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Abstract

In this paper, we consider the distributionally robust chance constrained Markov decision process

with random cost and ambiguous cost distribution. We consider both individual and joint chance

constraint cases with Kullback-Leibler divergence based ambiguity sets centered at elliptical distri-

bution and elliptical mixture distribution, respectively. We derive tractable reformulation of the

distributionally robust individual chance constrained Markov decision process problems and design a

sequential convex approximation algorithm for the joint case. We carry out numerical results with a

machine replacement problem.

Keyword: Markov decision process, chance constraint, distributionally robust optimization, Kullback-
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1 Introduction

Markov decision process (MDP) is an effective mathematical model to find an optimal dynamic policy in

a long-term uncertain environment. It has many important applications in healthcare [11], autonomous

driving [38], financial markets [3], inventory control [21], game theory [43] and so on. It is worth noting

∗This research was supported by National Natural Science Foundation of China under Grant Number 11901449.
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that MDP is the mathematical fundamental tool of reinforcement learning, which plays an important

role in searching a good policy by interacting with the environment via trail and error.

The randomness of MDP often comes from two perspectives: rewards and transition probabilities.

Risk attitude is an important issue when the decision-maker measures the randomness of the reward.

Many criteria have been considered in risk-aversion MDP, for instance, mean and variance [41], semi-

variance [43], Value-at-Risk [25], Conditional Value-at-Risk [30] and etc. Depending on the randomness

of transition probabilities, MDP problems can be classified into two groups: rectangular MDP [32, 31, 39]

and nonrectangular MDP [26, 37].

In many real applications of MDP, for instance, autonomous driving or healthcare, the safety require-

ments play an important role when making a dynamic decision to avoid extreme behaviour out of control

[20]. This motivates us to take into account robust constraints in the MDP problem, for instance the con-

strained MDP (CMDP) [35]. To address the extreme conservation of the robust constraints, we can apply

chance constraints. Chance constraints control the extreme loss in a probability, which has been widely

applied in shape optimization, game theory, electric market and many other fields [24, 29, 8, 18, 22]. De-

lage and Mannor [6] studies reformulation of chance constrained MDP (CCMDP) with random rewards

or transition probability. Varagapriya et al. [36] apply chance constraints into constrained MDP and find

reformulations when the rewards follow an elliptical distribution.

In some applications of CCMDP, the distribution of random parameters is not perfectly known, due

to the estimation error or imperfect a-priori knowledge. To address this problem, we can employ the

distributionally robust optimization (DRO) approach [13], where the decision maker makes a robust de-

cision with respect to the worst-case distribution in a pre-set ambiguity set. In DRO literature, there are

two major types of ambiguity sets: moments-based and distance-based. In moments-based DRO [40, 7],

decision maker knows some moments information about of random parameters. In distance-based DRO,

the decision maker has a reference distribution and consider a ball centered at it in a probability distance,

given that she/he believes that the true distribution of random parameters is close to the reference distri-

bution. Based on the probability distance we choose, there are ϕ-divergence (including Kullback-Leibler

(K-L) divergence as an important case) distance based DRO [14, 17] and Wasserstein distance based DRO

[9, 42, 5, 16] and etc. Applying the techniques of DRO into CCMDP, we have the distributionally robust
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chance constrained MDP (DRCCMDP) problem. Nguyen et al. [28] studied individual DRCCMDP with

moments-based, ϕ-divergence based and Wasserstein distance based ambiguity sets. However, the study

of DRCCMDP is far from completeness. There are still many important cases worth to research, for in-

stance, the joint chance constraint in DRCCMDP has not been studied, the high-kurtosis, fat-tailedness

or multimodality of the reference distribution in distance-based DRCCMDP are not considered.

In this paper, we consider the K-L divergence distance based DRCCMDP (KL-DRCCMDP) when

the transition probabilities are known and the reward vector is a random vector whose distribution is

partially known. We consider both individual and joint cases of KL-DRCCMDP centered at an elliptical

reference distribution. We get reformulations of optimization problems in these two cases. For individual

case, the reformulation is convex. While for joint case, the reformulation is not convex. We design a

sequential convex approximation algorithm to handle this nonconvex problem. In the last part of the

joint case of KL-DRCCMDP, we study the case where the parameter is centered at the elliptical mixture

distribution and get its reformulation. Finally we conduct a numerical experiment to test our results, we

take the reformulations and algorithm proposed before into the machine replacement problem to work

out its optimal policy. The major contributions of this paper are listed below.

• As far as we know, this is the first work studying joint case of DRCCMDP.

• We consider elliptical reference distribution and elliptical mixture reference distribution as the

center of the ambiguity sets which can reflect the high-kurtosis, fat-tailedness or multimodality of

the a-priori information.

• We propose the sequential convex approximation algorithm to solve the nonconvex reformulation.

Numerical results validate the practicability of this algorithm.

In Section 2, we introduce the fundamental model of MDP and bring in five types of MDP in a step-by-

step way. In Section 3, we study KL-divergence based MDP, including three main cases: the individual

case of KL-DRCCMDP with elliptical reference distributions, the joint case of KL-DRCCMDP with

elliptical reference distributions and the joint case of KL-DRCCMDP with elliptical mixture reference

distributions. In Section 4, on the basis of the famous Machine replacement problem, we do numerical
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experiments on our results of the individual and joint cases with elliptical reference distribution proposed

before. In the last section, we give a conclusion of our work in this paper.

2 the model

2.1 MDP

We consider an infinite horizon Markov decision process (MDP) as a tuple pS,A, P, r0, q, αq, where:

‚ S is a finite state space whose generic element is denoted by s with |S| states.

‚ A is a finite action space with |A| actions and a P Apsq denotes the action a belonging to the set of

actions at state s.

‚ P P R|S|ˆ|A|ˆ|S| is the distribution of transition probability pps|s, aq, which denotes the probability

of moving from state s to s when the action a P Apsq is taken.

