. When858

the particle number is too small, we cannot obtain reliable estimates. However, the859

computational complexity increases when the particle number increases. In Figure 2,860

we show the estimated variances when particle number equals to 10, 20, 30, 40, and861

50. Denote by m the number of samples. On the left in Figure 2, we show the results862

obtained when m = 10, 20, 30. Obviously, when m = 10, the estimated variances are863

significantly smaller than those obtained when m = 20, 30. On the right in Figure864

2, we find that the estimated variances are similar when m = 30, 40, 50. Hence, it is865

enough for our numerical examples to take m = 20 or 30, which attains a balance866

between efficiency and accuracy. So far, we have only compared the variances with867

different parameters in the iSVGDMPO. In the following, qualitative and quantitative868

comparisons of other statistical quantities are provided to illustrate the effectiveness869

of the iSVGDMPO.870

Now, we specify the sampling number m = 30 and set the parameter s by the871

proposed empirical strategy (76). In Figure 3, we show the background truth and the872

estimated mean and variance functions obtained by the pCN, rMAP, and iSVGDMPO,873

respectively. The iterative number of the iSVGDMPO is set to be 30. From the first874

line, we observe that the mean functions obtained by the rMAP and iSVGDMPO are875

similar, which are slightly smoother than the one obtained by the pCN algorithm.876
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Fig. 3. The background truth and the estimated mean and variance functions by the pCN,
rMAP, and iSVGDMPO. (a): The background truth; (b): The estimated mean function by the
pCN; (c): The estimated mean function by the rMAP; (d): The estimated mean function by the
iSVGDMPO; (e): The estimated mean function on mesh points by the pCN (blue solid line), rMAP
(light blue dotted line), and iSVGDMPO (red dashed line); (f): The estimated variances by the
pCN; (g): The estimated variances by the rMAP; (h): The estimated variances by the iSVGDMPO.

This may be caused by the inexact matrix-free Newton-conjugate gradient algorithm877

[4]. As investigated in [59], many more powerful Newton-type algorithms can be878

employed to improve the performance both of the rMAP and iSVGDMPO. For the879

variances, the iSVGDMPO gives more reliable estimates compared with the rMAP,880

as can be seen from Figure 3 (f), (g), and (h).881

Next, we provide some more comparisons of statistical quantities between the882

results obtained by the pCN, rMAP, and iSVGDMPO. The samples are discretization883

of functions. As introduced in [49], the mean, variance and covariance functions are884

the main statistics for functional data. The variance function denoted by varu(x) can885

be defined as varu(x) = 1
m

∑m
i=1(ui(x) − ū(x))2, where x ∈ Ω is a point residing in886

the domain Ω, ū is the mean function, and m is the sample number. The covariance887

function can be defined as covu(x1, x2) = 1
m−1

∑m
i=1(ui(x1)− ū(x1))(ui(x2)− ū(x2)),888

where x1, x2 ∈ Ω and m, ū are defined as in varu(x). For simplicity, we compute889

these quantities on the mesh points and exhibit the results in Figure 4. In all of the890

subfigures in Figure 4, the estimates obtained by the pCN, rMAP, and iSVGDMPO891

are drawn in blue solid line, gray dotted line, and red dashed line, respectively. In892

Figure 4 (a), we show the variance function calculated on all of the mesh points,893

i.e., {varu(xi)}
Ng
i=1 (Ng is the number of mesh points). In Figure 4 (c) and (e), we894

show the covariance function calculated on the pairs of points {(xi, xi+50)}Ng−50
i=1 and895

{(xi, xi+100)}Ng−100
i=1 , respectively. Compared with the estimates given by the rMAP,896

we can find that the estimates obtained by the iSVGDMPO are visually more similar897

to the estimates provided by the pCN. In Figure 4 (b), (d), and (f), we provide the898

same estimates shown in (a), (c), and (e) with points indexing from 1000 to 1200,899

which give more detailed comparisons. The results also confirm that the iSVGDMPO900

provides more similar estimates to the pCN.901
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Fig. 4. The estimated variances and covariances by the pCN (blue solid line), rMAP (gray

dotted line), and iSVGDMPO (red dashed line). (a): The estimated variances {varu(xi)}
Ng
i=1

on all mesh points; (b): The estimated variances for mesh points with indexes from 1000 to

1200 (show details); (c): The estimated covariances {covu(xi, xi+50)}Ng−50
i=1 on mesh point pairs

{(xi, xi+50)}Ng−50
i=1 ; (d): The estimated covariances shown in (c) with indexes from 1000 to 1200

(show details); (e): The estimated covariances {covu(xi, xi+100)}Ng−100
i=1 on mesh point pairs

{(xi, xi+100)}Ng−100
i=1 ; (f): The estimated covariances shown in (e) with indexes from 1000 to 1200

(show details).

In addition, a quantitative comparison among the pCN, rMAP, and iSVGDMPO902

are given in Table 1. We compute the `2-norm differences of the variance and covari-903

ance functions on the mesh points obtained by the pCN, rMAP, and iSVGDMPO. In904

the table, the notation covu(xi, xi+k) (k = 10, 20, . . . , 110) means the covariance func-905

tion values on the pair of mesh points {(xi, xi+k)}Ngi=1. The numbers below this nota-906

tion are the `2 differences between the vectors obtained by the rMAP and iSVGDMPO907

with the pCN, respectively. All of the `2 differences of the iSVGDMPO with the pCN908

are much smaller than the corresponding values of rMAP, which show the superiority909

of the iSVGDMPO.910

5. Conclusion. In this paper, the approximate sampling algorithm is proposed911

for the infinite-dimensional Bayesian approach. We introduce the Stein operator on912

Hilbert spaces and show that it is the limit of a particular finite-dimensional version.913

