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Abstract

In this paper, we study an international portfolio selection problem, which allocates wealth in

different security markets. We built an international portfolio selection model with a chance

constraint to guarantee the portfolio performance over a benchmark in a large probability. We

use some market factors to explain the return rates of risky securities. We use a copula model to

capture the nonlinear dependence structure of the factors and exchange rates. We design a new

efficient algorithm based on partial sampling approximation and sequence convex approximation

to solve the chance constrained international portfolio selection problem. Numerical tests in a

practical international portfolio management problem illustrate the reasonability and superior

out-of-sample performance of the proposed model.

Keywords: Stochastic programming, Chance constraint, International portfolio optimization,

Multi-factor model, Partial sampling approximation

1. Introduction

1.1. Research background

In recent years, financial crises have occurred frequently in investment markets, for instance,

the financial crisis of the United States (USA) market in 2009, the financial crisis of the Hong

Kong market in 2015, and the long depression of European (EURO) market from 2010 to now.

Due to the homogeneity of risky assets, portfolio management in a single market could not

resist the market’s systemic risk in financial crises. On the contrary, international portfolio

management is an important investment tool, which can invest in foreign markets when the

base market is in recession. It benefits from (a) the prospect for higher profit in the event

of favorable performance of foreign markets, (b) wider scope for diversification, (c) reduced

exposure to systematic risk due to generally low correlations of international securities [26].

With the globalization of economics, investments in foreign securities are becoming accessible

to more investors. Thus, the international portfolio selection problem attracts more attention

from both practical investors and researchers.

1.2. Literature review

The significant difference between international portfolio optimization from classical (do-

mestic) portfolio optimization is to consider the impact of exchange rate risk [11]. Adler and
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Dumas (1983) deal with portfolio choices in a unified worldwide capital market. Topaloglou et

al. [26] built a dynamic stochastic programming model with CVaR measure for international

portfolio management and solved it by the scenario tree approach. Maroua and Prigent [22]

analyzed the international portfolio optimization problem by introducing the higher moments

of the main financial index returns. Fonseca and Rustem [9] studied multi-period robust port-

folio optimization with affine policies. Jiang et al. [15] studied the exchange rate risk based on

behavioral portfolio theory in an international portfolio selection model. Topaloglou et al. [27]

developed scenario-based stochastic programming models for hedging the risks of international

portfolios using options. Luan et al. [21] studied distributionally robust international portfo-

lio optimization with worst-case mean-CVaR. Although these models include random exchange

rates, they do not specifically consider the impact of investment benchmarks.

To deal with the investment problems when the investor holds a benchmark, we can use

chance constraints to give a probability guarantee on the portfolio return over the benchmark.

Chance constraints are widely adopted in financial problems such as index tracking, bankrupt

control, and pension fund portfolio[25]. Li et al. [17] studied safety-first multi-period port-

folio selection problems, which involve a chance constraint on terminal wealth and find its

closed-form solution. Zhu et al. [31] further solved the multi-period portfolio selection problem

with bankrupt constraints. Xu et al.[29] presented a novel sparse enhanced indexation model

with distributionally robust chance and cardinality constraints. Ji and Lejeune [14] proposed

a stochastic risk budgeting multi-portfolio optimization model with marginal risk constraints

and applied it to general chance-constrained optimization problems. Chen et al. [3] proposed a

sparse portfolio selection model with chance constraints and reformulated it as a difference of

convex optimization problem.

The major solution difficulty of a chance-constrained optimization problem comes from the

non-smooth indicator function if we formulate the chance constraint in an expected value func-

tion form. When the random and decision variables are separable, some individual chance

constraints can be reformulated as a deterministic equivalent problem by using the inverse dis-

tribution function [24]. Under the assumptions of Gaussian (normal) distribution, Student’s

T distribution or Q-radial distribution, a linear individual chance constraint is equivalent to a

second-order cone constraint [2, 24]. Under the elliptical distributions, logarithmic concave dis-

tributions or r-concavity distribution-based assumptions, e.g., Gaussian, Student’s T , Wishart,

Dirichlet, a linear individual chance constraint is convex when the confidence level is greater

than 0.5 [7, 12]. For non-separable problems, the linear individual chance constraint under

elliptical distributions is convex when the confidence level is large enough [28]. Henrion and

Strugarek [13] used copulas to characterize the nonlinear dependence structure of random vari-

ables between different rows. Given the log exp-concave property of the copula function, they

obtained a sufficient condition of convexity for a joint chance-constrained problem with sepa-

rated random vectors. Cheng et al. [5] proposed a semidefinite programming approximation

for a joint chance-constrained programming problem with Archimedean’s copula dependence

structure.

1.3. Difficulty points of applying chance constraints in international portfolio optimization

Although there is a rich amount of research on chance-constrained optimization problems

with applications in financial decision-making, to the best of our knowledge, it has not been
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successfully applied to international portfolio selection problems. The reason can be illustrated

as follows.

First, different from classical portfolio selection in one market, the international portfolio

selection model should consider the impact of random exchange rates, bringing some product

terms of random variables in a chance constraint. However, reformulations and solution methods

for such non-linear chance constraints have not been well studied.

Second, it is well known that random returns in different markets are often non-linear de-

pendent [6]. Thus, the classical solution methods based on independence assumption [4, 19],

linear-dependence structure assumption do not work well in the chance-constrained international

portfolio optimization model with non-linear dependence structure.

Third, international portfolio selection brings a great number of assets into the investment

pool leading to a large dimensional chance constraint. Estimating the non-linear dependent

joint distribution of a large number of random variables is a challenging task in statistics.

1.4. Motivation of our approach: copula model, factor model and partial sampling

From the second point above, we find that the key modeling issue in an international port-

folio management problem is the nonlinear dependence relationship between different markets.

Copulas are a class of connection functions that describe the dependence structure between

random variables. It is widely used in finance and insurance. Many researchers use copula

for risk management or combine copula and time series for economic forecasting [16, 30]. This

paper uses the copula model to describe the dependence between different markets. However,

estimating a copula, even for the simplest Archimedes’s or Gaussian one, suffers from the curse

of dimensional issue, i.e., the difficulty of parameter estimation and computation in applications

increases exponentially to the dimensional of the risky assets. However, a large-size asset pool

is an inherent feature of international portfolio management. Thus, the traditional approach

fitting all random return rates as a copula is not practical and tractable in international portfolio

optimization problems.

The factor model provides us with a new approach to address this issue. It is an efficient

modeling approach that explains the return rates of risky assets by some common market factors

and independent residue errors [1]. According to the capital assets pricing model [18], the stock

return rate has a linear relationship with the systematic risk of the entire stock market. Thus,

it is natural to use a linear regression model to describe the return rates of risky assets by the

factors, and i.i.d residues [8].

After using factors to explain the return rates, we can divide the random variables in the

chance-constrained international portfolio selection model into two groups. One group contains

factors, exchange rates, and the benchmark, which play a key role in the dependence between

different markets. Then we use a copula model to characterize the joint distribution of the

random variables in the first group. The other random variables are the Gaussian distributed

residuals, independent of each other and the former group.

