
Single-Image Depth Estimation Based on Fourier Domain Analysis

Jae-Han Lee, Minhyeok Heo, Kyung-Rae Kim, and Chang-Su Kim
Korea University

{jaehanlee, mhheo, krkim}@mcl.korea.ac.kr, changsukim@korea.ac.kr

Abstract

We propose a deep learning algorithm for single-image
depth estimation based on the Fourier frequency domain
analysis. First, we develop a convolutional neural network
structure and propose a new loss function, called depth-
balanced Euclidean loss, to train the network reliably for
a wide range of depths. Then, we generate multiple depth
map candidates by cropping input images with various
cropping ratios. In general, a cropped image with a small
ratio yields depth details more faithfully, while that with a
large ratio provides the overall depth distribution more re-
liably. To take advantage of these complementary proper-
ties, we combine the multiple candidates in the frequency
domain. Experimental results demonstrate that proposed
algorithm provides the state-of-art performance. Further-
more, through the frequency domain analysis, we validate
the efficacy of the proposed algorithm in most frequency
bands.

1. Introduction
Depth estimation is the process of predicting the depth

map of a scene using one or more images. The depth in-

formation serves as an important cue for understanding ge-

ometric relationship in the scene. For instance, an RGBD

image, which has color and depth channels, can be ap-

plied in a variety of tasks, such as 3D model reconstruc-

tion [13, 30, 33], scene recognition [27, 32, 33], human pose

estimation [37]. Depths can be estimated from stereo im-

ages [31] or motion sequences [2, 7, 17, 31, 40], which pro-

vide relatively rich information for understanding 3D struc-

tures. In contrast, it is more challenging and ambiguous to

estimate depths from a single image [1, 3, 5, 6, 15, 19–22,

24,28,38,42,43], which does not allow the correspondence

matching between stereo images or temporal frames.

Various geometric or image composition assumptions

have been made to overcome the ambiguities in single-

image depth estimation [9, 10, 13, 23, 36, 41]. For example,

3D reconstruction can be performed, assuming that a scene

is composed of flat planes [13], that an image is composed

in certain perspective [9], or that a scene has the floor-walls

geometry [4]. Also, focal blurs were exploited in [41], and

haze strengths inferred from the dark channel prior were

used in [9]. These techniques, however, can reconstruct

depths in specific cases only when the corresponding as-

sumptions are valid.

Recently, several methods have been proposed to em-

ploy graph-based models [21, 23, 29, 30], such as Markov

random field (MRF) and conditional random field (CRF).

Moreover, with the fast development of deep learning tech-

nology [11, 12, 16], various attempts have been made to

use convolutional neural networks (CNNs) for single-image

depth estimation [3, 5, 6, 19, 38].

In this work, we propose a CNN-based algorithm for

single-image depth estimation, which makes multiple pre-

dictions and combines the results in the Fourier frequency

domain. First, we develop a CNN based on the ResNet [11]

architecture. It includes additional paths for extracting in-

termediate features. Also, in order to train the network re-

liably for a wide range of depths, we propose the depth-

balanced Euclidean (DBE) loss function. Then, we gen-

erate multiple depth map candidates by cropping an input

image with various cropping ratios. In general, a cropped

image with a small cropping ratio reconstructs local depth

details more faithfully, while that with a large ratio recovers

the overall depth distribution more reliably. To take advan-

tages of these complementary properties, we combine the

multiple candidates in the Fourier frequency domain.

Extensive experimental results on the NYUv2 depth

dataset [33] demonstrate that the proposed algorithm yields

the state-of-the-art performance, outperforming the conven-

tional algorithms significantly. Moreover, by analyzing es-

timated depth maps in the frequency domain, we validate

the efficacy of the components of the proposed algorithm in

a wide range of frequencies.

This paper has three main contributions:

• We design a ResNet-based depth estimation network.

• We propose the DBE loss to enable more reliable train-

ing of the network.