Besides, we construct the update perturbation of the SVGD on infinite-dimensional914

space (called iSVGD) by using the properties of operator-valued RKHS. To accelerate915

the convergence speed of iSVGD, we investigate the change of variables formula and916

introduced preconditioning operators. As examples, we present the fixed precondition-917

ing operators and mixture preconditioning operators. Then, we calculate the explicit918
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Table 1
The `2-norm error of the variance and covariance functions on mesh points for the rMAP and

iSVGDMPO (the estimates of the pCN are seen as the background truth).

varu(xi) covu(xi, xi+10) covu(xi, xi+20) covu(xi, xi+30)

rMAP 0.00759 0.00100 0.00075 0.00092

iSVGDMPO 0.00038 0.00012 0.00009 0.00010

covu(xi, xi+40) covu(xi, xi+50) covu(xi, xi+60) covu(xi, xi+70)

rMAP 0.00227 0.00038 0.00043 0.00056

iSVGDMPO 0.00015 0.00007 0.00006 0.00007

covu(xi, xi+80) covu(xi, xi+90) covu(xi, xi+100) covu(xi, xi+110)

rMAP 0.00142 0.00029 0.00031 0.00047

iSVGDMPO 0.00012 0.00006 0.00006 0.00007

form of the update directions for the iSVGD with mixture preconditioning operators919

(iSVGDMPO). Finally, we apply the constructed algorithms to an inverse problem of920

the steady state Darcy flow equation. Comparing with the pCN and rMAP sampling921

algorithms, we demonstrate by numerical experiments that the proposed algorithms922

can generate accurate estimates efficiently.923

The iSVGD is analyzed by studying the limiting behavior of the finite-dimensional924

objects. This work presents an infinite-dimensional version of the approach given in925

[58]. It is worth mentioning that our results not only provide an infinite-dimensional926

version but also indicate that an intuitive trivial generalization of algorithms given in927

[58] may not be suitable since particles will belong to a set with zero measure. Our928

results also show that it is necessary to introduce the parameter s, which has not been929

considered in the existing work.930

The current work may be extended to combine the generalizations of the kernel931

using Hessian operators in the Wasserstein space [36]. The proposed approach may be932

combined with other algorithms, such as the accelerated information gradient flows933

[60] and the mean-field type MCMC algorithms [22], to generate new and more efficient934

algorithms. It is also interesting and important to do more theoretical studies, e.g.,935

introduce infinite-dimensional Stein geometry [33] and develop systematic theories of936

the interacting particle system and the mean field limit equation [42]. We will report937

the progress on these aspects elsewhere in the future.938
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1. Example of kernel satisfying assumption (33) in Theorem 10

In this section, we present an example of the kernel that satisfies the assumption
(33) given in Theorem 10. Let us recall the assumption (33)

Eu∼µ
[
Du′K(u, u′)C−1/2

0 g +

∞∑
k=1

DkDu′K(u, u′)ek

]
, (1.1)

which belongs to L1(X ,Y) for each u′ ∈ X and g ∈ H−s.
Taking K(u, u′) = K(u, u′)Id with

K(u, u′) = exp

(
− 1

h
‖u− u′‖2X

)
being a scalar-valued kernel, we have

Du′K(u, u′) = − 1

h
〈u− u′, ·〉XK(u, u′),

DkDu′K(u, u′)ek =
1

h2
(uk − u′k)〈u− u′, ·〉XK(u, u′)ek.

1
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Let {ϕj}∞j=1 be an orthonormal basis of X , and recall that {ej}∞j=1 represents an
orthonormal basis of Y. Plugging the above formula into (1.1), we find that

∞∑
j=1

〈Eu∼µ
[
Du′K(u, u′)C−1/2

0 g +

∞∑
k=1

DkDu′K(u, u′)ek

]
ϕj , ej〉 = Eu∼µ

{
I + II

}
,

where

I = − 1

h

∞∑
j=1

〈〈u− u′, ϕj〉XK(u, u′)C−1/2
0 g, ej〉Y ,

II =
1

h2

∞∑
j=1

〈
∞∑
k=1

(uk − u′k)ek〈u− u′, ϕj〉X , ej〉YK(u, u′).

For term I, we have

I ≤ 1

h
K(u, u′)

( ∞∑
j=1

〈u− u′, ϕj〉2X
)1/2( ∞∑

j=1

〈C−1/2
0 g, ej〉

)1/2

≤C
h
K(u, u′)‖u− u′‖X ‖C−1/2

0 g‖Y

≤C
h
K(u, u′)‖u− u′‖X ‖g‖H−s <∞.

(1.2)

For term II, we have

II ≤ 1

h2
K(u, u′)

∞∑
j=1

〈u− u′, ϕj〉X 〈(uj − u′j)ej , ej〉Y

≤ 1

h2
K(u, u′)

( ∞∑
j=1

〈u− u′, ϕj〉2X
)1/2( ∞∑

j=1

(uj − u′j)2
)1/2

≤ 1

h2
K(u, u′)‖u− u′‖2X <∞.

(1.3)

Combining estimates (1.2) and (1.3) yields

∞∑
j=1

〈Eu∼µ
[
Du′K(u, u′)C−1/2

0 g +

∞∑
k=1

DkDu′K(u, u′)ek

]
ϕj , ej〉 <∞, (1.4)

which implies that (1.1) belongs to L1(X ,Y). Taking X = H1,Y = H−1, s = 0,
and projecting all of the quantities to XN , we then obtain the finite-dimensional
SVGD as reviewed in Section 2 of the main text.

2. Implementation details for the mixture preconditioning

In Subsection 3.3, we present the mixture preconditioning operators, which can
specify different preconditioning operators for different particles. Here, we provide
some more implementation details.
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In practice, we approximate the expectation Eu∼µ by empirical mean of particles
{ui}mi=1. Hence, the formula (56) reduces to

φ∗K(·) =

m∑
`=1

w`(·)
m∑
j=1

[
− w`(uj)K`(uj , ·)(DujΦ(uj) + C−1

0 uj)

+

∞∑
k=1

Dk(w`(uj)K`(uj , ·)ek)

]
.