‚ r0ps, aqsPS,aPApsq : S ˆ A Ñ R denotes a running reward, which is the reward at the state s when

the action a is taken. And r0 “ pr0ps, aqqsPS,aPApsq P R|S|¨|A| is the running reward vector.

‚ q “ pqpsqqsPS represents the probability for the initial state.

‚ α is the discount factor which satisfies α P r0, 1q.

In a generalized MDP, the agent aims at maximizing his value function with respect to the whole trajectory

by choosing an optimal policy. By [33], it is worth noting that there are exactly two ways of formulating

the agent’s objective. One is the average reward formulation, the other is considering the discounting

factor α P r0, 1q. As we care more about the long term reward obtained from the MDP, we pay more

attention on optimizing current rewards over future rewards, so we choose the latter one as the formulation

of value function in the following paper.

For a discrete time controlled Markov chain pst, atq
8
t“0 defined on the state space S and action space

A, where st and at are the state and action at time t respectively, at first when time t “ 0, the state is

s0 P S, and the action a0 P Aps0q is taken according to the initial state’s probability q. Then the agent
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gains rewards r0ps0, a0q based on the current state and action. When t “ 1, the state converts to s1 with

the transition probability pps1|s0, a0q. The dynamics of the MDP repeat at state s1 and continue in the

following infinite time horizon. As a result, we are able to get the value function for the whole process.

We assume that running rewards r and transition probabilities p are stationary, that is they both only

depend on states and actions rather than on time. We hold the assumption above in the following section

of this paper. We define the policy π “ pµpa|sqqsPS,aPApsq P R|S|ˆ|A| where µpa|sq denotes the probability

that the action a be taken at state s, and ξt “ ts0, a0, s1, a1, ..., st´1, at´1, stu the whole trajectory at

time t. Let Θt be the set of all possible trajectories of length t. For different discrete time t, sometimes the

decisions made by the agent may vary accordingly, thus the chosen policy may vary depending on time.

We call this kind of policy the history dependent policy denoted as πh “ pµtpa|sqqsPS,aPApsq, t “ 1, 2, ...,8.

When the policy is independent of time, we call it stationary policy. That is, there exists a vector π such

that πh “ pµtpa|sqqsPS,aPApsq “ π “ pµpa|sqqsPS,aPApsq for all t. Let Πh and Πs be the sets of all possible

history dependent policies and stationary policies respectively. Combined with the definition above, when

the reward function r0ps, aq is random, for a fixed πh P Πh, the expected discounted value function is

Vαpq, πhq “

8
ÿ

t“0

αtEq,πh
pr0pst, atqq.

The object of the agent is to solve the following optimization problem

max
πhPΠh

8
ÿ

t“0

αtEq,πh
pr0pst, atqq (1)

With a fixed α P r0, 1q, we denote by dαpq, πhq the α-discounted occupation measure such that

dαpq, πh, s, aq “ p1 ´ αq

8
ÿ

t“0

αtqpsqpps|s, aqµtpa|sq, (2a)

“ p1 ´ αq

8
ÿ

t“0

αtpq,πh
pst “ s, at “ aq,@s P S, a P Apsq, (2b)

which is exactly an α-discounted probability distribution for each state and action pair ps, aq. As the

state and action spaces are both finite, by Theorem 3.1 in [2], the occupation measure dαpq, πh, s, aq

is a well-defined probability distribution. Thus when taking the occupation measure into account, the
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expected discounted value function defined above can be written as

Vαpq, πhq “

8
ÿ

t“0

αtEq,πh
pr0pst, atqq (3)

“
ÿ

ps,aqPΛ

8
ÿ

t“0

αtpq,πh
pst “ s, at “ aqr0ps, aq (4)

“
1

1 ´ α

ÿ

ps,aqPΛ

dαpq, πh, s, aqr0ps, aq, (5)

where we define Λ “ tps, aq|s P S, a P Apsqu.

By Theorem 3.2 in [2], we know that the set of occupation measures corresponding to history depen-

dent policies is equal to that concerning stationary ones. Furthermore, from [35] we have:

Lemma 1 ([35]). The set of occupation measures corresponding to history dependent policies is equal to

the set

∆α,q “

$

’

’

&

’

’

%

τ P R|S|ˆ|A| |

ř

ps,aqPΛ

τps, aq pδps1, sq ´ αpps1|s, aqq “ p1 ´ αqqps1q,

τps, aq ě 0,@s1, s P S, a P Apsq.

,

/

/

.

/

/

-

, (6)

where δps1, sq is the Kronecker delta, such that the expected discounted value function defined by (5)

remains the same.

Remark 1. We assume that each τ P ∆α,q admits τ ą 0 in order to keep optimal policy absolutely

continuous w.r.t a uniform sampling policy.

Therefore the MDP with history dependent policies can be equivalent to the one with stationary ones,

that is the optimization problem (1) is equivalent to the following one:

max
τ

1

1 ´ α

ÿ

ps,aqPΛ

τps, aqr0ps, aq (7a)

s.t. τ P ∆α,q. (7b)

2.2 CMDP

In a constrained MDP (CMDP), on the basis of the MDP defined above, we consider the running con-

straint rewards and the bounds for them additionally. Let rkps, aqps,aqPΛ : S ˆ A Ñ R, k “ 1, 2, ...,K be

the running constraint rewards and k denotes the number of constraints, rk “ prkps, aqqps,aqPΛ P R|Λ| be
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the running constraint rewards vector. Let Ξ “ pξkqKk“1 be the bounds for the constraints. A CMDP is

defined by the tuple pS,A, R,Ξ, P, q, αq where R “ prkqKk“0.