• To the best of our knowledge, this is the first work to
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Figure 1. The CNN structure of the proposed single-image depth estimator. The details of blue blocks BC or green blocks BC,C′ are shown

in Figure 2. Also, B′
C and B′

C,C′ are identical with BC and BC,C′ , respectively, except that their short connections include convolution

and batch normalization layers [11].
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Figure 2. The detailed structures of original and modified blocks.

perform the Fourier analysis of the single-image depth

estimation problem. We also propose an accurate and

reliable scheme to combine multiple depths in the fre-

quency domain.

2. Related Work

Various attempts have been made for single-image depth

estimation. For instance, Saxena et al. [29] adopted a multi-

scale MRF to take into account the global context of an

image, as well as its local features, for depth estimation.

In [30], they divided an image into homogeneous patches,

used an MRF to obtain 3D parameters at each patch, and

reconstructed a 3D structure. Kersh et al. [14] proposed

transferring the depth map of a reference RGBD image in

a dataset to an input color image. Similarly, Liu et al. [24]

exploited the depth information in a reference RGBD im-

age. They used it to formulate a unary potential in a CRF

model for depth estimation. Also, Ladicky et al. [18] for-

mulated depth estimation as the problem of predicting the

likelihood that each pixel is at a canonical depth, and at-

tempted to solve depth estimation and semantic segmenta-

tion jointly.

Recently, deep-learning-based techniques have been de-

veloped [5, 6, 19, 28]. Eigen et al. [6] proposed combining

two deep networks: a coarse network to predict a global

depth distribution and a fine network to refine the depth map

locally. Eigen and Fergus [5] extended this work to a three-

level network structure, and performed surface normal es-

timation and semantic label estimation, as well as depth

estimation. Roy and Todorovic [28] integrated relatively

shallow CNNs into a regression forest. Laina et al. [19]

designed a depth estimation network based the ResNet ar-

chitecture [11]. They proposed an up-projection structure

to improve the resolution of a depth map. Also, for network

training, they proposed the Huber loss, which is a combina-

tion of the Euclidean function and the L1 function.

Depth estimation techniques, combining CNNs with

CRF models, also have been proposed [20,23,38]. Wang et
al. [38] trained a CNN for joint depth estimation and seman-

tic segmentation and adopted a CRF model to improve CNN

prediction results. Liu et al. [23] proposed a scheme to learn

the unary and pairwise potentials of a continuous CRF in a

unified CNN framework. Li et al. [20] performed the pixel-

wise refinement of superpixel-based CNN prediction results

through CRF optimization. Chakrabarti et al. [3] predicted

depth derivatives of different orders probabilistically and

then estimated a depth map through a globalization pro-

cess. Xu et al. [39] used multiple continuous CRFs to in-

tegrate side output maps of a CNN. This method is similar

to the proposed algorithm in that it extracts features from

various layers of a network and combines them to estimate

a depth map. However, we exploit the intermediate infor-

mation within the network only without using CRFs.

3. Proposed Algorithm
3.1. Depth Estimation Network

The CNN structure of the proposed algorithm is shown

in Figures 1 and 2, which is based on ResNet-152 [11]. Note

that ResNet-152 is a very deep network, including 151 con-

volution layers and 1 fully-connected layer. It is divided

into smaller blocks, each of which has three convolution

layers, followed by batch normalization and ReLU layers,

with a shortcut connection. In Figure 1, BC denotes this

block, where C is the number of channels in the output fea-

ture map. The structure of BC is enclosed by the blue dot-

ted line in Figure 2. The original ResNet-152 contains 50

such blocks. Among these, we modify the last 19 blocks,

depicted by green blocks in Figure 1, while maintaining the

original structures of the first 31 blocks.

Figure 2 shows the structure of a modified block, which

has an additional path for intermediate feature extraction.

Let BC,C′ denote a modified block, where C ′ is the num-

ber of channels in the feature map, extracted through the

additional path. Note that we extract the intermediate fea-

ture map from the last ReLU layer of BC . To this end, we

use two convolution layers with 1 × 3 and 3 × 1 kernels
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sequentially, followed by ReLU layers. The intermediate

feature maps from the 19 modified blocks and the feature

map from the end of the last B2048,64 are all concatenated,

as shown in Figure 1. Then, through a fully connected layer,

we obtain 800 output responses, each of which corresponds

to an estimated depth in a 25× 32 depth map.