(2.1)

Taking K` in (54) with

T` = Cs/20 (DG(u`)
∗Σ−1DG(u`) + C−1

0 )1/2,

we get

K`(uj , ·)(DujΦ(uj) + C−1
0 uj)

=(DG(u`)
∗Σ−1DG(u`) + C−1

0 )−1(DujΦ(uj) + C−1
0 uj) exp

(
− 1

h
‖T`(uj − ·)‖2H

)
.

For the term Dk(w`(uj)K`(uj , ·)ek), it is clear to note

Dk(w`(uj)K`(uj , ·)ek) = Dkw`(uj)K`(uj , ·)ek + w`(uj)DkK`(uj , ·)ek. (2.2)

For the first term, we have

Dkw`(uj)K`(uj , ·)ek =− 〈T`(uj − u`), T`ϕk〉Hw`(uj)K`(uj , ·)ek
− Jkw`(uj)K`(uj , ·)ek,

(2.3)

where

Jk =

∑m
`′=1〈T`(uj − u`′), T`ϕk〉H exp

(
− 1

2‖T`′(uj − u`′)‖
2
H

)
∑m
`′=1 exp

(
− 1

2‖T`′(uj − u`′)‖
2
H

) . (2.4)

For the second term, we have

w`(uj)DkK`(uj , ·)ek = − 2

h
w`(uj)〈T`(uj − ·), T`ϕk〉HK`(uj , ·)ek. (2.5)

Combining (2.3), (2.4) and (2.5), we obtain

∞∑
k=1

Dk(w`(uj)K`(uj , ·)ek) = − 2

h
w`(uj)

∞∑
k=1

〈T`(uj − ·), T`ϕk〉HK`(uj , ·)ek

− w`(uj)
∞∑
k=1

〈T`(uj − u`), T`ϕk〉HK`(uj , ·)ek (2.6)

− w`(uj)
m∑
`′=1

∞∑
k=1

〈T`′(uj − ·), T`′ϕk〉HK`(uj , ·)ekM`′ ,

where

M`′ =
exp

(
− 1

2‖T`′(uj − u`′)‖
2
H

)
∑m
`′′=1 exp

(
− 1

2‖T`′′(uj − u`′′)‖
2
H

) . (2.7)
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For specific examples, we have the explicit form

∞∑
k=1

〈T`(uj − ·), T`ϕk〉HK`(uj , ·)ek. (2.8)

For example, we take X , Y, X̃ , and Ỹ as in the fixed precondition case and specify
K` as in (51) with T replaced by T`. Then, we have

∞∑
k=1

〈T`(uj − ·), T`ϕk〉HK`(uj , ·)ek

= exp
(
− 1

h
‖T`(uj − ·)‖2H

)
T−1
` C

s
0(T−1

` )∗C−s0 T ∗` T`(uj − ·).

(2.9)

Hence, it is not required to calculate the orthonormal basis {ek}∞k=1 and {ϕi}∞i=1 in
spaces Y and X explicitly in the implementations.

3. Proof of Theorem 16

Blow is the proof of Theorem 16.

Proof. Denote by E(H) the set of all the exponential functions and let

ϕh(x) := ei〈x,h〉H , x, h ∈ H. (3.1)

By [18], the function space E(H) is dense in L2(H, µ0), where µ0 is the prior mea-
sure. Let Kn, ϕn ∈ E(H) satisfy

lim
n→∞

‖Kn −K‖W 1,2(H,µ0) = 0, lim
n→∞

‖ψn − exp(−Φ)‖L2(H,µ0) = 0.

For the prior probability measure, we have C0εk = λ2
kεk with k = 1, 2, . . ., i.e.,

{λ2
k, εk}∞k=1 is the eigensystem of C0. It follows from [18, Lemma 1.5] that we have∫
H
DkKn(u− ũ)ψn′(ũ)µ0(dũ) =−

∫
H
Kn(u− ũ)Dkψn′(ũ)µ0(dũ)

+
1

λ2
k

∫
H
ũkKn(u− ũ)ψn′(ũ)µ0(dũ),

(3.2)

where ũk = 〈u, εk〉H, k = 1, 2, . . .. By a simple calculation, we have

−
∫
H
DkKn(u− ũ)ψn′(ũ)µ0(dũ) =

∫
H
Kn(u− ũ)

(
Dkψn′(ũ) +

ũk
λ2
k

)
ψn′(ũ)µ0(dũ).

Taking n′ →∞ in the above equality leads to∫
H
DkKn(u− ũ)e−Φ(ũ;d) −Kn(u− ũ)DkV (ũ)e−Φ(ũ;d)µ0(dũ) = 0, (3.3)

where V (·) is defined in (9). Taking n→∞, we arrive at∫
H
DkK(u− ũ)e−Φ(ũ;d) −K(u− ũ)DkV (ũ)e−Φ(ũ;d)µ0(dũ) = 0, (3.4)

which implies∫
H
〈DK(u− ũ), Dϕ(u)〉H + 〈K(u− ũ)DV (ũ), Dϕ(u)〉Hµd(dũ) = 0, (3.5)
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where ϕ ∈ E(H) is a test function. Through simple calculations based on (3.5), we
further obtain ∫

H
〈DK ∗ µd, Dϕ〉H + 〈K ∗DV µd, Dϕ〉Hµd(du) = 0, (3.6)

which implies

〈µd, L(µd)ϕ〉 = 0 (3.7)

with L being defined in (59). Recalling the weak form of the equation (58), we
complete the proof. �

4. Proof of Theorem 17

Let H1
0 (Ω) and H−1(Ω) be the usual Sobolev spaces. Consider the boundary

value problem

−∇ · (eu∇w) = f in Ω,

w = 0 on ∂Ω.
(4.1)

The following estimate is crucial to our proofs.