Then, we borrow the idea from [4], and [20] to make a sample approximation to some

random variables with a highly non-linear dependence structure, called partial sampling. At

the same time, we keep the other residues still as Gaussian distributions themselves. Thus, we

can get a mixture Gaussian distribution approximation, leading to a tractable and asymptotic

tight approximation. Then, to address the bi-linear terms in the reformulation, we apply the

sequence convex approximation approach, which converges to a stationary point.
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By doing so, we can largely reduce the dimensionality of the copula model without reducing

the model’s accuracy. Thus, we can handle hundreds or thousands of assets in the international

portfolio selection model without exponentially increasing the model complexity.

1.5. Structure of the paper and contribution

International portfolio
selection problem

Chance constrained
optimization model

Solution approach

• random exchange
rate

• non-linear depen-
dence between
markets

• large-scale stock
pool

• product of random
variable

• copula model

• factor model

• partial sampling

• sequential convex
approximation

Figure 1: Main modelling approach and solution methods.

Figure 1 illustrates this paper’s main ideas and solution methods. We conclude the contri-

bution of this paper with the following three points:

• For the first time, we study the international portfolio optimization problem with a chance

constraint considering the random exchange rate and non-linear dependence structure

between different markets.

• We use a factor model to explain the random return rates, which largely reduce the

computational difficulty of the chance-constrained optimization problem.

• We propose an efficient solution algorithm based on the partial sampling approach and

the sequence convex approximation.

The paper is in the following structure: Section 2.1 introduces the international portfolio

selection model with chance constraints, where we use market factors to explain the return rates

and use a copula model to model the nonlinear dependence structure of the factors, exchange

rates, and benchmark. In Section 3, we propose a tractable solution method using the partial

sampling approximation and sequential convex approximation algorithm. Section 4 carries out a

series of numerical tests in the USA, Hong Kong, and European markets, with empirical market

data.

2. Model formulation

This section introduces the international portfolio selection model with chance constraints.

We use some market factors to explain the return rates of stocks, introduced in Section 2.2. We
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introduce the copula model in Section 2.3 and use a Gaussian or Student’s t copula to fit the

nonlinear dependence structure of the factors, exchange rates, and benchmark. The marginal

distributions of the copula are Student’s t distribution which captures the high kurtosis and

heavy-tailed property of the factors and exchange rates.

2.1. Chance constrained international portfolio selection model

Table 1: Notations

Sets and matrices:

M = {mb,m1, · · · ,mM} set of markets (synonymously for countries and currencies);

mb investor’s base market (for instance, USA in our numerical test), mb ∈M;

Mf set of foreign markets, i.e.,Mf =M\ {mb};
M number of foreign markets, i.e., M = |M| − 1;

Nm set of risky assets in market m ∈M;

Nm number of risky assets in market m ∈M, i.e., Nm = |Nm|;
IN N ×N dimensional identity matrix;

1N or 1 N dimensional all-one vector;

0N or 0 N dimensional all-zero vector;

Km number of factors in market m ∈M;

Deterministic input parameters:

h0m initial wealth held in the risk-free asset of marketm ∈M (account in local currency);

rrfm risk-free return rate in market m ∈M;

u0
m = [u01,m, · · · , u0Nm,m]⊤ initial portfolio in market m ∈M;

u0i,m the wealth held in the i-th risky asset in market m (account in local currency);

e0m current exchange rate of currency m ∈Mf, relative to base currency mb;

θm transaction cost rate of buying or selling assets in market m ∈M;

θex transaction cost rate for currency exchanges;

Random input parameters:

rm = [r1,m, · · · , rNm,m]⊤ return rate vector of risky assets in market m ∈M over the investment;

em exchange rate of currency m ∈Mf, relative to mb over the investment;

y benchmark;

fm = [f1
m, · · · , fKm

m ]⊤ factors vector in market m ∈M;

Decision variables:

w nominal final wealth of the portfolio (in base currency mb);

um = [u1,m, · · · , uNm,m]⊤ portfolio after re-balance in market m ∈M;

bm = [b1,m, · · · , bNm,m]⊤ vector of cash amounts for buying assets in market m ∈M (in local currency);

sm = [s1,m, · · · , sNm,m]⊤ vector of cash amounts for selling assets in market m ∈M (in local currency);

hm cash invested in risk-free asset in market m ∈M (in local currency);

gm expenditure of base currency mb for purchase of foreign currency m ∈Mf;

qm expenditure of foreign currency m ∈Mf for purchase of base currency mb.

We consider an international portfolio selection problem for investors such as an international

portfolio fund manager. We suppose the investor is in a base market (for instance, the USA in our

numerical test). We regard the currency in the base market as the base currency and the other

currencies in foreign markets as foreign currencies. The investor may allocate his/her wealth in

the base market or several foreign markets. He/she can invest in risky assets or a risk-free asset

in a local market. Following Topaloglou et al. [26], no direct exchanges are executed between

two foreign currencies to simplify the model. There are only currency exchanges between a

foreign currency and the base currency. To reposition the investments from one foreign market

m1 to another foreign market m2, the investor should first sell some foreign assets in market m1,

then transfer the cash to base currency USD, purchase some foreign currencies in market m2 and
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Figure 2: Investment process.
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finally by assets in market m2. To simulate the international portfolio re-balance process more

realistically, we consider transaction costs of risky asset buying/selling and currency exchange.

Table 1 lists notations used in the model.

The investor joins the international market with an initial portfolio allocated in different

markets. The investor forecasts assets’ return rates in different markets by some distributions

regarding the future state of the economy. He/she can then use an optimization model to

determine an optimal portfolio with the forecasted return information of the securities. The

portfolio’s final wealth (nominal in base currency for evaluation) depends on the realization

of random asset returns and random exchange rates after the investment process. Figure 2

illustrates the whole investment process, including initial portfolio, re-balance, investment profit,

and final evaluation.

All vectors and matrices are in bold. In some places of the paper, the subscripts of some

standard matrices or vectors, for instance, IN , 1N , or 0N , are omitted when without losing

clarity. We list some key assumptions in what follows.

Assumption 1. Assume that

• The investment process is self-financing;

• No short selling is allowed;

• No direct exchanges are executed between two foreign currencies;

• All asset buying/selling and currency exchanges can be realized in real-time;

• There are transaction costs of buying or selling risky assets in all markets, linear to the

transaction amount;

• There are transaction costs for currency exchanges, linear to the transaction amount;

• There is no transaction cost of buying or selling risk-free assets in all markets.

The investor has in her/his mind a random benchmark, which may be the final wealth of

a benchmark investment strategy or a benchmark international portfolio management fund.

The investor aims to find a portfolio maximizing the expectation of the nominal final wealth;

meanwhile, he/she hopes the nominal final wealth exceeds the benchmark in a large probability.

We can formulate this international portfolio selection problem as a stochastic optimization

model with a chance constraint.