For training, we adopt a two-phase method. In the first

phase, we train the network after removing the additional

feature extraction parts and maintaining the original struc-

ture of ResNet-152 only. We begin with the ResNet-152 pa-

rameters, pre-trained for the image classification task, and

fine-tune them using training images and their ground-truth

depth maps. In the second phase, we begin with the pa-

rameters from the first phase but initialize the parameters

of the additional feature extraction parts with Gaussian ran-

dom values. This two-phase method facilitates faster train-

ing and also improves the depth estimation performance, in

comparison with learning the entire network from scratch.

3.2. Depth-Balanced Euclidean Loss

In regression problems, the Euclidean loss is often used,

which is given by

LE =
1

2N

∑
x

(d̂x − dx)
2 (1)

where x denotes the coordinate of a pixel in a depth map,

d̂x is the estimated depth, dx is the ground-truth depth, and

N is the size of the depth map. Let ω denote a network

parameter. In case of the Euclidean loss, the update of ω is

proportional to the partial derivative

∂LE

∂ω
=

∑
x

∂LE

∂d̂x
· ∂d̂x
∂ω

=
1

N

∑
x

(d̂x − dx)
∂d̂x
∂ω

. (2)

In practice, the absolute estimation error |d̂x − dx| tends

to be larger, as the ground-truth depth dx is bigger. For

example, 3% depth error of a far object is bigger than the

same 3% error of a near object. Thus, the partial deriva-

tive in (2) is affected more strongly by the depth estimation

errors of distantly located objects than by those of near ob-

jects. Therefore, when the Euclidean loss is employed, the

network is trained to estimate the depths of distant objects

more reliably than those of near ones in general.

To overcome this problem, we propose a new loss, called

depth-balanced Euclidean (DBE) loss, given by

LDBE =
1

2N

∑
x

(
g(d̂x)− g(dx)

)2

(3)

where g is a quadratic function for the balancing

g(d) = a1d+
a2
2
d2. (4)
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Figure 3. Depth map candidate generation in (a) and candidate

examples in (b)∼(e).

Then, we have

∂LDBE

∂ω
=

∑
x

∂LDBE

∂g(d̂x)
· ∂g(d̂x)

∂d̂x
· ∂d̂x
∂ω

(5)

=
1

N

∑
x

(
g(d̂x)− g(dx)

)
(a1 + a2d̂x)

∂d̂x
∂ω

.

We set a1 to be a relatively large number and a2 to be a

negative number. Then, in general, for a deeper depth dx,

the effect of a bigger error (g(d̂x)− g(dx)) can be reduced

by a smaller factor (a1 + a2d̂x). Thus, the network can

be trained to reliably estimate shallow depths, as well as

deep depths. Experimental results in Section 4 will also

confirm that the proposed DBE loss is more effective for

depth estimation than the original Euclidean loss.

3.3. Depth Map Candidate Generation

Using the proposed CNN trained with the DBE loss, we

generate multiple depth map candidates for an input image.

Figure 3(a) illustrates how to generate a depth map candi-

date. First, we crop the input image at the four corners,

respectively, with a cropping ratio r. The cropping ratio is

defined as the size ratio of the cropped image to the entire

image. Second, we process each cropped image through

the CNN to yield the corresponding depth map. Finally,

we merge these four partially estimated depth maps into a

single depth map candidate. In the merging process, note

that all depth values should be scaled by a factor of 1/r to

compensate for the zooming effect that objects in a cropped

image look closer. After the scaling, the partial depth maps

are translated to their positions and then superposed. For

the superposition in overlapping regions, the averaging is
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performed. Let D̂r denote the resultant depth map candi-

date. When r = 1, D̂1 is simply obtained by processing the

entire input image through the CNN.

Since the CNN parameters are not symmetric, a flipped

image does not yield the flipped depth map. Therefore, we

horizontally flip an input image, obtain a depth map candi-

date with a cropping ratio r, and flip back the depth map

candidate. This is denoted as D̂r
flip. Figure 3(b)∼(e) shows

examples of depth map candidates.