Theorem 4.1. Let u ∈ L∞(Ω) and f ∈ H−1(Ω), then Eq. (4.1) has a unique
solution w ∈ H1

0 (Ω) satisfies

‖w‖H1
0 (Ω) ≤ Ce‖u‖L∞(Ω)‖f‖H−1(Ω), (4.2)

where C is a positive constant independent of u.

Using Theorem 4.1, we can derive the estimates for the adjoint, incremental
forward, and incremental adjoint equations. For the adjoint equation, we have

‖p‖H1
0 (Ω) ≤ Ce‖u‖L∞

∥∥∥∥∥∥
Nd∑
j=1

e
1

2δ2
‖x−xj‖2(`xj (w)− dj)

∥∥∥∥∥∥
L2

. (4.3)

Let |Ω| be the volume of domain Ω. Since∥∥∥e− 1
2δ2
‖x−xj‖2

∥∥∥
L2
≤ |Ω|1/2 (4.4)

and

`xj (w) ≤ |Ω|1/2‖w‖L2 for j = 1, . . . , Nd, (4.5)

we deduce

‖p‖H1
0 (Ω) ≤

|Ω|1/2

2πδ2

Nd∑
j=1

(‖d‖+ |Ω|1/2‖w‖L2)

≤ Nd|Ω|1/2

2πδ2

(
‖d‖+ C|Ω|1/2e‖u‖L∞ ‖f‖H−1

)
≤ C

(
1 + e‖u‖L∞ ‖f‖H−1

)
,

(4.6)

which implies

‖p‖H1
0 (Ω) ≤ C(1 + ‖f‖H−1)e2‖u‖L∞ . (4.7)
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For the incremental forward equation, we have

‖ŵ‖H1
0
≤ Ce‖u‖L∞‖∇ · (ûeu∇w)‖H−1

≤ Ce‖u‖L∞‖ûeu∇w‖L2

≤ Ce2‖u‖L∞ ‖û‖L∞‖∇w‖L2

≤ Ce3‖u‖L∞ ‖f‖H−1‖û‖L∞ .

(4.8)

Similarly, based on Theorem 4.1, we have

‖p̂‖H1
0
≤ Ce‖u‖L∞ [I1 + I2] , (4.9)

where

I1 = ‖∇ · (ûeu∇p)‖H−1 , (4.10)

I2 =
1

2πδ2σ2

Nd∑
j=1

‖`xj (ŵ)e−
1

2δ2
‖x−xj‖2‖L2 . (4.11)

For I1, we have

I1 ≤ ‖ûeu∇p‖L2 ≤ e‖u‖L∞ ‖û‖L∞‖∇p‖L2

≤ C(1 + ‖f‖H−1)e3‖u‖L∞‖û‖L∞ .
(4.12)

For I2, we get

I2 ≤ C‖ŵ‖L2 ≤ Ce3‖u‖L∞‖f‖H−1‖û‖L∞ . (4.13)

Combining (4.9) with estimates of I1 and I2, we obtain the estimate of the adjoint
equation

‖p̂‖H1
0
≤ C(1 + ‖f‖H−1)e4‖u‖L∞ ‖û‖L∞ . (4.14)

It is clear to note that

‖u‖L∞ ≤ C‖u‖H1−s = C‖u‖X (4.15)

holds for s < 0.5, which can be deduced based on similar arguments given in [10,
Lemma 16 or Theorem 28]. Since the Hilbert scale is based on the covariance
operator C0 [1, 13], the space H1−s is different from the one introduced in [10]. The
space H1−s in our paper is approximately equal to the space H2(1−s) defined in
[10]. Next, we give the three estimates shown in Theorem 17.

First is to estimate Φ(u). A simple calculation gives

Φ(u) =
1

2σ2
‖M(w)− d‖2 ≤ C(1 + ‖w‖L2)2

≤ C(1 + ‖f‖H−1)2e2‖u‖X ,
(4.16)

where the last inequality used estimates (4.2) and (4.15).
Next is to estimate DΦ(u). For any ũ ∈ X , we get

〈DΦ(u), ũ〉 =

∫
Ω

ũeu∇w · ∇pdx ≤ ‖ũ‖L∞e‖u‖L∞ ‖∇w‖L2‖∇p‖L2

≤ C(1 + ‖f‖H−1)2e4‖u‖L∞ ‖ũ‖L∞

≤ C(1 + ‖f‖H−1)2e4‖u‖X ‖ũ‖X ,

(4.17)
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where estimates (4.2) and (4.7) are used to derive the second inequality and estimate
(4.15) is used for obtaining the third inequality. Clearly, it follows from (4.17) that

‖DΦ(u)‖X∗ ≤ C(1 + ‖f‖H−1)2e4‖u‖X . (4.18)

It is also required to estimate D2Φ(u). For any ũ, û ∈ X , we obtain

〈〈D2Φ(u), û〉, ũ〉 = I1 + I2 + I3, (4.19)

where

I1 =

∫
Ω

ûũeu∇w · ∇pdx, (4.20)

I2 =

∫
Ω

ũeu∇w · ∇p̂dx, (4.21)

I3 =

∫
Ω

ũeu∇p · ∇ŵdx. (4.22)

For I1, we have

I1 ≤ ‖û‖L∞‖ũ‖L∞e‖u‖L∞ ‖∇w‖L2‖∇p‖L2

≤ C‖û‖L∞‖ũ‖L∞e‖u‖L∞ (1 + ‖f‖H−1)2e3‖u‖L∞

≤ C(1 + ‖f‖H−1)2e4‖u‖X ‖û‖X ‖ũ‖X ,

(4.23)

where (4.2) and (4.7) are used for deriving the second inequality and (4.15) is
employed to derive the third inequality. By similar calculations, we obtain from
(4.3), (4.8), (4.14), and (4.15) that

I2 ≤ C(1 + ‖f‖H−1)2e6‖u‖X ‖û‖X ‖ũ‖X (4.24)

and

I3 ≤ C(1 + ‖f‖H−1)2e6‖u‖X ‖û‖X ‖ũ‖X . (4.25)

substituting (4.23), (4.24), and (4.25) into (4.19), we obtain

〈〈D2Φ(u), û〉, ũ〉 ≤ C(1 + ‖f‖H−1)2e6‖u‖X ‖û‖X ‖ũ‖X . (4.26)

Hence

‖D2Φ(u)‖L(X ,X∗) ≤ C(1 + ‖f‖H−1)2e6‖u‖X , (4.27)

which completes the proof.