For more attention on optimizing current rewards than future ones, we apply the discount factor in

the expected constrained value function. We have

ϕk,αpq, πhq “
1

1 ´ α

ÿ

ps,aqPΛ

dαpq, πh, s, aqrkps, aq (8)

to be the k-th expected constrained value function. By Theorem 1, the object of the agent in a CMDP

is to solve the following optimization problem

max
τ

1

1 ´ α

ÿ

ps,aqPΛ

τps, aqr0ps, aq (9a)

s.t.
ÿ

ps,aqPΛ

τps, aqrkps, aq ě ξk, k “ 1, 2, ...,K (9b)

τ P ∆α,q. (9c)

2.3 RCMDP

Based on the definition of MDP above, we assume that the rewards vectors rk, k “ 0, 1, ...,K are random,

and the transition probabilities are known. A most common and useful approach to handle the uncertainty

is robust optimization. That is we assume the uncertain parameters are constrained to be in a set, which

is uncertain. And we consider the worst-case scenario over the set to solve the original optimization

problem.

When applying the approach of robustness, we get the robust constrained MDP (RCMDP), which

can be defined by the tuple pS,A, R,Ξ, P,ΩR, q, αq. In this tuple, ΩR “
Ś
Ś
ŚK

k“0 Ωrk and Ωrk denotes the

uncertain set of the running rewards. In a RCMDP with random rewards and deterministic transition

probabilities, the agent aims at solving the following optimization problem under the worst-case,

max
τ

inf
r0PΩr0

1

1 ´ α

ÿ

ps,aqPΛ

τps, aqr0ps, aq (10a)

s.t. inf
rkPΩrk

ÿ

ps,aqPΛ

τps, aqrkps, aq ě ξk, k “ 1, 2, ...,K (10b)

τ P ∆α,q. (10c)
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2.4 CCMDP

From [6] we know that the generated optimal policies by RCMDP are sometimes overly conservative that

we need to turn to better approaches to handle the uncertainty in the optimization problem of a MDP. To

make up over conservation caused by the worst-case scenario, we could use chance constraints to ensure

that the objective cumulative rewards are beyond certain values with high probability. Based on chance

constraints, we get a relatively conservative policy compared with RCMDP, which can be classified into

a soft-robust MDP by [4]. We call the MDP using chance constraints to handle the randomness the

chance-constrained MDP (CCMDP).

For the k-th random constrained rewards vector rk “ prkps, aqqps,aqPΛ, we assume its probability

distribution is Fk for k “ 0, 1, ...,K. Let the confidence vector for the CCMDP be ϵ “ pϵkqKk“1, where

ϵk P r0, 1s, then we can define a CCMDP as the tuple pS,A, R,Ξ, P,D, q, α, ϵq and D “ pFkqKk“0. The

object of an agent in a CCMDP defined above can be formulated the following two optimization problems:

pI ´ CCMDPq max
τ

1

1 ´ α
EF0

rτJ ¨ r0s (11a)

s.t. PFk
pτJ ¨ rk ě ξkq ě ϵk, k “ 1, 2, ...,K (11b)

τ P ∆α,q, (11c)

which is called the individual chance constrained MDP (I-CCMDP),

pJ ´ CCMDPq max
τ

1

1 ´ α
EF0

rτJ ¨ r0s (12a)

s.t. PF̂ pτJ ¨ rk ě ξk, k “ 1, 2, ...,Kq ě ϵ̂, (12b)

τ P ∆α,q. (12c)

which is called the joint chance constrained MDP (J-CCMDP), and F̂ denotes the joint probability

distribution of r1, r2, ..., rK when ϵ̂ denotes the overall confidence for K constraints.

2.5 DRCCMDP

Based on the CCMDP defined above, if the distributions of rewards rk are unknown, we can apply the

approach of robust optimization to handle the uncertainty of F̂ and Fk, k “ 0, ...,K. Thus under the
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scenario above, we get the reformulation of a distributionally robust chance-constrained MDP (DRC-

CMDP) as the tuple pS,A, R,Ξ, P,D,F ,ΩR, q, α, ϵq, where F “ pFkqKk“0

Ś
Ś
Ś

F̂ when Fk and F̂ denote

the ambiguity sets for the random distribution Fk and F̂ respectively. Therefore the basic object for an

agent in a DRCCMDP can be formulated as the following two optimization problems:

pI ´ DRCCMDPqmax
τ

inf
F0PF0

1

1 ´ α
EF0

rτJ ¨ r0s (13a)

s.t. inf
FkPFk

PFk
pτJ ¨ rk ě ξkq ě ϵk, k “ 1, 2, ...,K (13b)

τ P ∆α,q, (13c)

which is called the individual distributionally robust chance constrained MDP (I-DRCCMDP),

pJ ´ DRCCMDPqmax
τ

inf
F0PF0

1

1 ´ α
EF0

rτJ ¨ r0s (14a)

s.t. inf
F̂PF̂

PF̂ pτJ ¨ rk ě ξk, k “ 1, 2, ...,Kq ě ϵ̂, (14b)

τ P ∆α,q, (14c)

which is called the joint distributionally robust chance constrained MDP (J-DRCCMDP).

3 K-L divergence based DRCCMDP

In many real-life problems, it’s difficult for us to derive the exact model of any uncertain set Fk for each

k. However through large times of simulation, we could know partial information of the real uncertain

sets or derive an approximation from the sample in a data-driven way. In the following sections, we get

the tractable reformulation of the main object optimization problem (13) under the following four cases.

Since in moments based distributionally robust optimization (DRO), historical data may not be used

efficiently for all information is made use of via moments only, metric based DRO which takes advantage

of existing data can make up of this disadvantage greatly. In Kullback-Leibler (K-L) divergence based

DRO, the ambiguity set is represented as a ball centered at a reference distribution which is achieved

from the historical data. We consider Kullback-Leibler divergence distance [19] as the metric. Next, we

give the definition of K-L divergence distance.
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Definition 1. The ambiguity sets are

Fi “

!