3.4. Candidate Combination in Fourier Domain

As illustrated in Figure 3, in general, a depth map can-

didate D̂r with a larger cropping ratio r reconstructs the

overall depth distribution more reliably, whereas that with a

smaller r estimates local details more accurately. To ex-

ploit these complementary properties, we combine depth

map candidates in the Fourier frequency domain. Notice

that the overall distribution and the local details correspond

to low and high frequency coefficients, respectively.

The discrete Fourier transform (DFT) [26] of an input

signal I(x, y) of size M ×N is given by

F (u, v) =

M−1∑
y=0

N−1∑
x=0

I(x, y) exp
(
−i2π(xu

N
+

yv

M

))
(6)

where u and v are horizontal and vertical frequencies.

We transform each depth map candidate and rearrange

the 2D-DFT coefficients into a column vector. During the

rearrangement, we remove two kinds of redundancy. First,

DFT is periodic, i.e. F (u, v) = F (u + Nk, v + Ml) for

all k, l ∈ Z. Second, since a depth map is real, its DFT is

conjugate symmetric, i.e. F (u, v) = F ∗(−u,−v). Let f̂m

denote the rearranged DFT vector of the m-th depth map

candidate. Also, let f̂ be the DFT vector of the combined

depth map of all candidates, and f be that of the ground-

truth depth map. Also, f̂m
k , f̂k, and fk denote the k-th co-

efficients in f̂m, f̂ , and f , respectively. We obtain f̂k as

follows.

f̂k =
M∑

m=1

wm
k (f̂m

k − bmk ) (7)

where wm
k is a weighting parameter, bmk is a bias, and M is

the number of depth map candidates.

First, the bias bmk should compensate for the average de-

viation of f̂m
k from the ground-truth fk. Hence, we deter-

mine this bias, using the training dataset, by

bmk =
1

T

T∑
t=1

(f̂m
kt − fkt) (8)

where t is the index of a training image, and T is the total

number of images in the training dataset. Also, f̂m
kt and fkt

denote f̂m
k and fk for the tth image, respectively.

Second, we determine the weighting parameters wm
k in

(7) to minimize the mean squared error (MSE) between f̂k
and fk. To this end, we define a matrix Tk, in which the

(t,m)th element equals to f̂m
k,t − bmk . We also define the

ground-truth vector tk = [fk1, · · · , fkT ]′. Then, the MSE

minimization problem is to find the optimal weight vector

wk = [w1
k, · · · , wM

k ]′, given by

wk = argmin
w
‖Tkw − tk‖2. (9)

This can be solved using the pseudo-inverse of Tk,

wk = T+
k tk. (10)

We repeat this process for all k to determine all weight and

bias parameters.

In testing, we combine the DFT vectors of multiple depth

map candidates f̂m into that of the final estimate f̂ via (7).

Then, we perform the inverse Fourier transform to generate

the final estimated depth map D̂. It is worth pointing out

that, because of the Parseval’s relation [26], minimizing the

MSE in the frequency domain is equivalent to the minimiz-

ing the MSE in the spatial domain. In other words, no other

combination of f̂m can lead to a smaller MSE, ‖D̂ − D‖,
between the estimated and ground-truth depth maps.

4. Experimental Results
4.1. Implementation Details

We use the NYUv2 depth dataset [33], which contains

about 280,000 training images. To train the proposed CNN,

we perform the data augmentation with the scale, rotation,

color, and horizontal flip transformations [6]. The NYUv2

dataset also provides 654 separate test images. For the test-

ing, we extract only the central area of size 427× 561 from

each image, as done in [3, 28].

In the training, we use the NAG solver [25, 35]. For the

DBE loss in (3) and (4), we set a1 = 1.5 and a2 = −0.1. As

mentioned in 3.1, we adopt the two-phase training method.