5. More numerical results for the Darcy flow model

In this section, we provide more numerical results for the Darcy flow model given
in Section 4 of the main text. We intend to answer the following two questions:
how do different optimization methods affect the estimates; how does s influence
the convergence speed of the algorithm.
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Figure 1. Comparison between the results obtained by the gradient

descent (GD) and IMFNCG algorithms for the Darcy flow model. (a):

The background truth; (b): The initial guess of the parameter; (c): The

MAP estimate obtained by the IMFNCG algorithm with 10 steps; (d):

The MAP estimate obtained by the GD algorithm with 1000 steps.

5.1. Comparison of optimization methods. We compare different optimiza-
tion methods for solving the inverse problem of the Darcy flow equation. Specifi-
cally, we present the maximum a posteriori (MAP) estimate obtained by the gra-
dient descent (GD) algorithm and an inexact matrix-free Newton-conjugate gradi-
ent (IMFNCG) algorithm. The latter is suitable for computing large-scale inverse
problems. For more details about the IMFNCG algorithm, we refer to [5, 21] and
references therein. The step length of GD and IMFNCG are determined by the
Armijo line search, and the initial guess is set to be a zero function.

Figure 1 shows the estimates obtained by the GD and IMFNCG. On the top
left, we show the background truth function u. On the top right, we show the
initial zero function. In the second row, we show the MAP estimates obtained by
the IMFNCG and GD algorithms, respectively. It can be seen that the IMFNCG
algorithm with only 10 steps of iteration gives a reasonable estimate. However, the
GD algorithm with Armijo line search cannot provide an accurate estimate even
after 1000 iterative steps. The iSVGD sampling algorithm with no precondition
is reduced to the GD algorithm when only one particle is considered. Hence, it is
expected that the iSVGD sampling algorithm cannot work well since particles can
hardly concentrate due to the inefficiency of the optimization procedure. Figure
2 exhibits the estimates of the variance and covariance functions calculated on
mesh points by iSVGD and iSVGDMPO when the initial particles are generated by
Gaussian approximation of the posterior measure [5]. The results shown in Figure
2 confirm our intuition.

In addition, these numerical results verify that it is necessary to introduce the
iSVGD with preconditioning operators to enhance the optimization procedure.
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Figure 2. Comparison of the variances and covariance estimated by

the pCN, iSVGD (1000 iterative steps) and iSVGDMPO (25 iterative

steps) for the Darcy flow model. (a): Variances of grad points esti-

mated by pCN, iSVGD and iSVGDMPO (adpative s); (b): Local en-

larged draw of variances in (a); (c): Covariances of point with coordinate

(0.465, 0.035) with all other points on the grid estimated by pCN, iSVGD

and iSVGDMPO (adpative s); (d): Local enlarged draw of covariances

in (c).

Only with an efficient optimization procedure, the concentrate force (i.e., the first
term in the bracket of (40)) and the repulsive force (i.e., the second term in the
bracket of (40)) can sufficiently play their roles to provide accurate samplings.

5.2. Convergence speed comparison for different values of s. When choos-
ing a kernel and the prior measure as in Section 4 of the main text, the parti-
cles should belong to the Hilbert space H1−s. From the analysis, we know that
µ0(H1−s) = 0 or 1, when s = 0 or s > 0.5, respectively. The intuitive idea for
specifying the parameter s can be explained as follows:

(1) The particles should not belong to a set with zero measure, which may lead
to inaccurate estimates;

(2) The particles should reside in a small support region of the prior probability
measure.

Based on the above two criteria, we may choose s around 0.5. Here, we provide
some numerical results to answer the important question: how does s influence the
convergence speed of the iSVGDMPO algorithm.

Figure 3 show the detailed comparisons for the Darcy flow model. We present the
estimated variances when the iterative numbers equal to 10, 20 and 30 in (a), (b) and
(c) of Figure 3, respectively. In (d), (e) and (f) of Figure 3, we depict the estimated
variances only for some parameters, which provide more detailed illustrations. In
these figures, estimated variances for s = 0, 0.4, 0.5, and the adaptively chosen one
are shown, which indicate the following results:
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Figure 3. For s = 0, 0.4, 0.5 or adaptively chosen s, comparison for

the estimated variances of iSVGDMPO when iterative numbers are

10, 20, 30, respectively. (a): The estimated variances when iterative

number equal to 10; (b): The estimated variances when iterative num-

ber equal to 20; (c): The estimated variances when iterative number

equal to 30; (e): The estimated variances (part of the parameters) for

the pCN and iSVGDMPO (iterative number equal to 10); (f): The esti-

mated variances (part of the parameters) for the pCN and iSVGDMPO

(iterative number equal to 20); (g): The estimated variances (part of

the parameters) for the pCN and iSVGDMPO (iterative number equal

to 30).

(1) When the iterative number is smaller than 10, the convergence speeds for
s = 0, 0.4, and that adaptively chosen are almost the same. The conver-
gence speed for s = 0.5 is obviously slower than other cases;

(2) When the iterative number approximates 30, the estimated variances for
s = 0 is much smaller than the estimations given by the pCN and iSVGDMPO
algorithm with s = 0.4, 0.5, and the adaptively chosen s.