(IC)

max
u,b,s,h,g,q

E [w] (1a)

s.t. um = u0
m + bm − sm, m ∈M, (1b)

h0mb
+ (1− θmb

)1⊤smb − (1 + θmb
)1⊤bmb +

∑
m∈Mf

(1− θex)e
0
mqm −

∑
m∈Mf

gm

= hmb
, (1c)

h0m + (1− θm)1⊤sm − (1 + θm)1⊤bm + (1− θex)
gm
e0m
− qm = hm,m ∈Mf, (1d)

w = rrfmb
hmb

+ r⊤mb
umb

+
∑

m∈Mf

{
em

(
rrfmhm + r⊤mum

)}
, (1e)

P (w ⩾ y) ⩾ 1− ϵ, (1f)
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sm ⩽ u0
m, m ∈M, (1g)

gm ⩽ ĝm, qm ⩽ q̂m, m ∈Mf, (1h)

um,i ⩽ ûm,i, i = 1, ..., Nm, m ∈M, (1i)

um, bm, sm ∈ RNm
+ , hm, gm, qm ∈ R+,m ∈M. (1j)

We denote the buying, and selling amounts vector of risky assets in market m as bm and

sm. Thus we have the portfolio balance equations, which is formulated by constraint (1b).

Constraint (1c) is the risk-free asset re-balance equation in the base market. Constraint (1d)

is the risk-free asset re-balancing equation in foreign markets. As there is no transaction cost

for risk-free asset buying/selling, we can view the risk-free asset as cash. Thus, we can view

(1c)-(1d) as usual cash re-balance constraints with transaction costs of both risky asset buy-

ing/selling and currency exchanges. Constraint (1e) defines the nominal final wealth, which is

the summation of wealth in all markets accounted in base currency. Constraint (1f) is a chance

constraint guaranteeing a large probability that the international portfolio return exceeds the

benchmark. Constraint (1g) guarantees that the amount of selling a risky asset cannot exceed

the initial holding. Constraints (1h) limits the maximal amount of daily flow-in and flow-out of

the international transfer between a foreign market m and the base market, where ĝm and ĥm
are the upper bounds of the cash amount maximal transferred in/out the market m from/to

the base market. Constraint (1i) limits the upper bound of the amount invested in each risky

asset. A classical choice of the upper bound is a proportion to current wealth in a market

ûm,i = λ
(∑Nm

i=1 u
0
m,i + h0m

)
, i = 1, . . . , Nm, m ∈M.

Model (1a)-(1j) is a stochastic optimization problem with a chance constraint, where the

randomness arises from the return rate rm, the currency exchange rate em, and the benchmark

y. In the next three subsections, we will introduce the statistical description of the random

vector/variables rm, em, and y.

The key modeling issue in an international portfolio management problem is the nonlinear

dependence structure of random returns/exchange rates in different markets. We first use a

factor model [8] to explain the return rates of risky securities by some common market factors

and independent residue errors. Then we use a copula function to describe the dependence

structure of the market factors, the exchange rate, and the benchmark and then explain the

return rates by the factors.

2.2. Factor model for rm

We assume that there are Km market factors in market m ∈ M. We use a multi-factor

model to explain the return rate of risky assets

ri,m − rrfm =

Km∑
k=1

βk
i,mfk

m + δi,m, i = 1, ..., Nm, m ∈M, (2)

where ri,m is the return rate of the ith asset in market m; rrfm is the risk-free return rate of

market m; fk
m is the kth market factor in market m and βk

i,m is its loading parameter to the ith

asset, δi,m is the residue error. The residue errors δi,m, i = 1, ..., Nm are independent to each

other and the factors as well. We suppose that the residue errors of risky assets in market m

follows a multivariate Gaussian distribution N(µm,Σm), where µm = [µ1,m, ..., µNm,m]⊤ is the
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mean value vector and Σm = {σ2
i,m}i=1,...,Nm is the diagonal covariance matrix, m ∈M.

A popular choice of the market factors is the Fama-French three-factor model, which sets

f1
m as Mkt-RF (the excess return factor on the market), f2

m as SMB (small minus big factor),

and f3
m as HML (high minus low factor).

2.3. Copula model for factors, exchange rates and benchmark

To reduce complexity, we model the non-linear dependence structure between market factors

rather than the return rates of risky assets. For this sake, we use a copula model to describe the

non-linear dependence structure between factors, exchange rates, and the benchmark. We de-

note all the factors, exchange rates and benchmark as a vector ξ = [f⊤
mb

,f⊤
m1

, ...,f⊤
mM

, e1, ..., eM , y]⊤,

where fm = [f1
m, . . . , fKm

m ]⊤,m ∈ M. We introduce the definition and basic properties of the

copula model.

Definition 1. (Copula [23]) An n-dimensional copula, denoted by C(u) = C(u1, ..., un) :

[0, 1]n → [0, 1], is a distribution function on [0, 1]n with standard uniform marginal distributions,

which satisfies the following three properties:

(1) C(u1, ..., un) is increasing in each component ui.

(2) C(1, ..., 1, ui, 1, ..., 1) = ui for all i ∈ 1, ..., n, ui ∈ [0, 1].

(3) For all (a1, ..., an), (b1, ..., bn) ∈ [0, 1]n with ai ⩽ bi we have

2∑
i1=1

· · ·
2∑

in=1

(−1)i1+···+inC(u1,i1 , ..., un,in) ⩾ 0, (3)

where uj,1 = aj and uj,2 = bj for all j ∈ {1, ..., n}.

Proposition 1. (Sklar’s Theorem [23]) Let F be a joint distribution function with margins

F1, ..., Fn. Then there exists a copula C : [0, 1]n → [0, 1] such that, for all x1, ..., xn in R̄ =

[−∞,∞],

F (x1, ..., xn) = C (F1(x1), ..., Fn(xn)) . (4)

If the margins are continuous, then C is unique; otherwise C is uniquely determined on RanF1×RanF2×
· · ·×RanFn, where RanFi = Fi(R̄) denotes the range of Fi. Conversely, if C is a copula and

F1, ..., Fn are univariate distribution functions, then the function F defined in (4) is a joint

distribution function with margins F1, ..., Fn.

The idea of Sklar’s theorem comes from the fact that an n-dimensional joint distribution

function can be decomposed into n marginal distributions and the dependence between these

marginal distributions. The copula function proposed by Sklar is such a distribution function

that can fully capture the dependence structure between marginal distributions. This theo-

rem provides an efficient way to build suitable multivariate distributions from known marginal

distributions.

The copula distribution function also has a density form:

c (u1, · · · , un) =
f (x1, · · · , xn)∏n

i=1 fi (xi)
, (5)

where f (·) is the joint density function with marginal densities fi (·), i = 1, . . . , n.
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Another important advantage of copulas is that they do not require the similarity of marginal

distributions, and the choice of the copula does not depend on the marginal distributions.

Thus, the dependence structure of a copula can be considered independent of the marginal

distributions.

2.4. Gaussian copula and Student’s t copula

The Gaussian copula is the most basic and widely used class of copula functions, which

can capture the location and dispersion feature of the dependence. The Student’s t copula can

capture fat/light-tailed dependence structure.

Definition 2. An n-dimensional Gaussian copula with correlation matrix R can be described

as following:

CGaussian
R (u1, · · · , un;R) = ΦR

(
Φ−1 (u1) , · · · ,Φ−1 (un)

)
. (6)

The density function of the Gaussian copula can be calculated as:

cGaussian
R (u1, · · · , un;R) = |R|−

1
2 exp

{
−1

2
Z⊤ (R−1 − I

)
Z

}
, (7)

where Z = (Z1, · · · , Zn)
⊤ =

(
Φ−1 (u1) , · · · ,Φ−1 (un)

)⊤
, ui = Fi (xi), i = 1, . . . , n, ΦR is the

c.d.f. of an n-dimensional Gaussian distribution with mean at zero and correlation matrix R,

Φ−1 is the inverse distribution function of the standard Gaussian distribution N(0, 1).