In the first phase, we initialize the parameters with those

of the pre-trained ResNet-152 [11]. Then, we perform the

iterative training 500,000 times with a batch size of 4 and a

learning rate of 0.00016. In the second phase, we reduce the

learning rate by a factor of 10−3 for the existing parts. For

the additional feature extraction parts, we adopt the Xavier

initialization [8] and set the learning rate to 0.00016. The

batch size of 4 is also maintained in the second phase.

For each image, we generate 9 depth map candidates

with cropping ratios r ∈ {0.60, 0.65, ..., 1.00}. We also

use a flipped candidate for each r. Therefore, we obtain 18

candidates in total.

4.2. Performance Comparison

We use the five performance metrics in [3, 6], given by
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Table 1. Performance comparison of the proposed algorithm and the conventional algorithms. The best results are boldfaced, and the

second best ones are underlined.

The lower, the better The higher, the better

RMSE (lin) RMSE (log) Abs Rel Sqr Rel δ < 1.25 δ < 1.252 δ < 1.253

Zoran et al. [43] 1.220 0.430 0.410 0.570 - - -

Li et al. [20] 0.821 - 0.232 - 62.1% 88.6% 96.8%

Liu et al. [21] 0.824 - 0.230 - 61.4% 88.3% 97.1%

Baig et al. [1] 0.802 - 0.241 - 61.0% - -

Eigen et al. [6] 0.877 0.283 0.214 0.204 61.4% 88.8% 97.2%

Wang et al. [38] 0.745 0.262 0.220 0.210 60.5% 89.0% 97.0%

Roy et al. [28] 0.744 - 0.187 - - - -

Eigen and Fergus [5] 0.641 0.214 0.158 0.121 76.9% 95.0% 98.8%

Chakrabarti et al. [3] 0.620 0.205 0.149 0.118 80.6% 95.8% 98.7%

Laina et al. [19] 0.597 0.204 0.140 0.106 81.1% 95.3% 98.8%

Proposed 0.572 0.193 0.139 0.096 81.5% 96.3% 99.1%

RMSE (lin) :
(

1
NΣx(d̂x − dx)

2
) 1

2

RMSE (log) :
(

1
NΣx(log d̂x − log dx)

2
) 1

2

Abs Rel : 1
NΣx

|d̂x−dx|
dx

Sqr Rel : 1
NΣx

|d̂x−dx|2
dx

δ < t : Percentage of dx such that

max{ d̂x

dx
, dx

d̂x
} < t

where t = 1.25, 1.252 or 1.253

Here, dx and d̂x denote ground-truth and estimated depths,

respectively. Also N is the total number of pixels in all

images in the test dataset.

In Table 1, we compare the proposed algorithm with the

recent conventional algorithms [1, 3, 5, 6, 19–21, 28, 38, 43].

In [19], their performance was computed with the single

precision. The single precision is not sufficient in case of

the RMSE and Rel metrics, since a huge number of depth

differences should be summed up. Therefore, we measure

their performance again in the double precision using their

source codes. We see that, in terms of all metrics, the pro-

posed algorithm provides the best results, outperforming the

second best results considerably.

Figure 4 compares depth maps qualitatively. For easier

comparison, we also visualize the errors in the depth maps.

Bigger errors are represented by bright yellow colors, while

smaller errors are by dark red colors. It is observed that the

proposed algorithm estimates the depth information accu-

rately and reliably and also reduces blur artifacts in com-

parison with the conventional algorithms.

4.3. Ablation Study

We develop the depth estimation network (DEN) in Fig-

ures 1 and 2, based on the ResNet-152 [11] structure. Ta-

Table 2. ‘RMSE (lin),’ ‘Abs Rel,’ and ‘δ < 1.25’ performances of

the proposed algorithm in various settings. The baseline ResNet-

152 is also included for comparison. DEN: depth estimation net-

work, DBE: DBE loss, and FDC(k): Fourier domain combination

of k depth map candidates. Thus, ‘DEN+DBE+FDC(18)’ is the

complete proposed algorithm.