Fi|DKLpFi||F̃iq ď δi

)

, i “ 0, 1, ...,K, (15)

where δi ě 0 denotes the radius and DKL is the Kullback-Leibler divergence distance defined below,

DKLpFi||F̃iq “

ż

Ωi

ϕp
fFipc

iq

fF̃i
pciq

qfF̃i
pciqdci, (16)

F̃i is the reference distribution of ci, fFi
pciq and fF̃i

pciq are the density functions of the true distribution

and the reference distribution of ci on support Ωi respectively, with the radius δi controlling the size of

the ambiguity sets. And

ϕptq “

$

’

&

’

%

tlogt´ t` 1, t ě 0,

8, t ă 0.
(17)

3.1 K-L I-DRCCMDP with Elliptical Reference Distribution

In this subsection, we study the I-DRCCMDP whose ambiguity sets are based on the Kullback-Leibler (K-

L)) divergence distance, and we assume that the reference distribution belongs to the elliptical distribution

class.

Definition 2 ([27]). A d-dimensional vector X P Rd follows an elliptical distribution Edpµ,Σ, ψq if the

probability density function (PDF) is fpxq “ |Σ|´
1
2 gppx ´ µqJΣ´1px ´ µqq, where µ P Rd is the location

parameter, Σ P Rdˆd is the dispersion matrix, ψ is the characteristic generator and g : R` Ñ 0 is the

density generator such that the Fourier transform of gp|x|2q, as a generalized function, is equal to ψp|ξ|2q.

Regarding the properties of the elliptical distribution, we have the following lemma.

Lemma 2 ([27]). Let X „ Edpµ,Σ, ψq and take any B P Rkˆd and b P Rd, then

BX ` b „ EdpBµ` b, BΣB1, ψq. (18)

As a special case, if a P Rd, then

a1X „ E1pa1µ, a1Σa, ψq. (19)

10



Distribution Gaussian Laplace Generalized stable laws

ψptq e´t 1
1`t e´ω1t

ω2
2 , ω1, ω2 ą 0

In general, the random vector X is said to have a multivariate log-elliptical distribution with param-

eters µ and Σ if logX has an elliptical distribution:

logX „ Edpµ,Σ, ψq,

which can be denoted as X „ LEdpµ,Σ, ψq. And we have the following lemma w.r.t. the expectation of

log-elliptical distributions.

Lemma 3 ([12]). Let X „ LEdpµ,Σ, ψq. If the mean of Xk exists, then it is given by

EpXkq “ eµkψp´
1

2
σ2
kq,

where µk and σ2
k denote the mean and variance of Xk respectively.

For some specified elliptical distributions, we have their concrete characteristic generator ψ : r0,`8q Ñ

R correspondingly. Before considering the reformulation of K-L I-DRCCMDP centered at elliptical dis-

tributions, we give the following important lemmas.

Lemma 4 ([14]). Given Definition 1, the objective function in (13a) is equivalent to

inf
αPr0,`8q

αlogEF̃0

„

expp´
τJr0
α

q

ȷ

` αδ0. (20)

Lemma 5 ([17]). Given Definition 1, the constraint (13b) is equivalent to

PF̃k
pτJrk ě ξkq ě ϵ1

k, k “ 1, 2, ...,K, (21)

where ϵ1
k “ inf

xPp0,1q
t e´δkxϵk ´1

x´1 u.

Based on Lemmas above, we get the reformulation of (13) in this case.

Theorem 1. Given Definition 1, if the reference distribution F̃k for rk is an elliptical distribution,

F̃k „ E|Λ|pµk,Σk, ψkq, k “ 0, 1, ...,K. We assume that ψ0 is a continuous function, then (13) is equivalent
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to

min
τ,α

´τJµ0 ` α log rψ0p´
τJΣ0τ

2α2
qs ` αδ0, (22a)

s.t. τJµk ` Φ´1
k p1 ´ ϵ1

kq
a

τJΣkτ ě ξk, k “ 1, 2, ...K, (22b)

α ě 0, τ P ∆α,q, (22c)

where Φk is the cdf of the variable Zk „ E|Λ|p0, 1, ψkq and ϵ1
k is defined the same as that in Lemma 5.

Proof. By Lemma 4 and 5, problem (13) is equivalent to

min
τ

inf
αPr0,`8q

αlogEF̃0

„

expp´
τJr0
α

q

ȷ

` αδ0, (23a)

s.t. PF̃k
pτJrk ě ξkq ě ϵ1

k, k “ 1, 2, ...,K, (23b)

τ P ∆α,q, (23c)

where ϵ1
k is defined in Lemma 5.

By Lemma 2, as F̃0 is an elliptical distribution for r0, ´ τJr0
α still follow an elliptical distribution with

mean ´
τJµ0

α and variance τJΣ0τ
α2 . By Lemma 3, expp´ τJr0

α q follows a log-elliptical distribution with

mean e´
τJµ0

α ψ0p´ τJΣ0τ
2α2 q. Therefore (23a) is equivalent to

min
τ

inf
αPr0,`8q

´τJµ0 ` α log rψ0p´
τJΣ0τ

2α2
qs ` αδ0. (24)

If ψ0 is continuous w.r.t. α when α ě 0, then the inner function of (24) is continuous w.r.t. α. So there

exists α˚ P r0,`8q such that when α “ α˚, the inner infimum term of (24) reach its optimal value. (24)

is equivalent to

min
τ,α

´τJµ0 ` α log rψ0p´
τJΣ0τ

2α2
qs ` αδ0, (25a)

s.t. α ě 0. (25b)

(23b) is equivalent to PF̃k
p
τJrk´τJµk?

τJΣkτ
ě

ξk´τJµk?
τJΣkτ

q ě ϵ1
k, k “ 1, 2, ...,K. Let Zk “

τJrk´τJµk?
τJΣkτ

, and we

know that Zk „ E|Λ|p0, 1, ψkq. We denote Φkpzq “ PpZk ď zq be the cdf of Zk, and (23b) is equivalent

to ξk´τJµk?
τJΣkτ

ď Φ´1
k p1 ´ ϵ1

kq, which is just

τJµk ` Φ´1
k p1 ´ ϵ1

kq
a

τJΣkτ ě ξk, k “ 1, 2, ...K. (26)

We finish the proof.
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3.2 K-L J-DRCCMDP with Elliptical Reference Distribution

In this section, we assume that different rows of the true distribution are jointly dependent and the

reference distribution is jointly independent.