Definition 3. An n-dimensional Student’s t copula with degrees of freedom ν and correlation

matrix R can be described as following:

CT
R,ν (u1, · · · , un;R, ν) = TR,ν

(
T−1
ν (u1) , · · · , T−1

ν (un)
)
. (8)

The density function can be calculated as:

cTR,ν (u1, · · · , un;R, ν) = |R|
1
2
Γ
(
ν+n
2

)
Γ
(
ν
2

) (
Γ
(
ν
2

)
Γ
(
ν+1
2

))n (
1 + 1

νZ
⊤R−1Z

)− ν+n
2

∏n
j=1

(
1 +

Z2
j

ν

) ν+1
2

, (9)

where Z = (Z1, · · · , Zn)
⊤ =

(
T−1
ν (u1) , · · · , T−1

ν (un)
)⊤

, TR,ν is c.d.f of an n-dimensional t

distribution tn(ν, 0, R) with mean value 0, correlation matrix R and degree of freedom ν, T−1
v is

the quantile function of univariate standard Student’s t distribution tn(ν,0,R) with degrees of

freedom ν.

In practice, it is not easy to specify the best copula function in the model. In our numerical

tests, we consider both Gaussian and Student’s t copulas as two instances to fit the dependence

structure between factors, exchange rates, and the benchmark and then compare their practical

performances.

It is worth mentioning that changing the Gaussian/t copula into an arbitrary copula does

not affect the tractability of the proposed international portfolio selection model.
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2.5. Marginal distributions of factors, exchange rates and benchmark

In order to reflect the high kurtosis and fat-tailed property of the factors, exchange rates,

and the benchmark, we select the Student’s t distribution as marginal distribution. The density

function of a Student’s t distribution t1(ν, µ, σ) can be written as

f(x) =
Γ(ν+1

2 )

σ
√
νπΓ(ν2 )

[
ν + (x−µ

σ )2

ν

]− ν+1
2

,

where Γ(·) is the Gamma function, µ is the location parameter, σ is the scale parameter and ν

is the degree of freedom. In practical use, we can change the Student’s t distribution into an

arbitrary distribution without reducing the tractability of the proposed international portfolio

selection model.

3. Tractable approximation and solution algorithm

In this section, we investigate the solution approach of the international portfolio selec-

tion model with chance constraint (IC) by using the partial sampling approximation and the

sequence convex approximation approaches.

3.1. Partial sampling approximation

The major difficulty in solving the international portfolio selection problem arises from the

chance constraint (1f). First, the chance constraint involves a large number of random vari-

ables with different kinds of dependence structures. The curse of dimensionality in distribution

estimation and computation makes the classical sampling method inefficient, for instance, the

sample approximation approach (SAA). Second, the model contains a product of non-Gaussian

distributed exchange rates and return rates. Thus, we can not find a tractable reformulation,

like classical chance-constrained portfolio optimization with Gaussian distributed return rates.

We observe that after using factors to explain the return rates, the random variables in the

model can be divided into two groups. ξ = [f , e, y] contains factors, exchange rates, and the

benchmark which has a copula dependence and t marginal distributions; δ are the Gaussian

distributed residuals, which are independent to each other and ξ.

Then, we borrow the idea from [4] and [20] to make a sample approximation to some of the

random variables with a highly non-linear dependence structure. At the same time, we keep the

other residues still as Gaussian distributions. Thus, we can get a mixture Gaussian distribution

approximation, leading to a tractable reformulation.

In detail, according to equation (2), the final wealth w defined in equation (1e) can be

expressed as

w =rrfmb
hmb

+

Nmb∑
i=1

Kmb∑
k=1

βk
i,mb

fk
mb

+ δi,mb
+ rrfmb

ui,mb

+
∑

m∈Mf

{
em

[
rrfmhm +

Nm∑
i=1

(
Km∑
k=1

βk
i,mfk

m + δi,m + rrfm

)
ui,m

]}
, (10)
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which is constituted by random variables ξ = [f , e, y] and random residuals δ. We separate the

random variables into two groups and rewrite the individual chance constraint (1f) as

Eξ [Pδ(w ≥ y | ξ)] ≥ 1− ϵ,

by the tower property of the expected value function.

Then, we approximate the distribution of ξ with L i.i.d samples, ξ(1), ξ(2), ..., ξ(L), where

ξ(l) = [fmb
(l)⊤,fm1(l)

⊤,fm2(l)
⊤, ..., e1(l), ..., eM (l), y(l)]⊤, l = 1, ..., L,

are drawn from the copula function with marginal distributions defined in Sections 2.3 and 2.5

by using the Monte-Carlo method.

By using the samples of ξ, we get a sample average approximation of the outer-level expected

value function

1

L

L∑
l=1

[P(w ≥ y(l) | ξ = ξ(l))] ≥ 1− ϵ, (11)

which is equivalent to the following group of constraints

L∑
l=1

zl ≥ L(1− ϵ), (12)

P(w ≥ y(l) | ξ = ξ(l)) ≥ zl, l = 1, ..., L, (13)

with auxiliary variables z = [z1, z2, . . . , zL]
⊤ ∈ [0, 1]L.

We can find from (10) that w is linear to the Gaussian distributed residuals δi,m, i = 1, ...Nm,

m ∈ M. And δi,m is assumed to follow i.i.d. Gaussian distribution in Section 2.2. Thus,

conditional on the sample value ξ = ξ(l), w follows a univariate Gaussian distribution with

mean value

µ(l) =rrfmb
hmb

+ u⊤
mb

Bmb
fmb

(l) + µ⊤
mb

umb
+ rrfmb

1⊤umb

+
∑

m∈Mf

em(l)(rrfmhm + u⊤
mBmfm(l) + µ⊤

mum + rrfm1⊤um), l = 1, . . . , L, (14)

and variance

σ2(l) = u⊤
mb

Σmbumb
+
∑

m∈Mf

em(l)2u⊤
mΣmum, l = 1, . . . , L, (15)

where Bm = [β1,m,β2,m, ...,βNm,m]⊤, βi,m = [β1
i,m, β2

i,m, ..., βKm
i,m ]⊤, i = 1, ..., Nm, m ∈M.

We have from the property of the Gaussian distribution that

P(w ≥ y(l) | ξ = ξ(l)) = P
(
−w + µ(l)

σ(l)
≤ −y(l) + µ(l)

σ(l)
| ξ = ξ(l)

)
= Φ

(
−y(l) + µ(l)

σ(l)

)
,

where −w+µ(l)
σ(l) follows a standard Gaussian distribution N(0, 1) conditional on ξ = ξ(l), l =

1, 2, . . . , L. Φ(·) is the distribution function of N(0, 1).