RMSE Rel δ < 1.25

ResNet-152 0.597 0.148 79.6%

DEN 0.586 0.145 80.3%

DEN+DBE 0.585 0.142 81.3%

DEN+DBE+FDC(2) 0.594 0.139 81.2%

DEN+DBE+FDC(6) 0.581 0.139 81.4%

DEN+DBE+FDC(10) 0.576 0.139 81.5%
DEN+DBE+FDC(18) 0.572 0.139 81.5%

ble 2 compares the depth estimation performances of DEN

with those of ResNet-152, which is fine-tuned using the

NYUv2 dataset. We see that the modification of the struc-

ture leads to the performance improvement, e.g. in case of

‘RMSE (lin)’ from 0.597 to 0.586.

In addition to the DEN structure, this work has two con-

tributions. First, we use the DBE loss to estimate shallow

depth more reliably. Second, we perform the Fourier do-

main combination (FDC) of multiple depth map candidates.

Note that each of these two components improves the per-

formances meaningfully. As a result, the complete proposed

algorithm ‘DEN+DBE+FDC(18)’ provides the state-of-the-

art performances. Figure 5 also shows that each component

of the proposed algorithm contributes to the reconstruction

of a high quality depth map.

In the complete proposed algorithm, for each image, 18

depth map candidates are generated by varying the cropping

ratio from 0.60 to 1.00 in 0.05 increments. We can reduce

the number k of candidates to 10, 6, or 2, respectively, by

raising the lower bound of r to 0.8, 0.9 or 1.0. In Table 2,

FDC(k) means the combination of k candidates. In general,
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Comparison of estimated depth maps. Upper images show depth maps, and lower images are the corresponding error maps.

(a) Input images, (b) ground-truth depth maps and color coding schemes, (c) Eigen et al. [6], (d) Wang et al. [38], (e) Eigen and Fergus [5],

(f) Chakrabarti et al. [3], (g) Laina et al. [19], and (h) the proposed algorithm.

335



Table 3. The two components DBE and FDC of the proposed

algorithm improve the depth estimation performance of three pop-

ular networks: AlexNet, VGG19, and ResNet-50.

RMSE Rel δ < 1.25

AlexNet 0.836 0.244 60.4%

AlexNet+DBE 0.870 0.243 60.3%

AlexNet+DBE+FDC(18) 0.826 0.247 61.5%
VGG19 0.616 0.163 76.6%

VGG19+DBE 0.619 0.158 76.9%

VGG19+DBE+FDC(18) 0.617 0.157 77.0%
ResNet-50 0.591 0.151 79.4%

ResNet-50+DBE 0.603 0.147 79.6%
ResNet-50+DBE+FDC(18) 0.597 0.145 79.3%

Table 4. Detail reconstruction performance of FDC using SSIM

and NCC scores on the NYUv2 dataset.

SSIM NCC

DEN+DBE 0.960 0.890

DEN+DBE+FDC(18) 0.961 0.897
AlexNet+DBE 0.938 0.758

AlexNet+DBE+FDC(18) 0.939 0.781
VGG19+DBE 0.957 0.875

VGG19+DBE+FDC(18) 0.958 0.882
ResNet-50+DBE 0.958 0.881

ResNet-50+DBE+FDC(18) 0.959 0.888

the performance improves as k gets larger. However, the

performance saturates when k is bigger than 18. Note that

FDC(k) with a relative small k = 6 still yields competitive

results.

Next, we replace the DEN with three popular networks

with fewer layers: AlexNet [16], VGG19 [34] and ResNet-

52 [11]. All these networks are pre-trained for the image

classification task. In the same way as we develop DEN,

we modify each of these three networks. Specifically, we

modify the last fully-connected layer to yield 800 output re-

sponses, which correspond to a 25 × 32 depth map. Then,

we fine-tune the modified network using training images

and their ground-truth depth maps. Then, as in the pro-

posed algorithm, we incorporate the two components DBE

and FDC sequentially into the network. Table 3 shows that

each component also contributes to performance improve-

ment in the networks with fewer parameters. Also in Ta-

ble 4, we measure SSIM and NCC scores to see how well

the FDC reconstructs the depth map details. We confirm

that FDC faithfully restores the structure of depth maps of

all the networks.