Definition 3. The joint K-L uncertainty set with jointly dependent rows is

F “

!

F |DKLpF ||F̃ q ď δ
)

, (27)

where F̃ is the reference joint distribution for r1, r2, ..., rK with marginals F̃1, ..., F̃K , and F̃1, ..., F̃K are

jointly independent.

By Definition 3 and Lemma 5, we know that constraint (14b) is equivalent to

PF̃ pτJrk ě ξk, k “ 1, 2, ...,Kq ě ϵ1, (28)

where ϵ1 “ inf
xPp0,1q

t e´δxϵ
´1

x´1 u.

Theorem 2. Given F0 defined in Definition 1 and F defined in Definition 3, if F̃k follows an elliptical

distribution as F̃k „ E|Λ|pµ̃k, Σ̃k, ψ̃kq for k “ 0, 1, ...K and ψ̃0 is a continuous function. (14) is equivalent

to

min
τ,α,y

´τJµ̃0 ` α log rψ̃0p´
τJΣ̃0τ

2α2
qs ` αδ0, (29a)

s.t. τJµ̃k ` Φ̃´1
k p1 ´ y1

kq

b

τJΣ̃kτ ě ξk, k “ 1, 2, ...K, (29b)

0 ď yk ď 1, k “ 1, 2, ...K, (29c)
K

ź

k“1

yk ě ϵ̂, (29d)

α ě 0, τ P ∆α,q. (29e)

Proof. As F0 stem from the Definition 1 and (14a) is the same as (13a), we have (14a) is equivalent to

min
τ,α

´τJµ̃0 ` α log rψ̃0p´
τJΣ̃0τ

2α2
qs ` αδ0, (30a)

s.t. α ě 0. (30b)

As the variable rk is independent of each other, the inner constraint (14b) is equivalent to

K
ź

k“1

inf
F̃kPF̃k

PF̃k
pτJ ¨ rk ě ξkq ě ϵ̂. (31)

13



By introducing auxiliary variables yk P R`, (31) is equivalent to

PF̃k
pτJ ¨ rk ě ξkq ě y1

k, k “ 1, 2, ...K, (32)

K
ź

k“1

yk ě ϵ̂, 0 ď yk ď 1, k “ 1, 2, ...K, (33)

where y1
k “ inf

xPp0,1q
t e´δkxyk ´1

x´1 u. By Lemma 3 and the discussion in Theorem 1, (32) is equivalent to

τJµ̃k ` Φ̃´1
k p1 ´ y1

kq

b

τJΣ̃kτ ě ξk, k “ 1, 2, ...K, (34)

where Φ̃k is the cdf of the variable Zk „ E|Λ|p0, 1, ψ̃kq. Combining (30),(33) and (34), we finish the proof.

Proposition 1. Given F0 defined in Definition 1 and F defined in Definition 3, if F̃k follows the

Gaussian distribution as F̃k „ E|Λ|pµ̃k, Σ̃k, ψ̃kq for k “ 0, 1, ...K, (14) is equivalent to

min
τ,y

´τJµ̃0 `

b

2δ0τJΣ̃0τ , (35a)

s.t. τJµ̃k ` Φ̃´1
k p1 ´ y1

kq

b

τJΣ̃kτ ě ξk, k “ 1, 2, ...K, (35b)

0 ď yk ď 1, k “ 1, 2, ...K, (35c)
K

ź

k“1

yk ě ϵ̂, τ P ∆α,q. (35d)

where y1
k “ inf

xPp0,1q
t e´δkxyk ´1

x´1 u and Φ̃k is the cdf of the standard Gaussian distribution. If F̃k follows the

Laplace distribution for k “ 0, 1, ...K, (14) is infeasible.

Proof. When F̃0 follows the Gaussian distribution, ψ̃0ptq “ e´t for t ě 0, and the inner function of (30)

can be written as ´τJµ̃0` τJΣ̃0τ
2α `αδ0, which reaches its minimum value when α “

b

τJΣ̃0τ
2δ0

, the optimal

value is ´τJµ̃0 `
a

2δ0τJΣ̃0τ . Therefore (14) is equivalent to

min
τ,y

´τJµ̃0 `

b

2δ0τJΣ̃0τ , (36a)

s.t. τJµ̃k ` Φ̃´1
k p1 ´ y1

kq

b

τJΣ̃kτ ě ξk, k “ 1, 2, ...K, (36b)

0 ď yk ď 1, k “ 1, 2, ...K, (36c)
K

ź

k“1

yk ě ϵ̂, τ P ∆α,q. (36d)
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where Φ̃k is the cdf of the standard Gaussian distribution.

When F̃0 follows the Laplace distribution, ψ̃0ptq “ 1
1`t for t ą ´1, the inner function of (30)

can be written as ´τJµ̃0 ` α log p 2α2

2α2´τJΣ̃kτ
q ` αδ0. Let Υ1pαq “ ´τJµ̃0 ` α log p 2α2

2α2´τJΣ̃kτ
q ` αδ0,

Υ1
1pαq “ log p 2α2

2α2´τJΣ̃kτ
q ` δ0 ą 0. So Υ1pαq is monotonically increasing. However when α Ñ

b

τJΣ̃kτ
2 ,

α log p 2α2

2α2´τJΣ̃kτ
q Ñ `8. Thus (14) is infeasible.