12



Then we can reformulate (13) as the following SOCP constraints

Φ−1(zl)

√
u⊤
mb

Σmb
umb

+
∑

m∈Mf

em(l)2u⊤
mΣmum − rrfmb

hmb
− u⊤

mb
Bmb

fmb
(l)− µ⊤

mb
umb

− rrfmb
1⊤umb

−
∑

m∈Mf

em(l)(rrfmhm + u⊤
mBmfm(l) + µ⊤

mum + rrfm1⊤um) + y(l) ≤ 0,

l = 1, ..., L, (16)

where Φ−1(·) is the inverse distribution (quantile) function of N(0, 1).

Then we have an approximation of (IC),

(ICL) max
u,b,s,h,g,q,z

1

L

L∑
l=1

(
rrfmb

hmb
+ u⊤

mb
Bmb

fmb
(l) + µ⊤

mb
umb

+ rrfmb
1⊤umb

+
∑

m∈Mf

em(l)(rrfmhm + u⊤
mBmfm(l) + µ⊤

mum + rrfm1⊤um)

)
s.t. (1b)− (1d), (1g)− (1j), (12), (16), 0 ≤ zl ≤ 1, l = 1, ..., L.

Compared with the SAA method, we only generate samples for a small subset of random

variables. The SAA method would face the dimensional curse problem as it generates samples

for all random variables when we apply both methods to a large-scale problem.

3.2. Convergence analysis of the partial SAA

Applying the convergence results of the SAA method to the outer-level approximation, we

can show that (ICL) converges to (IC) when we use many enough i.i.d. samples.

Theorem 1. Suppose some constraint qualification for (IC) holds such that for some optimal

solution x of (IC), there exists a sequence of points xL in feasible set of (ICL) with L i.i.d

samples such that xL → x w.p.1. The optimal value of (ICL) converges to the optimal value of

(IC) when L→ +∞.

Proof. We denote

C(x, ξ) = P(w(x) ≤ y | ξ) = E[1[0,∞](y − w(x))) | ξ].

As w(x) is continuously distributed, the constraint (1f) can be written as

p(x) = Eξ[C(x, ξ)] ≤ ϵ,

and the sample average approximation constraint can be written as

p̂L(x) =
1

L

L∑
l=1

[C(x, ξ(l))] ≤ ϵ.

By the property of conditional expectation operator, we have that C(x, ξ) is random lower

13



semi-continuous. Then by Theorem 7.48 and 7.51 in [7], p(x) is continuous and p̂L(x) converges

to p(x) w.p.1 uniformly on the feasible set of x.

Then we can obtain the convergence result of the optimal value by Theorem 5.5 in [7].

3.3. Sequential convex approximation algorithm

The problem (ICL) is a non-convex optimization problem due to the bi-convex terms in

(16). We thus consider using the sequential convex approximation approach. The basic idea

is to decompose the problem into sub convex problems under the condition that a subset of

variables is fixed.

For problem (ICL), we first fix z = zn and update u, b, s,h, g, q by solving

(SQ1)

max
u,b,s,h,g,q

1

L

L∑
l=1

(
rrfmb

hmb
+ u⊤

mb
Bmb

fmb
(l) + µ⊤

mb
umb

+ rrfmb
1⊤umb

+
∑

m∈Mf

em(l)(rrfmhm + u⊤
mBmfm(l) + µ⊤

mum + rrfm1⊤um)

)
(17)

s.t. (1b)− (1d), (1g)− (1j), (18)

Φ−1(znl )

√
u⊤
mb

Σmbumb
+
∑

m∈Mf

em(l)2u⊤
mΣmum − rrfmb

hmb
− u⊤

mb
Bmb

fmb
(l)

−µ⊤
mb

umb
− rrfmb

1⊤umb
−
∑

m∈Mf

em(l)(rrfmhm + u⊤
mBmfm(l) + µ⊤

mum

+rrfm1⊤um) + y(l) ≤ 0, l = 1, ..., L, (19)

and then fix u = un, b = bn, s = sn,h = hn, g = gn, q = qn and update z by solving

(SQ2) max
z∈RL

+

L∑
l=1

ϕlzl (20)

s.t. zl ≤ Φ

(
−y(l) + µ(l)

σ(l)

)
, l = 1, · · · , L, (21)

L∑
l=1

zl ≥ L(1− ϵ), (22)

0.5 ≤ zl ≤ 1, l = 1, . . . , L, (23)

where µ(l) and σ(l) are calculated by (14) and (15). ϕ = [ϕ1, . . . , ϕL]
⊤ is an artificial search

direction for z as the objective function in (ICL) does not contain z.

We then solve (SQ2) and (SQ2) alternately in each iteration of the algorithm. The flowchart

of the sequential convex approximation is given in Algorithm 1.

Proposition 2. With a fixed z feasible to (SQ2), the problem (SQ1) is a convex programming

problem; with fixed u, b, s,h, g, q found by (SQ1), (SQ2) is a linear program.
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Algorithm 1 Sequential convex approximation

Require:
Choose an initial point z0 of z feasible to (22)-(23). Set n = 1.

Ensure:
while n ≤ nmax and ||zn−1 − zn|| ≥ ϵ do
• Solve problem (SQ1) with zn−1; let un, bn, sn,hn, gn, qn be an optimal solution of (SQ1),
let κn be the optimal Lagrangian multiplier (dual variable) of constraint (19), and let vn

be the optimal value of (SQ1).
• Solve problem (SQ2) with un, bn, sn,hn, gn, qn, κn, where

ϕl = κnl · (Φ−1)′(znl )

√
u⊤
mb

Σmb
umb

+
∑

m∈Mf

em(l)2u⊤
mΣmum,

and µ(l) and σ(l) are updated by (14) and (15) with un.
let z̃ denote an optimal solution of (SQ2).
• zn+1 ← zn + τ(z̃ − zn), n← n+ 1. Here, τ ∈ (0, 1) is the step length.

end while
Output: un, bn, sn,hn, gn, qn, vn

Proof. The only key point is to show the convexity of the term√
u⊤
mb

Σmb
umb

+
∑

m∈Mf

em(l)2u⊤
mΣmum,

and the positiveness of Φ−1(znl ). As the covariance matrix of the residuals from the multi-factor

model is diagonal, the square root term can be reformulated as√√√√√Nmb∑
i=1

(σi,mb
ui,mb

)2 +
∑

m∈Mf

Nm∑
i=1

(em(l)σi,mui,m)2,

which is a composition of the outer-level L2-norm function, which is increasing and convex, and

the inner-level linear terms.

The inverse distribution function Φ−1(x) is nonnegative on (0.5, 1). The last constraint in

(SQ2) guarantees that the value of zl at each iteration step is larger than or equal to 0.5.

When these sub-problems are all convex, the objective function is continuous, and the feasible

set is closed, the sequence convex approximation algorithm converges monotonically to a partial

optimum point of (ICL) (Theorem 4.7 [10]). When the objective function is a differentiable and

biconvex function, (x, z) is a partial optimum point if and only if (x, z) is a stationary point

(Corollary 4.3 [10]). Thus, the proposed algorithm converges to a stationary point of (ICL).

15



4. Numerical experiments

In this section, we carry out a series of numerical tests of the proposed international portfolio

selection model in practical international investment. Section 4.1 introduces the setting of the

international portfolio selection model. In Section 4.2, we use the historical data in USA/Hong

Kong/European markets to estimate the parameters of the factor model and the copula model.