In summary, the convergence speeds are similar for s = 0.4 or that adaptively
chosen. The obtained estimates, at least for the variance function, are more accurate
when the results of pCN are chosen as the background truth. In the main text,
the comparisons for other statistical quantities are given when the parameter s is
specified adaptively. When specifying s = 0.5, the variances will gradually approach
the background truth, but the convergence speed seems much slower than s = 0.4
or the adaptively chosen s.

6. Discussions on the finite- and infinite-dimensional approaches

Since SVGD is constructed usually for the finite-dimensional problems in the field
of machine learning, it would be better for us to provide some detailed explanations
about finite- and infinite-dimensional approaches, which should be useful for readers
who are not familiar with the infinite-dimensional approach.
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6.1. General illustration. The SVGD algorithm is related to optimization prob-
lems since it reduces to an optimization problem for computing maximum a poste-
rior estimate when only one particle is considered. In the following, we firstly recall
some discussions from the perspective of PDE-constrained optimization problems.
For PDE-constrained optimization problems, there are two typical approaches:

• Discretize-then-optimize: Discretize the PDEs to formulate a finite dimen-
sional optimization problem, then all of the optimization techniques devel-
oped on finite-dimensional space can be applied.
• Optimize-then-discretize: Formulate infinite-dimensional optimization prob-

lems and construct the optimization schemes on some appropriate infinite-
dimensional spaces. The discretizations are pushed to the last step to gen-
erate practical numerical schemes.

Discretize-then-optimize and optimize-then-discretize are the finite- and infinite-
dimensional approaches mentioned in the main context, respectively. For the advan-
tages of the approach of optimize-then-discretize, we refer to page 43–44 of [15] and
Chapters 2 and 3 of [12]. More specifically, the advantages of infinite-dimensional
approach are mainly two-folds:

• It is important to have a better understanding of the function space struc-
ture of the numerical algorithms in order to design optimal numerical
schemes for related PDEs (e.g., when forward PDEs are not self-adjoint, we
may need to design certain numerical schemes to calculate forward PDEs
and adjoint PDEs then to calculate the gradient).
• The approach is mesh independent. The mesh independence implies that

the convergence behavior (e.g., convergence rate and number of iterations)
of an infinite-dimensional method reflects the behavior of properly dis-
cretized problems, when the mesh size is sufficiently small.

Another method for solving inverse problems of PDEs is the Bayesian inverse
methods studied in the current work. Similar to the PDE-constrained optimization
methods, the Bayesian inverse methods also contain two typical approachs:

• Discretize-then-Bayesianize: The PDEs are initially discretized to approxi-
mate the original problem in some finite-dimensional space, and the reduced
approximate problem is then solved by using the Bayes’ method.
• Bayesianize-then-discretize: The Bayes’ formula and algorithms are ini-

tially constructed on infinite-dimensional space, and after the infinite di-
mensional algorithm is built, some finite-dimensional approximation is car-
ried out.

Discretize-then-Bayesianize and Bayesianize-then-discretize are the finite- and in-
finite-dimensional approaches mentioned in the main contexts, respectively. Simi-
lar as the optimization case, these two approaches both have their own advantages
and disadvantages, and also either could be suggested to be used dependent on the
specific properties of the investigated inverse problems of PDEs. By our under-
standing, the advantages of Bayesianize-then-discretize are similar as the case of
Optimize-then-discretize:

• It is important to have a better understanding of the function space struc-
tures in order to design optimal numerical schemes of PDEs, especially
when the gradient information is employed. To design sampling algorithms,
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infinite-dimensional theories will be helpful to design appropriate discretiza-
tion of probability measures.
• Bayesianize-then-discretize approach is mesh independent. The sampling

efficiency will not highly depend on the dimension of the discretization,
which is an important expected property for solving inverse problems of
PDEs.

The book [14] provides a comprehensive discussions on the finite-dimensional ap-
proach, i.e., discretize-then-Bayesianize approach. For the infinite-dimensional ap-
proach, we refer to [20, 9, 5, 4, 8] and the references there in.

6.2. A simple example. In Subsection 6.1, general discussions on finite- and
infinite-dimensional approaches are given, which can hardly provide some intu-
itions on the differences of the numerical schemes. In the following, we consider
a simple example that illustrates the implementation differences between “op-
timize (Bayesianize)-then-discretize” and “discretize-then-optimize (Bayesianize)”
approach. Let us consider the following equation:{

−0.1∆w + w = u, in Ω,

u = 0, on ∂Ω,
(6.1)

where Ω = [0, 1]2. Denote the forward operator F(u) := w and the measurement

operator M(w) := (w(x1), . . . , w(xNd))T where {xi}Ndi=1 reside in Ω and Nd is a
positive integer. Define G :=M◦F . We then have the following formulation:

d = G(u) + ε, (6.2)

where d is the noisy data and ε is the random noise. The simplest way for estimating
u from d is to solve the following minimization problem:

min
u
F (u) (6.3)

with F (u) := 1
2‖G(u) − d‖2`2 . Now, we employ the finite-element method to dis-

cretize the above problem. Denote the finite element mass matrix by M , the
stiffness matrix of equation (6.1) by K, and the measurement matrix by S. The
forward operator G then has the following discretized form:

d = SK−1Mu+ ε, (6.4)

where u is the discretized vector of the function u.
Discretize-then-optimize (Bayesianize): For using discretize-then-optimize

(Bayesianize) approach, we need to formulate the following discrete problem:

min
u

1

2
‖SK−1Mu− d‖2`2 . (6.5)

Using the gradient descent method, we obtain the following iterative scheme:

uk+1 = uk − γ(SK−1M)T (SK−1Mu− d), (6.6)

where γ is the step size.
Optimize (Bayesianize)-then-discretize: For using optimize (Bayesianize)-

then-discretize approach, we need to firstly formulate the infinite-dimensional prob-
lem:

min
u

1

2
‖G(u)− d‖2`2 . (6.7)
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Figure 4. Left: Logarithm of the step norms computed by “discretize-

then-optimize (Bayesianize)” approach with different discretized dimen-

sions d = 400, 900, 1600, 2500, 3600. Right: Logarithm of the step norms

computed by “optimize (Bayesianize)-then-discretize” approach with

different discretized dimensions d = 400, 900, 1600, 2500, 3600.