4.4. Performance Analysis in Fourier Domain

Let us analyze estimated depth maps in the frequency do-

main. To this end, we classify 2D frequencies into groups

according to their magnitudes: a frequency group contains

2D frequencies, the magnitudes of which range from 2n−1

to 2n Hz. Figure 6 shows the ‘RMSE (lin)’ and ‘Abs Rel’

errors of reconstructed depths, when all frequency coeffi-

cients in each group are set to zero. An exception is the

DC coefficient case, whose impacts are much bigger than

the other AC coefficients. To plot their impacts in the same

graph, we replace the DC coefficient with the overall mean

depth of the test images, instead of zero. It is observable

from Figure 6 that a lower frequency group has greater im-

pacts on the reconstruction performance of depth maps in

general. However, relatively high frequency groups (< 26)

also contribute to depth maps, since they represent local de-

tails and depth discontinuities. If the frequency magnitudes

are higher than 26, their impacts are negligible.

In Figure 7, we analyze the MSE between the frequency

coefficients of an estimated depth map and its ground-truth.

Since there are large variations in error scales across differ-

ent frequency groups, we plot relative errors by setting the

errors of ResNet-152 as the reference points.

Figure 7(a) shows the contribution of each component of

the proposed algorithm. The DEN structure reduces errors

in low frequency groups. The DBE loss makes the esti-

mation of DC components more accurate, while increasing

errors in higher frequency groups. However, DBE improves

the overall performance by estimating shallow depths more

reliably. The FDC of multiple depths improves the estima-

tion performance in most frequency groups. In particular,

the improvements around 21 ∼ 24 Hz are remarkable.

Figure 7(b) compares the proposed algorithm with the

state-of-the-art conventional algorithms [3, 5, 19]. The pro-

posed algorithm yields the best performances in most fre-

quency groups. Especially, from 21 to 24 Hz, corresponding

to fine-grain details of depth maps, the proposed algorithm

reduces errors about 5%, in comparison with the conven-

tional algorithms.

Figure 7(c) shows the results when the proposed FDC

technique is combined with the Laina et al.’s algorithm [19].

FDC also improves the Laina et al.’s algorithm [19] in range

of 21 ∼ 25 Hz. This indicates that FDC is independent of

the network structure and thus can be combined with vari-

ous CNN-based depth estimators to improve the fine-grain

details of depth maps.

Finally, Figure 7(d) shows the results when changing the

number k of candidates to 2, 6, 10 or 18 of the FDC. The

increase of k leads to a performance improvement in all fre-

quency groups. In particular, improvement in the high fre-

quency group is remarkable.

5. Conclusions
We proposed a CNN-based single-image depth estima-

tor, which generates multiple depth map candidates and

combines these candidates in the Fourier frequency do-

main. Specifically, we developed the CNN structure based
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(a) (b) (c)

(d) (e) (f)

Figure 5. Examples of depth maps, obtained by the pro-

posed algorithm in various settings: (a) input image, (b) ResNet-

152, (c) DEN, (d) DEN+DBE, (e) DEN+DBE+FDC(18), and

(f) ground-truth.
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Figure 6. Reconstruction errors of depth maps when all frequen-

cies in each frequency group are set to zero.

on ResNet-152, and introduced the DBE loss to train the

network reliably for a wide range of depths. Also, we gen-

erated multiple depth map candidates by cropping an in-

put image with various cropping ratios. Then, to exploit

the complementary properties of different depth map can-

didates, we combined them in the Fourier domain. Exper-

imental results demonstrated that proposed algorithm out-

performs the conventional algorithms significantly. More-

over, the Fourier domain analysis validated that each com-

ponent of the proposed algorithm contributes to the reduc-

tion of estimation errors in most frequency bands.
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Figure 7. Frequency domain analysis of relative depth errors:

(a) component analysis of the proposed algorithm, (b) comparison

with the conventional algorithms, (c) combination of the proposed

FDC technique with the Laina et al.’s algorithm [19], and (d) com-

ponent analysis according to the candidate number in FDC.
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