We then apply the model to the out-of-sample investment simulation by a rolling forward ap-

proach. We then show the statistics and cumulative curves of the out-of-sample portfolio return

series using two different copulas in Sections 4.3 and 4.4. To better illustrate the superior per-

formance of the proposed international portfolio selection model, we compare the performance

with chance constrained portfolio selection model in a single market in Section 4.5.

4.1. Test setting

We, in this subsection, introduce the choice of the benchmark, stock pool, market factors,

and exchange rates. We then introduce the basic setting of the investment procedure in the

out-of-sample period.

4.1.1. Stock pool

We assume that the international portfolio selection model is run by an international invest-

ment fund based in the USA. The three targeting investment markets are the domestic USA

market (base market), the European market, and the Hong Kong market.

We choose 55 stocks from Dow Jones Average Index in the USA market, 27 stocks from

Euro Stoxx 50 Index in the European market, and 45 stocks from Hang Seng Index in the

Hong Kong market to constitute the stock pool (Table 2). We select these stocks as they have

complete historical data between 2006-2021. We collect these stocks’ daily closed prices (in local

currency) from November 01, 2006, to August 31, 2021, and compute their daily return rates

starting from November 02, 2006.

Table 2: Stock pool

USA

AAPL AXP BA CAT CSCO CVX DD DIS GE

GS HD IBM INTC JNJ JPM KO MCD MMM

MRK MSFT NKE PFE PG TRV UNH V VZ

WMT XOM ALEX CAL CHRW CSX EXPD FDX JBLU

LSTR LUV NSC R UNP UPS AEP AES CNP

D DUK ED EIX EXC FE FPL NI PCG

PEG SO WMB

Europe

ABI AD AIR AIRP ASML AXAF BNPP DANO ENGIE

ENI ESLX INGA ISP LVMH OREP PERP PHG PRTP

SAF SAN SASY SCHN SGEF TTEF VIV

Hong Kong

00002 00003 00005 00006 00011 00012 00016 00027 00066

00101 00175 00267 00291 00386 00388 00669 00688 00700

00762 00823 00857 00868 00883 00939 00941 01038 01044

01093 01109 01177 01211 01398 02018 02313 02318 02319

02331 02388 02628 02688
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We show the accumulative return rate process of Dow Jones Average index, Hang Seng

index and EURO STOXX index from 2008.11 to 2021.08 in Figure 3 to reflect the changing

environments of the three markets.

Figure 3: Accumulative return rate process (accounted in US dollars, discounted with exchange rate) of Dow
Jones Average Index (USA market), Hang Seng index (Hong Kong market) and EURO STOXX (Europe market)
from 2008.11 to 2021.08

4.1.2. Benchmark in chance constraint

The chance constraint of our model is to ensure that a lower bound of the international port-

folio’s daily return rate compared to the daily growth rate of S&P 500, with a large probability.

We set the probability level as 90%. At each out-of-sample day, the random benchmark is 98%

value of the S&P 500 investing wealth on the next day, which is the wealth we will have if we

invest all wealth in S&P 500. To compute the observations of the benchmark, we fit a copula

model of the return rate of S&P500 together with market factors and exchange rates and then

generate some samples. We then use the samples of the return rate of S&P500 together with

the wealth on the previous day to compute the observations/samples of the benchmark.

4.1.3. Market factors

We consider the basic three Fama-French factors for each market, i.e., Mkt-RF, SMB, and

HML. We select Fama-French U.S. 3 Factors, Fama-French European 3 Factors and Fama-

French Asia Pacific ex Japan 3 Factors for the three markets, respectively. We collect the daily

historical data of these factors from November 02, 2006 to August 31, 2021 2.

Table 3 presents some statistics of factors and corresponding Dickey-Fuller test results. The

null hypothesis of the DF test is that a unit root is present in the time series model. In the

table, the value of ‘Decision’ equal to 1 means we reject the unit-root null hypothesis, while 0

indicates a failure to reject the unit-root null. From the table, we can see that P-values are

2The historical data are downloaded from http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/

data_library.html
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near 0 and DF test statistics are less than 5% critical value, which means we can reject the null

hypothesis with 95% confidence. Thus, we can believe that all factors series are stable.

Table 3: Basic statistics and Dickey-Fuller test of daily Fama-French factors in the three markets from November
02, 2006, to August 31, 2021

USA Asia Europe

Mkt SMB HML Mkt SMB HML Mkt SMB HML

Mean 0.046 0.004 -0.013 0.028 -0.010 0.009 0.025 0.003 -0.01

Std. 1.30 0.62 0.81 1.14 0.56 0.55 1.30 0.53 0.52

Skewness -0.35 0.18 0.49 -0.58 -1.20 0.20 -0.30 -0.80 0.25

Kurtosis 11.80 4.86 8.15 9.60 12.41 3.74 9.39 8.68 6.05

DF test statistic -15.05 -45.91 -10.55 -22.51 -33.18 -19.70 -23.79 -10.62 -26.22

5% critical value -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86 -2.86

P-value 0 0 0 0 0 0 0 0 0

Decision 1 1 1 1 1 1 1 1 1

4.1.4. Exchange rates

We choose USD as base currency. All currency exchanges are executed with respect to the

base currency. Hence, we collect the daily exchange rate between HKD and USD as well as

ERU and USD from November 01,2006 to August 31,2021.

The Dickey-Fuller test results show that the historical daily exchange rate series is unstable.

Thus, we take the first-order difference to the exchange rate data. The Dickey-Fuller test

results show that the growth rate (GR) series of the exchange rates is stable. Table 4 presents

the statistics and results of the tests.

Due to the non-stationariness of the exchange rate series, we fit the copula model with the

growth rate of the exchange rate rather than the exchange rates themselves.

Table 4: Basic statistics of and Dickey-Fuller test of historical exchange rate series and their growth rate (GR)
series from November 02, 2006 to August 31, 2021

Mean Std. Skewness Kurtosis DF test statistic 5% critical value P-value Decision

HKD/USD 0.13 0.00 -1.03 -0.22 -2.81 -2.86 0.06 0

EUR/USD 1.26 0.13 0.30 -0.82 -1.83 -2.86 0.36 0

GR(HKD/USD) 0.00 0.00 0.49 9.26 -13.88 -2.86 0 1

GR(EUR/USD) 0.00 0.01 0.11 2.70 -61.56 -2.86 0 1

4.1.5. Transaction settings

We have the following settings for transactions in the international investment process.

• The initial wealth at the beginning of the first out-of-sample investment period is 1,000

US dollars in cash;

• The transaction cost is proportional to transaction wealth with both buying cost rate cb
and selling cost rate cs to be 0.001 in all three markets;

• The risk-free rate is rrfm = 0 in all markets;
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• The maximal holding proportion of a single stock is λ = 0.3 for all markets;

• The upper bound of the maximal cash transfer into a foreign market in one period is 30%

of total wealth. The upper bound of the cash amount maximal transfer out from a foreign

market is 30% of total wealth (account in local currency);

• The forex transfer cost is proportional to transaction wealth with a cost rate of 0.01. All

forex transfers can be realized in real-time;

• The maximal holding limitation of a single stock is 30% of current wealth.