Next we talk about the solution of the optimization problem (35). As yk and τ are both random

variables, so (35b) is a non-convex formulation and (35) is not convex. Like Algorithm 1, we still refer

to the sequential convex approximation method to handle this non-convex problem. We decompose the

problem (35) into the following two subproblems where a subset of variables is fixed alternatively. Firstly,

we fix y “ yn and update τ by

min
τ

´τJµ̃0 `

b

2δ0τJΣ̃0τ , (37a)

s.t. τJµ̃k ` Φ̃´1
k p1 ´ ynk

1
q

b

τJΣ̃kτ ě ξk, k “ 1, 2, ...K, (37b)

τ P ∆α,q, (37c)

where ynk
1

“ inf
xPp0,1q

t e´δkxyn
k ´1

x´1 u, and then we fix τ “ τn and update y by

min
y

K
ÿ

k“1

ψkyk (38a)

s.t.
1

2
ď y1

k ď 1 ´ Φp
ξk ´ τnJµk
a

τnΣkτnJ
q, k “ 1, 2, ...,K, (38b)

0 ď yk ď 1, k “ 1, 2, ...,K, (38c)
K
ÿ

k“1

log yk ě log ϵ̂, (38d)

where ψk is a given searching direction and yk
1 “ inf

xPp0,1q
t e´δkxyk ´1

x´1 u. We say y1
k is a function of yk as its

formulation is regardless of x, say y1
k “ χpykq. By the proof of proposition 4 in [17], the infimum of χpykq

is attained in the interval p0, 1q. For any 0 ď yk ď 1, χpykq ą 0. By the envelope theorem [34], χpykq

monotonically decreases with the increasing of yk. Thus we can transfer (38b) into the following terms:

χ´1

˜

1 ´ Φp
ξk ´ τnJµk
a

τnΣkτnJ
q

¸

ď yk ď χ´1p
1

2
q, (39)
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where χ´1pyq denotes the value x P p0, 1q such that χpxq “ y for any y ą 0. And from the monotonicity of

function χ, both sides of (39) are unique at the interval p0, 1q. Using the sequential convex approximation

method, we have the following algorithm to solve the problem (35).

Algorithm 1: Sequential convex approximation (Problem (35))

Data: y0 feasible for (35c) and (35d), nmax, δk, k “ 0, 1, ...,K.

Result: τn, V n.

1 Set n “ 0;

2 Choose an initial point y0 feasible for (35c) and (35d);

3 while n ď nmax and }yn´1 ´ yn} ě ϵ̃ do

4 Solve problem (37); let τn, θn, V n denote an optimal solution, an optimal solution of the

Lagrangian dual variable θ and the optimal value of (37), respectively;

5 Divide the interval p0, 1q into 50 equal parts, and use the line search method to find the one

that is closest to χ´1p 1
2 q, χ´1p1 ´ Φp

ξk´τnJµk?
τnΣkτnJ

qq, k “ 0, 1, ...,K among 50 equal-part points

respectively, say χ̃´1p 1
2 q, χ̃´1p1 ´ Φp

ξk´τnJµk?
τnΣkτnJ

qq, k “ 0, 1, ...,K;

6 Solve problem (38) substituting (38b) into χ̃´1p1 ´ Φp
ξk´τnJµk?
τnΣkτnJ

qq ď yk ď χ̃´1p 1
2 q for each k,

and

ψk “ θnk ¨ pΦ´1q1p1 ´ ynk
1
q

b

τnJΣ̃kτn; (40)

let h̃ denote an optimal solution of substituted (38);

7 hn`1 Ð hn ` γph̃´ hnq, n Ð n` 1. Here, γ P p0, 1q is the step length.

8 end

Note that in practical numerical experiments, the function pΦ´1q1 does not have a closed form, we

apply the approximation results of the standard Gaussian quantile function which holds a error bound

of 4.5 ˆ 10´14 in ([1], Page.933) to approximate Φ´1 here. That is, we take

Φ´1pxq « t´
2.515517 ` 0.802853 ˆ t` 0.010328 ˆ t2

1 ` 1.432788 ˆ t` 0.189269 ˆ t2 ` 0.001308 ˆ t3
, t “

a

´2 log x.

Similar to the discussion on Algorithm 1, Algorithm 2 still converge to a stationary point in a finite

number of iterations.

From Theorem 2 in [23], Algorithm 1 converges in a finite number of iterations and the returned value
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V n is an upper bound of problem (??). Algorithm 1 can be seen as a particular case of the alternate convex

search or block-relaxation methods [10]. When these sub-problems are all convex, the objective function

is continuous, the feasible set is closed, the alternate convex search algorithm converges monotonically to

a partial optimal point (Theorem 4.7 [10]). When the objective function is a differentiable and biconvex

function, ph, τq is a partial optimal point if and only if ph, τq is a stationary point (Corollary 4.3 [10]).

Thus for the reason that }pΣkq
1
2 τn} is a convex function for any k “ 1, 2, ...,K, Algorithm 1 converges

to a stationary point.

3.3 K-L J-DRCCMDP with Elliptical mixture Distribution

In this section, we assume the center reference distribution of the K-L J-DRCCMDP is a Gaussian mixture

distribution. We study the reformulation of problem (14) under this case. As for the variable vector rk,

the pdf fk of rk is defined by fkprkq “
Jk
ř

j“1

ωk
j f

k
j prkq, where fkj prkq is the density function which follows

E|Λ|pµ
k
j ,Σ

k
j , ψ

k
j q and

Jk
ř

j“1

ωk
j “ 1.

Theorem 3. Given F0 defined in Definition 1 and F defined in Definition 3, if rk follows the elliptical

mixture distribution for each k, that is the pdf of rk is fkprkq “
Jk
ř

j“1

ωk
j f

k
j prkq, where fkj prkq is the density

function which follows E|Λ|pµ̃
k
j , Σ̃

k
j , ψ̃

k
j q and

Jk
ř

j“1

ωk
j “ 1. We assume that ψ̃0

j is a continuous function.