Then we derive the gradient descent iteration on infinite-dimensional space to ob-
tain:

uk+1 = uk − γG∗(G(u)− d), (6.8)

where G∗ is the adjoint-operator of G. According to Subsection 3.3 of [5], we may
obtain the following iterative scheme on finite-dimensional space:

uk+1 = uk − γM−1(SK−1M)T (SK−1Mu− d). (6.9)

Comparing iterative schemes (6.6) and (6.9), we can see the difference. At a glance,
this is a small difference. However, such a small difference leads to different be-
haviors of the two iterative schemes. We implement the two iterative schemes with
different discretized dimensions d = 20 × 20, 30 × 30, 40 × 40, 50 × 50, 60 × 60 to
visually see such different behavior. The step size γ is set to be 0.01 for all of the
iterative schemes. We define the step norm as follows:

The k-th step norm = ‖uk+1 − uk‖L2 . (6.10)

In the left of Figure 4, we draw the step norms of the iterative scheme (6.6).
We can see that the step norms decay rapidly when the dimension grows. This
indicate that the convergence speed of iterative scheme (6.6) depends highly on the
discretized dimension. In contrast, the step norms of the iterative scheme (6.9)
are almost the same for different discretizations. From this simple toy example,
we can see that the “discretize-then-optimize (Bayesianize)” approach can hardly
keep the infinite-dimensional natural. Hence, it usually lacks mesh independence
property. However, the “optimize (Bayesianize)-then-discretize” approach pushes
the discretization implementation to the final step which makes it easier to catch the
infinite-dimensional natural of the inverse problems of PDEs. The finally obtained
algorithm usually has mesh independence property, which is important for solving
inverse problems of PDEs.

6.3. Mesh independence of iSVGD. In Subsection 6.2, we just provide a simple
example. For the proposed iSVGD, we need more standard techniques that can be
found in some typical literatures [5, 11, 15, 19, 21, 6]. The lecture notes provided in
“https://uvilla.github.io/inverse17/” are also beneficial for taking implementations.
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Figure 5. Left: Pointwise sample variances computed by different

discretized dimensions d = 400, 900, 1600, 2500, 3600 (All of the vari-

ance functions are projected on a grid with d = 400 for compari-

son). Right: Decay of the averaged step norm 1
m

∑m
i=1 ‖u

`+1
i − u`

i‖L2

w.r.t. the number of iterations for different discretized dimensions

d = 400, 900, 1600, 2500, 3600.

Now, let us illustrate that the proposed iSVGD algorithm possesses the mesh
independence property. That is to say, if the finite element mesh is refined, we
indeed need more computational resources since the computations of each partial
differential equation are more expensive. However, it might not need more iterations
and particles when the finite element mesh is refined since discrete problems derived
by refined mesh also approximate the infinite-dimensional formulation. For clearly
illustrating this, we choose different discretized grids such that the dimensions of
the function parameter are d = 20 × 20, 30 × 30, 40 × 40, 50 × 50, 60 × 60. Using
the same settings as in Section 4 of the main text, we only change the discretized
dimension to see how discretized dimensions affect the behavior of the algorithm. In
Figure 5, we show the numerical results which demonstrate the mesh independence
as expected for Bayesianize-then-discretize approach.

Specifically speaking, we draw the variance functions with different discretized
dimensions in the left of Figure 5. The variance functions are calculated by the
iSVGDMPO with discretized dimensions d = 400, 900, 1600, 2500, 3600. When the
algorithm generates the final particles, we calculate the variance functions and
project the estimated variance functions on a mesh with dimension d = 20 × 20.
Then, we draw part of the grid point values of the variance functions calculated by
different meshes. From the figure, it can be seen that the grid point values are sim-
ilar. This validates that the estimated variance function obtained by iSVGDMPO
is not sensitive to one particular discretization. Similar to other mesh independence
methods such as rMAP used for comparison in our numerical experiments, it may
be difficult to obtain exactly the same values due to the quantities being evaluated
approximately, especially the gradients and Hessian operators, are not evaluated
accurately. For discretize-first type methods, we can calculate the gradients of the
discretized system exactly. However, the gradients and Hessian operators defined
on infinite-dimensional space could only be calculated approximately.
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In the right of Figure 5, we draw the averaged step norm defined as follows:

1

m

m∑
i=1

‖u`+1
i − u`i‖L2 , (6.11)

where u`i stands for the ith particle at the `th iteration and m is the number of
particles. Obviously, the averaged step norms are similar for different discretized
dimensions. It is evident that the curves under different discretized dimensions
can hardly be distinguished, indicating that the algorithm has mesh independence
property. The convergence speed is not affected by discretized dimensions, which
is not true for many algorithms developed under the finite-dimensional setting.

At last, we should admit that more theoretical works are needed to ensure the
mesh independence property. Specifically speaking, we may need to do further
research based on Subsection 3.4 in the main text on infinite-dimensional particle
interacting system and the measure-valued evolution equation. The well-posedness
of these complicated equations should be proved and a theorem like Theorem 2.7
in [16] needs to be established. Along this direction, we may consult to the studies
on the semilinear Mckean–Vlasov stochastic evolution equation in Hilbert space [2]
and the theoretical analysis of the pCN algorithm [17].

7. Numerical results for the Helmholtz equation

In this section, we present numerical experiments for the Helmholtz equation

−∆w − e2uw = 0 in Ω,

∂w

∂n
= g in ∂Ω,

(7.1)

where w is the acoustic field, u is the logarithm of the distributed wave number field
on Ω (Ω is a bounded domain), n is the unit outward normal on ∂Ω, and g is the
prescribed Neumann source on the boundary. The boundary value problem (7.1)
may not have a unique solution due to possible resonances [7]. Hence, we can hardly
verify Assumption 6 for this example. However, this model was studied for the
randomized maximum a posteriori (rMAP) method [21], which is an approximate
method used for our comparison in the main text. From the proof in Subsection 4,
we may verify Assumption 6 under more suitable settings for the inverse medium
scattering problem, e.g., Lemma 2.3 in [3] gives a similar estimate to the Darcy
flow model.