4.1.6. Out-of-sample test procedure: a rolling forward way

We divide all historical data into two parts: the in-of-sample period is from 2006.11.02 to

2008.11.03., and the out-of-sample period is from 2006.11.03 to 2021.8.31.

We carry out the out-of-sample test in a rolling forward way. We first use the data in

the in-sample period to determine the optimal portfolio of the tested model. We invest with

the optimal portfolio for the first out-of-sample day and compute the portfolio return with

the actual return data on that out-of-sample day. Then, we update the in-sample period by

adding the new day in the out-of-sample period and removing the first day in the in-sample

period. We then estimate the distribution of the factors and exchange rates by using the data in

the updated in-sample period, re-solve the resulting portfolio selection problem, determine the

optimal portfolio, and compute its return rates on the second day of the out-of-sample period.

We carry out the out-of-sample test by rolling forward until the end of the out-of-sample period;

this would provide us with a return series with 3309 out-of-sample daily return rates.

4.2. Copula fitting

At each out-of-sample day, we fit a copula model with the historical data of market factors,

the growth rate of the exchange rates, and the S&P500 index in the in-sample period. We

always fit the marginal distribution as a Student’s t distribution. We use two kinds of copulas,

the Gaussian copula and the Student’s t copula, to fit the dependence structure of the selected

random variables, respectively. We take the t copula as the instance to illustrate the fitting

procedure in what follows. The fitting procedure for the Gaussian copula is likewise. To illustrate

the fitting procedure, we show the fitting results with all data, including both the in-sample and

out-of-sample periods.

Step 1 Fitting marginal distribution. By Tables 3 and 4, we can find that the historical

data of market factors, exchange rates, and the benchmark are high kurtosis and heavy-tailed.

Thus we fit their marginal distribution by a Student’s t distribution, which can better capture

the leptokurtosis nature of the data than the Gaussian distribution. We plot some of the fitted

marginal distribution in Figure 4 and the estimated distribution parameters in Table 5. From

the figure we can observe that the Student’s t distribution can better capture the distribution

characteristics of the data.

Step 2 Generating pseudo-observations. We generate some pseudo-observations Ût lie

in (0, 1), from the original data Xi,j , i = 1, . . . , d, j = 1, . . . , n, of the market factors, exchange

rates and benchmark, by using the c.d.f. function Fj , j = 1, . . . , n, of marginal distributions

fitted in step 1. d is the sample size. n = 12 is the dimensional of the copula function.

Ûi = (Ûi,1, ..., Ûi,n)
⊤ := (F1(Xi,1), ..., Fn(Xi,n))

⊤, i = 1, ..., d.
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Figure 4: Density functions of some marginal distributions (with Gaussian and Student’s t fitting)
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Table 5: Estimated parameters of some marginal Student’s t distributions

USA European Hong
Kong

growth rate of exchange rate benchmark

Mkt SMB HML Mkt SMB HML Mkt SMB HML EUR/USD HKD/USD S&P500

Location 0.098 -0.001 -0.034 0.067 0.014 -0.021 0.076 0.008 0.002 2.6E-05 -2.4E-10 0.001

Scale 0.627 0.463 0.400 0.782 0.353 0.358 0.687 0.365 0.403 0.004 1.0E-06 0.006

Degree of Freedom 2.132 4.676 2.160 2.834 3.393 3.527 2.857 3.476 4.125 4.453 0.298 2.029

Step 3 Maximizing the likelihood function. We show the detailed procedure of fitting

t copula. The fitting for the Gaussian copula is similar. By using the explicit formula of the

density function (9), we can write the log-likelihood function of t copula cTR,ν with d samples as:

lnL(R, ν; Û1, ..., Ûd) =
d∑

i=1

ln tR,ν

(
T−1
ν (Ûi,1), · · · , T−1

ν (Ûi,n)
)
−

d∑
i=1

n∑
j=1

tν

(
T−1
ν (Ûi,j)

)
. (24)

Here tR,ν is the joint density of n-dimensional t distribution tn(ν, 0, R) with mean value 0,

degree of freedom ν and linear correlation matrix R. tν is the density of univariate Student’s t

distribution t1(ν, 0, 1) with degrees of freedom ν and mean value 0.

Solving the above maximum likelihood estimation problem

{R̂, ν̂} = argmax
R,ν

lnL(R, ν; Û1, ..., Ûd)

yields the optimal parameter of the Student’s t copula function.

4.3. Out-of-sample performance

By using the rolling forward approach introduced in Section 4.1.6, we carry out the out-of-

sample test for the international portfolio selection models with Gaussian copula and Student’s

t copula, respectively. This rolling forward procedure provides us with two return series with

3309 out-of-sample daily return rates. We show the wealth process of the Gaussian copula model

in the out-of-sample period in Figure 5, as well as the optimal portfolio allocation in different

markets. Figure 6 shows two more detailed figures.

The corresponding wealth process and portfolio allocation process of the Student’s t copula

model are shown in Figure 7 and Figure 8.

4.3.1. Portfolio process of the Gaussian copula model

From Figure 3, Figure 5 and Figure 6, we have the following observations:

• The international investment model with Gaussian copula (denoted as ‘Gaussian model’)

mainly invests in the USA and Hong Kong markets, and does not invest in European

market all the time.

• The Gaussian copula model initially invests in the USA market, with a small portion in

stocks and a large portion in risk-free asset. When the growth rate of the Hang Seng Index

surged in 2009, the model started to transfer money from the USA market to the Hong

Kong market at the end of 2009. After that, the proportions invested in Hong Kong and

USA markets stabilized at 0.8 and 0.2, respectively, with slight fluctuations.
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Figure 5: Out-of-sample wealth process and portfolio composition of the Gaussian copula model

(a) Detailed portfolio composition process of the Gaus-
sian copula model

(b) The ratio of portfolio composition process of the
Gaussian copula model

Figure 6: Detailed out-of-sample portfolio composition process of the Gaussian copula model

22



• The accumulative wealth of the Gaussian model reaches its peaks in 2015, 2018, and 2021

and then falls back, which is in line with the Hang Seng Index.

• The Gaussian model is not sensitive to market decline. It cannot withdraw investment

in time when the Hong Kong market falls, and still mainly invests funds in Hong Kong

market.

4.3.2. Portfolio process of the Student’s t copula model

Figure 7: Out-of-sample portfolio composition process of the Student’s t copula model

(a) Detailed portfolio composition process of the Stu-
dent’s t copula model

(b) The ratio of portfolio composition process of the
Student’s t copula model

Figure 8: Detailed out-of-sample portfolio composition process of the Student’s t copula model

From Figure 3, Figure 7 and Figure 8, we have the following observations:
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• The international investment model with Student’s t copula (denoted as ‘t copula model’)

does not invest in European market all the time.

• The t copula model invests balancedly in the USA and Hong Kong markets. It started

to transfer money from the USA market to the Hong Kong market at the beginning of

2009, similar to the Gaussian copula model. With the development of time, the proportion

invested in the USA market rebounds to 60%-70%.