(14) is equivalent to

min
τ,α,y,l

α log

«

J0
ÿ

j“1

ω0
j exp p´

τJµ̃0
j

α
qψ0

j p´
τJΣ̃0

jτ

2α2
q

ff

` αδ0, (41a)

s.t. τJµ̃k
j ` pΦ̃k

j q´1p1 ´
lkj
ωk
j

q

b

τJΣ̃k
j τ ě ξk, j “ 1, 2, ...Jk; k “ 1, 2, ...K, (41b)

Jk
ÿ

j“1

lkj ě yk, k “ 1, 2, ...,K, (41c)

0 ď yk ď 1, 0 ď lkj ď 1, j “ 1, 2, ...Jk; k “ 1, 2, ...K, (41d)

K
ÿ

k“1

yk ě ϵ̂, α ě 0, (41e)

τ P ∆α,q, (41f)

where Φ̃k
j is the cdf of the variable Zk

j „ E|Λ|p0, 1, ψ̃
k
j q.
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Proof. By Lemma 5, (14a) is equivalent to

min
τ

inf
αPr0,`8q

αlogEF̃0

„

expp´
τJr0
α

q

ȷ

` αδ0. (42)

We assume that the pdf of r0 is defined by f0pr0q “
J0
ř

j“1

ω0
j f

0
j pr0q, where f0j pr0q is the density function

which follows E|Λ|pµ̃
0
j , Σ̃

0
j , ψ̃

0
j q and

J0
ř

j“1

ω0
j “ 1.

Let b0 “ ´ τJr0
α , we study the mean value of exp pb0q:

Erexp pb0qs “

ż `8

c“0

exp pb0qPpexp pb0q “ cqdc, (43a)

“

ż `8

c“0

exp pb0qPpb0 “ ln cqdc, (43b)

“

ż `8

c“0

exp pb0q
ÿ

j0

ω0
jP0

j pb0 “ ln cqdc, (43c)

“
ÿ

j

ω0
j

ż `8

c“0

exp pb0qP0
j pb0 “ ln cqdc, (43d)

“
ÿ

j

ω0
j

ż `8

c“0

exp pb0qP0
j pexp pb0q “ cqdc, (43e)

“
ÿ

j

ω0
j exp p´

τJµ̃0
j

α
qψ0

j p´
τJΣ̃0

jτ

2α2
q, (43f)

where the third equation is because b0 follows the elliptical mixture distribution, the last equation is by

Lemma 3. Following the same process in Theorem 2, by introducing auxiliary variables yk P R`, (14b)

is equivalent to (32) and (33). By Proposition 2 in [15], we have

(32) ðñ

Jk
ÿ

j“1

ωk
j PF̃k

j
pτJ ¨ rk ě ξkq ě yk, k “ 1, 2, ...K. (44)

With Theorem 2, through adding auxiliary variables lkj P R`, (32) is equivalent to

ωk
j PF̃k

j
pτJ ¨ rk ě ξkq ě lkj , j “ 1, 2, ..., Jk; k “ 1, 2, ...K, (45)

Jk
ÿ

j“1

lkj ě yk,
K
ÿ

k“1

yk ě ϵ̂, 0 ď yk ď 1, 0 ď lkj ď 1, j “ 1, 2, ...Jk; k “ 1, 2, ...K. (46)

Also ωk
j PF̃k

j
pτJ ¨ rk ě ξkq ě lkj is equivalent to

τJµ̃k
j ` pΦ̃k

j q´1p1 ´
lkj
ωk
j

q

b

τJΣ̃k
j τ ě ξk, j “ 1, 2, ...Jk; k “ 1, 2, ...K, (47)
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where Φ̃k
j is the cdf of the variable Zk

j „ E|Λ|p0, 1, ψ̃
k
j q. We finish the proof.

4 Numerical experiments

4.1 Machine replacement problem

We take the “Machine replacement problem” as our example, which was introduced by Delage and

Mannor [6], and was studied in [35, 39, 11, 31]. In a machine replacement problem, we consider the

maintenance cost along with the opportunity cost. The maintenance cost comes from the production

losses when the machine is under repair. The opportunity cost comes in two forms: one is due to the

operation consumption for machines, such as the required electricity fees and fuel costs when the machine

is working; the other is incurred due to the production of inferior quality products. These three costs

are unknown in advance and we just know the mean values and corresponding covariance matrix for

each cost. Suppose the owner possesses a fixed number of the same machines, and we assume that each

machine is modeled with the same model. Therefore we only consider one machine and the same repair

policy for it can be applied uniformly for all the machines. The states represent the age of a machine. At

each state there are two possible actions, i.e. repair or do not repair. Three considered costs above are

incurred at every state. The known transition probabilities for the whole MDP are the same as those in

[35] and are available in Figure 1 of [35].

In all numerical experiments, we take the discount factor α “ 0.9 and assume that the initial distri-

bution q is uniformly distributed. We consider the case of 10 states. The mean values of three considered

costs are summarized in Table 4.1. For example, if at state 1 the ’repair’ action is used, the mean values of

r0, r1, r2 are ´10,´15, 0 respectively. If the action ’do not repair’ is used, the mean values of three costs are

0,´10,´40 respectively. The last two states are risky states such that the mean values of costs are lower

at these states [6]. The covariance matrices of costs are all assumed to be diagonal. Concretely, the covari-

ance matrix of r0 is Σ0 “ diagpr0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 3, 5, 2, 8, 9sq,

the covariance matrix of r1 is Σ1 “ diagpr0.5, 5, 0.5, 0.5, 0.5, 5, 0.5, 5, 0.5, 0.5, 0.5, 5, 0.5, 0.5, 0.5, 0.5, 8, 9, 8, 9sq

and the the covariance matrix of r2 is Σ2 “ diagpr0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04,
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0.04, 0.04, 0.04, 4, 9, 8, 8.5, 10sq.