Basic settings and the finite-element discretization are similar to the Darcy flow
model considered in the main text. The only difference is that the measurement
data are collected on the boundary of the domain, i.e., xi ∈ ∂Ω for i = 1, . . . , Nd.
Figure 6 shows the estimates of the variances obtained by the pCN, rMAP, and
iSVGDMPO with parameter s = 0, 0.4, or choosing adaptively according to formula
(68) in the main text. Similarly, the estimated variances are too small when s = 0,
which implies that the particles are concentrated on a small set. When s is taken as
0.4 or chosen adaptively, we obtain similar estimates, which is more similar to the
baseline provided by pCN compared with the estimates obtained by the rMAP. As
in the main text, we use the empirical adaptive strategy to specify the parameter
s in the following.

As for the sample numbers, we also compare the estimated variances when the
particle number m equals to 10, 20, 30, 40, and 50. On the left and right in Figure
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Figure 6. Comparison of the variances estimated by the pCN, rMAP,

iSVGDMPO with different s for the Helmholtz equation model. (a):

Variances estimated by pCN, rMAP, and iSVGDMPO (s = 0); (b):

Variances estimated by pCN, rMAP, and iSVGDMPO (s = 0.4); (c):

Variances estimated by pCN, rMAP, and iSVGDMPO (adpative s).

Figure 7. Comparison of the variances estimated by the iSVGDMPO

when s = 10, 20, 30, 40, 50 for the Helmholtz equation model.

7, we show the results obtained when m = 10, 20, 30 and m = 30, 40, 50, respec-
tively. Obviously, we find that m = 10 is not enough to give reliable estimates and
the estimated variance functions are similar when m = 30, 40, 50. Hence, for the
Helmholtz problem, it is enough to take m = 20 or 30 for our numerical examples,
which attains a fine balance between efficiency and accuracy.

For the following numerical experiments, we take m = 30 and set the parameter
s by the empirical strategy (68) as presented in the main text. In Figure 8, we
demonstrate the background truth and the estimated mean and variance functions
obtained by the pCN, rMAP, and iSVGDMPO, respectively. The iterative number
of iSVGDMPO is set to be 30. The same observation can be made from the results.
The mean functions obtained by the rMAP and iSVGDMPO are similar, which
are slightly smoother than the one obtained by the pCN algorithm. Regarding
the variance function, it can be seen from (f), (g), and (h) of the figure that the
iSVGDMPO gives more reliable estimates than the rMAP does.

Now, we provide some more comparisons of statistical quantities among the re-
sults obtained by the pCN, rMAP, and iSVGDMPO. Similarly, we compute variance
and covariance functions on the mesh points and exhibit the results in Figure 9. In
all of the subfigures in Figure 9, the estimates obtained by the pCN, rMAP, and
iSVGDMPO are drawn in blue solid line, gray dotted line, and red dashed line,
respectively. All the notations here are the same as those used in the main text.
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Figure 8. The background truth and estimated mean and variance

functions by pCN, rMAP, and iSVGDMPO for the Helmholtz equation

model. (a): Background truth; (b): Estimated mean function by pCN;

(c): Estimated mean function by rMAP; (d): estimated mean function

by iSVGDMPO; (e): Estimated mean function on mesh points by pCN

(blue solid line), rMAP (light blue dotted line), and iSVGDMPO (red

dashed line); (f): Estimated variances by pCN; (g): Estimated variances

by rMAP; (h): Estimated variances by iSVGDMPO.

We can also obtain the same conclusions from the results: the estimates obtained
by the iSVGDMPO are visually more similar to the estimates provided by the pCN
compared with the results obtained by the rMAP.

Table 1. The `2-norm error of variance and covariance functions on

mesh points for the rMAP and iSVGDMPO (estimates of the pCN are

seen as the background truth)

varu(xi) covu(xi, xi+5) covu(xi, xi+10)

rMAP 0.01525 0.00155 0.00237

iSVGDMPO 0.00092 0.00026 0.00063

covu(xi, xi+15) covu(xi, xi+20) covu(xi, xi+25)

rMAP 0.00295 0.00353 0.00153

iSVGDMPO 0.00036 0.00059 0.00035

covu(xi, xi+30) covu(xi, xi+35) covu(xi, xi+40)

rMAP 0.00148 0.00154 0.00219

iSVGDMPO 0.00055 0.00037 0.00048

Besides these visual comparisons, a quantitative comparison of the differences
among the pCN, rMAP, and iSVGDMPO are also given in Table 1. Again, all the
notations have the same meaning as those used in the main text. It can be seen
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Figure 9. The estimated variances and covariances by the pCN (blue

solid line), rMAP (gray dotted line), and iSVGDMPO (red dashed line).

(a): Estimated variances {varu(xi)}Ngi=1 on all mesh points; (b): Esti-

mated variances for mesh points with indexes from 300 to 400 (show

details); (c): Estimated covariances {covu(xi, xi+20)}Ng−20
i=1 on mesh

point pairs {(xi, xi+20)}Ng−20
i=1 ; (d): Estimated covariances shown in (c)

with indexes from 300 to 400 (show details); (e): Estimated covariances

{covu(xi, xi+40)}Ng−40
i=1 on mesh point pairs {(xi, xi+40)}Ng−40

i=1 ; (f): Es-

timated covariances shown in (e) with indexes from 300 to 400 (show

details).

from Table 1 that all the `2-norm differences of the iSVGDMPO with the pCN are
evidently smaller than the corresponding values of the rMAP.
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