• The wealth accumulation of the t copula model is more stable than the Gaussian copula

model, with only one major draw-down after 2018.

• From 2016 to 2018, the t copula model increased the proportion of investment in the Hong

Kong market due to the prosperity of the Hong Kong market (can be observed from the

Hang Seng Index). After the decline of the Hong Kong market at the end of 2018, the

model retreats its investment back to the USA market. The proposition invested in the

USA market rebounded to 70% after 2018.

• The t copula model is much more sensitive to market fluctuations than the Gaussian

copula model. It responds quickly when the market turns to bull or bear. For instance, it

transferred money to Hong Kong earlier in 2009 when the Hong Kong market surged. It

retreated money to the USA when the Hong Kong market retreated, avoiding large swings

in overall wealth accumulation. Aggregate wealth grows more steadily and accumulates

more than the Gaussian model at the end of the period. This phenomenon happens

whenever the environment of the Hong Kong market or the USA market changes.

• The t copula model always captures the market environment changes and reacts to market

volatility much earlier than the Gaussian copula model. As a result, it can distribute

wealth internationally more rationally, which leads to higher final wealth.

4.4. Analysis of the observations

4.4.1. The cruel truth: Europe is keeping in recession

By 2020, European Union’s (EU) GDP has never surpassed its 2008 peak in these 13 years

due to the impact of the European sovereign debt crisis, the refugee crisis in Europe, and the

Russia-Ukraine conflict.

For instance, in 13 years, Germany’s GDP has grown by only 13.14%, the highest of the

EU’s four central European countries. As for the UK and France, their GDP growth rates are

2.57% and 0.68%, respectively. Even more brutal, Italy’s GDP fell by 12.08% in 13 years. At

the same time, EU GDP grew by 5.23% in 13 years from 2008 to 2021. However, the global

GDP grew by 48.32% in 13 years, nearly ten times the EU’s. That is to say, the economic

growth rate of the EU is far below the global average growth rate. Moreover, considering the

cumulative inflation rate, Europe’s economic growth rate is negative in net value. Overall, the

European economy has been in recession in the out-of-sample period we studied.

Thus, it illustrates the reasonability and rationality of our international portfolio selection

model, which chooses not to invest in the European market to avoid market recession. It also

shows the importance of considering international portfolio management rather than a single

market.
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4.4.2. International transfer between USA and Hong Kong: keeping away from systemic risk in

a single market

According to the discussion above, it is reasonable that our model only invests in USA

and Hong Kong markets. Compared with the continued recession in European markets, the

economies of the USA and Hong Kong recovered quickly from the great recession in 2008-2009.

The proposed international portfolio selection model transferred money from the USA market

to the Hong Kong market in late 2008 as the USA was hit hard by the financial crisis. Since a

large number of high quality shares were issued in the Hong Kong market in 2009, there has been

a surge in the Hong Kong market. As a result, our investment proportion in Hong Kong once

rose to 85% in 2009. Then, as the US economy recovered and the stock market grew steadily,

the cash began to flow back into the USA market. After that, the proportion of investment in

the Hong Kong market increased with several rapid increases in the Hang Seng Index and then

decreased with the decline after the peak. Notably, in 2015, the Hong Kong market was during

a bear market impacted by the Chinese financial crisis. Thus, both the t and Gaussian copula

models reduce the proportion of the Hong Kong market in its international portfolio. In 2019,

Hong Kong was affected by social movements, and the annual economic data shrank by 1.2%,

which also left a recession in the stock market. Correspondingly, the t copula model timely

adjusted the allocation of wealth by reducing the proportion in Hong Kong.

In conclusion, the proposed international portfolio selection model with chance constraint

and copula structure can well capture the dynamic dependence structure between different

markets and dynamically adjust the international wealth allocation to avoid loss and systemic

risk in one market. The t copula model performs even better in capturing the non-linear

international dependence structure.

4.5. Comparison of international and single-market investment

We test the investment performances in three single markets respectively. For a single market

model, we only consider the stocks in the market and fit a t copula for three factors in the market

and the benchmark without considering the exchange rate. Other constraints are the same as

the international investment model.

Figure 9 shows the out-of-sample wealth processes of three single market models, including

USA, Europe, Hong Kong. As a comparison, we show the wealth process of the international

portfolio selection model with t copula in the blue line.
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Figure 9: Wealth process of international and single market portfolio selection models with t copula

From Figure 9, we can find that the final wealth of the international portfolio selection

model is higher than the investment in one single market. Table 6 shows some statistics of the

out-of-sample return rate series of the four models. Here, ’Sharpe’ is the Sharpe ratio, the ratio

of mean to std; ’DSDV’ is the downside semi-deviation; ’MDD’ is the maximum drawdown;

’CR’ is the Calmar ratio, the ratio of the annualized return to maximum drawdown.

Table 6: Some statistics of four models’ out-of-sample daily return rate series

Mean Std Max Min Sharpe DSDV MDD CR

International model 3.7e-04 0.0137 0.1221 -0.1286 0.0267 0.0096 0.3548 2.2891

USA market model 3.2e-04 0.0158 0.1386 -0.1361 0.0203 0.0158 0.4307 1.8051

Europe market model -4.7e-06 0.0128 0.1252 -0.1087 -3.7e-04 0.0093 0.6400 1.0243

Hong Kong market model 2.2e-04 0.0112 0.0848 -0.0811 0.0196 0.0081 0.4049 1.8776

From Table 6, we can find that the international portfolio selection model gets a higher

average return rate and greater Sharpe ratio than the domestic portfolio selection model in any

single market. Moreover, the maximum drawdown of the international investment model is the

smallest, illustrating that international investment can efficiently resist market drawdown.

Investment in a single USA or Hong Kong market provides a positive average return rate,

while the European market has a negative average return and the largest maximum drawdown.

It illustrates again the long recession of European economics and why the international invest-

ment model does not invest in the Europe market.

We can find from Figure 9 that single USA market model has a significant drawdown around

May 2020, which is coincident with the drop of the DJI index in Figure 3. However, the

drawdown of international model at that time is much smaller than the USA market model.

That is because the international portfolio selection model increases the investment proportion

in the Hong Kong market, which suffers a lower drawdown. This phenomenon illustrates that

the international portfolio selection model can efficiently reduce the systematic risk by diverse
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investments in different markets and gain higher returns by international investment transfer.

5. Summary and future work

In this paper, we set up a stochastic optimization model with chance constraints for interna-

tional investing management. We use a multi-factor model to capture the return rate of stocks

and a copula model to characterize the relationships between factors in different markets and

exchange rates. Then we solve the optimization problem by using the partial sampling algo-

rithm and the sequential convex approximation algorithm. We apply the model with Gaussian

or Student’s t copula in practical numerical experiments. We find that t copula can better char-

acterize the non-linear dependence structure in different markets. Meanwhile, the international

portfolio selection model performs better than the chance-constrained portfolio selection model

in a single market.

Our model can also be applied to bankrupt constraints, safety-first constraints, or Value-

at-Risk constraints. The dynamic extension of the proposed international portfolio selection

model is a promising topic. Meanwhile, the distributionally robust optimization counterpart

of the proposed model is a promising research direction to deal with the ambiguity of the

distributions in the proposed model.
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