In our numerical experiments, we still study the DRCCMDP model. In particular, for I-DRCCMDP

model, we set ξ1 “ ξ2 “ ´40 and ϵ1 “ ϵ2 “ 0.8 in (13b). For J-DRCCMDP, we set ξ1 “ ξ2 “ ´40 and

ϵ̂ “ 0.8 in (14b). Next we list our results and conclusions from numerical experiments on Moments based

DRCCMDP and K-L divergence based DRCCMDP respectively.

Table 1: The mean value of considered costs

States
Maintenance cost Operation consumption cost Inferior quality cost

r0ps, a1q r0ps, a2q r1ps, a1q r1ps, a2q r2ps, a1q r2ps, a2q

1 -10 0 -15 -10 0 -40

2 -10 0 -15 -30 0 -40

3 -10 0 -15 -40 0 -50

4 -10 0 -15 -50 0 -50

5 -10 0 -15 -70 -15 -50

6 -10 0 -15 -80 -15 -55

7 -10 0 -15 -80 -15 -55

8 -10 0 -15 -80 -15 -55

9 -40 -85 -50 -200 -30 -80

10 -40 -95 -50 -200 -30 -100

4.2 Numerical results on Moments based DRCCMDP

For Moments based DRCCMDP, let ρ1,0 “ 20, ρ1,1 “ ρ2,1 “ 20, ρ1,2 “ ρ2,2 “ 15. Then when focusing on

the I-DRCCMDP, we solve the convex optimization problem (??) using the MOSEK solver in YALMIP

toolbox of MATLAB given the data needed above. When focusing on the J-DRCCMDP, we turn to (??),

(??). Based on the Algorithm 1, we set the initial points h01 “ 0.93, h02 “ 0.95 and nmax “ 100, ϵ̃ “

10´4, γ “ 0.9, we use the MOSEK solver to work out this problem. The results are listed in Table 4.2,

from which we conclude that the repair probability of the machine increases with its age and we must

repair it at the last four states for both I-DRCCMDP and J-DRCCMDP in this model.
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Table 2: Optimal policies of Moments based DRCCMDP

States 1 2 3 4 5 6 7 8 9 10

I-DRCCMDP
repair 0 0 0 0.2077 0.5068 0.9534 1 1 1 1

do not repair 1 1 1 0.7923 0.4932 0.0466 0 0 0 0

J-DRCCMDP
repair 0 0 0.0679 0.3287 0.3624 0.8176 1 1 1 1

do not repair 1 1 0.9321 0.6713 0.6376 0.1824 0 0 0 0

4.3 Numerical results on K-L divergence based DRCCMDP

In this section, we particularly consider the case where the reference distribution of the K-L divergence

based ambiguity set is a standard Gaussian distribution. Same as Moments based DRCCMDP, we let

ρ1,0 “ ρ1,1 “ ρ2,1 “ 20, ρ1,2 “ ρ2,2 “ 15. When focusing on I-DRCCMDP in this case, we aim to solve the

convex optimization problem (22). Following the same proof process in Proposition 1 when the reference

distribution is a standard Gaussian distribution, we can simplify (22) into the following one:

min
τ

´τJµ0 `
a

2δ0τJΣ0τ , (48a)

s.t. τJµk ` Φ´1
k p1 ´ ϵ1

kq
a

τJΣkτ ě ξk, k “ 1, 2, ...K, (48b)

τ P ∆α,q. (48c)

We consider six different cases when δ0 “ δ1 “ δ2 “ 0.5, 0.4, 0.3, 0.2, 0.1, 0.01 respectively, and we solve

the convex optimization problem (48) using the GUROBI solver in MATLAB. We list the results on

the probability of “repair” action for each state under K-L I-DRCCMDP in Figure 4.3. As there are in

total two actions to choose for each state, the probability of “do not repair” action can be computed

by subtracting that of “repair” action with 1. Thus the trend of the probability that “do not repair”

be taken for each state is just the same as that of “repair”, and we omit it taken for granted. From

Figure 4.3, we see the asymptotic convergence of the probability for each state when δ0, δ1, δ2 are taken

decreasingly from 0.5 to 0.01. Also we see that for all six radii we choose, the probability of “repair” in

last three states are all 1, which is in correspondence with the fact that the machine gets aging with the

state forward.

Next we focus on J-DRCCMDP in this case. Based on Algorithm 2, we set the initial points y01 “
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Figure 1: The probability of the action “repair” for each state under K-L I-DRCCMDP
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0.95, y02 “ 0.91 and nmax “ 50, ϵ̃ “ 10´4, γ “ 0.9. For the line search method which we use to get χ̃´1p¨q,

let the number of intervals be 50 and the approximation accuracy be 10´3. We consider six cases with

different radii when δ0 “ δ1 “ δ2 “ 10´4, 5 ˆ 10´5, 10´5, 5 ˆ 10´6, 10´6, 0. We use the MOSEK solver to

work out this problem and we list our numerical results on probability of ”repair” for each state in this

case in Figure 4.3, from which we observe the asymptotic convergence of the probability for each state

as the radius decreases to 0.

Figure 2: The probability of the action “repair” for each state under K-L J-DRCCMDP
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[22] Simge Küçükyavuz and Ruiwei Jiang. Chance-constrained optimization under limited distributional

information: a review of reformulations based on sampling and distributional robustness. EURO

Journal on Computational Optimization, page 100030, 2022.

[23] Jia Liu, Abdel Lisser, and Zhiping Chen. Stochastic geometric optimization with joint probabilistic

constraints. Operations Research Letters, 44(5):687–691, 2016.

[24] Jia Liu, Abdel Lisser, and Zhiping Chen. Distributionally robust chance constrained geometric

optimization. Mathematics of Operations Research, 2022.

25



[25] Shuai Ma and Jia Yuan Yu. State-augmentation transformations for risk-sensitive reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 4512–

4519, 2019.

[26] Shie Mannor, Ofir Mebel, and Huan Xu. Robust mdps with k-rectangular uncertainty. Mathematics

of Operations Research, 41(4):1484–1509, 2016.
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