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Abstract—Dynamic programming languages have been em-
bracing gradual typing, which supports optional type annotations
in source code. Type-annotating a complex and long-lasting
codebase is indeed a gradual and expensive process, where two
issues have troubled developers. First, there is few guidance
about how to implement type annotations due to the existence
of non-trivial type practices; second, there is few guidance about
which portion of a codebase should be type-annotated first.
To address these issues, this paper investigates the patterns
of non-trivial type-annotation practices and features of type-
annotated code files. Our study detected six patterns of type-
annotation practices, which involve recovering and expressing
design concerns. Moreover, we revealed three complementary
features of type-annotated files. Besides, we implemented a
tool for studying optional typing practice. We suggest that: 1)
design concerns should be considered to improve type annotation
implementation by following at least six patterns; 2) files critical
to software architecture could be type-annotated in priority. We
believe these guidelines would promote a better type annotation
practice for dynamic languages.

Index Terms—type annotation, dynamic languages

I. INTRODUCTION

Dynamic programming languages have been embracing
gradual typing [1], supporting optional type annotations
in source code. For example, Python community proposes
PEP483 to support optional type hints for Python 3.5 and
later versions in 2014. TypeScript [2] with the first release
version in 2014 allows static type definitions for JavaScript.
In 2020, Ruby 3.0 [3] claims featuring type annotations by
introducing RBS [4]. This trend indicates that dynamic typing
community increasingly acknowledges the benefits of type
annotations, i.e., facilitating early bug detection and soft-
ware maintenance [5], [6]. Notable Python communities like
Apache PySpark have started modern type annotation practices
on their long-lasting codebases. By long-lasting codebases, we
mean that they were originally developed during that period
of optional typing feature unavailable.

Adding type annotations requires a monumental effort [5].
Type-annotating a complex and long-lasting codebase is not
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an overnight process, indeed a gradual migration from un-
annotated codebase to a completely type-annotated one. Dur-
ing this gradual and expensive process, two issues have
troubled developers:

First, there is few guidance on how to implement type
annotations. Some type annotation implementations require
additional definitions, besides the types themselves. We define
them as non-trivial type annotation practices. Recent studies
[7], [8] concluded that adding type to a single variable
consumes about two minutes on average. However, the patterns
followed by non-trivial type annotation are still unclear. Re-
vealing these patterns would promote an effective and efficient
type annotation practice.

Second, there is few guidance on which portion of a
codebase should be type-annotated in priority. When type-
annotating a large-scale codebase, developers have struggled
with where to start adding types–“It should be decided if
annotations should cover only the public API(s), or internals
as well”, as stated by PySpark developers [9]. They agree
that there should be “a trade-off between completeness (of
the typing coverage) and the cost of maintenance (of type
annotations).” However, it is unclear for type beginners about
which source files can be type-annotated with priority.

This paper focuses on the two issues by studying popular
Python projects that have experienced type annotations. Two
significant considerations motivate our study. First, we con-
jecture that the inconsistency between type annotation imple-
mentations and the corresponding source code may imply the
patterns of non-trivial type annotations, due to the introduction
of new code entities. Second, we assume that type-annotated
files are likely critical to maintaining a software system. The
reason is that one intention of using types is to improve
codebase maintainability, which is commonly evaluated based
on code dependency structures [10], [11]. As a result, we will
explore three research questions:
RQ1. What are the patterns that non-trivial type-annotation
practices follow?
RQ2. Do type-annotated files present different dependency
structure?
RQ3. Do type-annotated files incur different maintenance
cost?

To support our study, we selected notable Python projects
with type hint experiences. These subjects are with diverse



domains, sizes, and type-hint manners [12]. We designed the
THProfiler to analyze projects’ source code and mine their
revision history. We have created and released the dataset [13].

First, our study figured out six patterns followed by non-
trivial type hint practices. They are Typing Compatability,
API Visibility, BaseClass Presentation, Function Overloading,
Function-assigned Variable, and Typing Extension. These type
annotation practices heavily involve recovering and expressing
design or code decisions made by developers during codebase
development. Second, we revealed three features of type-
annotated files. Type-annotated files have a bigger value of
degree centrality in dependency structure, reside at the up-
permost layer in the hierarchical structure, and incur higher
maintenance costs.

Our work is the first to inspect non-trivial type-annotation
practices and identify features of type-annotated files, to the
best of our knowledge. Our findings benefit type hint practices
and tools– 1) architecture concerns should be considered to
improve the effectiveness and efficiency of type implementa-
tions by following these patterns; 2) files critical to software
architecture could be type-annotated in priority for a gradual
migration from un-annotated codebase to type-annotated one.

Overall, our work makes the following contributions:
1) We define six patterns followed by non-trivial practices

and reveal three features of type-annotated files.
2) We suggest following these patterns with design con-

cerns to implement type annotations; we recommend type-
annotating files with the revealed features in priority.

3) We contribute a dataset and a tool for the continued study
of type annotation practices in dynamic languages.

The organization of the rest: Section II presents the key
concepts and our THProfiler tool. Sections III, IV, and V
report the study setup, study results, and potential impact of
our empirical study. Sections VI and VII discuss the threats
to validity and related work. Section VIII draws conclusions.

II. METHODOLOGY

This section will introduce the concepts and THProfiler we
designed to support our study.

A. Concepts

Listing 1: Example A
#a is type-annotated
#b,c are un-annotated
def func(a:int, b):
c = a + b
return c

Listing 2: Example B
#_P is a newly defined
_P=TypeVar("_P",bound=int)
def func(a:_P, b):
c = a + b
return c

1) Optional Type Annotation: Gradual typing [1] supports
optional type annotations in source code. The “optional”
means that developers can add type annotations to a portion of
source files, and functions or variables inside one file. Only
type-annotated entities will be statically type-checked while
others remain type-checked at run-time. Listing 1 shows a
snippet of Python code. In the function func, its parameter a
is annotated with int while the parameter b and a variable c
have no type annotations.

2) Type Annotation Implementation: Following
PEP484 [12], Python3.5 and later versions support two
manners of type annotation implementation:

inline type hints. Type annotations are directly inlined in
the source code. In Listing 3, type hints of var and add are
inlined in test.py.

stub files. Type annotations are separately managed in stub
files named with ∗.pyi, which only contain type hints and are
only used by static type checkers (i.e., mypy [14], pytype [15]).
In Listing 4, test.pyi is the stub file corresponding to test.py.
test.pyi only contains type-associated declarations and func-
tion signature of add. The function body of add is a single
ellipsis (...).

Python projects can adopt either one or both two manners
above at the same time.

Listing 3: Inline type hints
#test.py

var: int = 10

def add(a:int,b:int)
->int:

c = a + b
return c

Listing 4: Stub file
#test.py
var = 10
def add(a,b):
c = a + b
return c

#test.pyi
var: int
def add(a:int,b:int)->int:...

3) Trivial and Non-trivial Type Practices: We classify type
annotation implementations into two types:

Trivial type practices mean that type-annotating a code
entity simply requires assigning the type by following a syntax
of : type. In this case, the source code before and after type
annotation implementations are consistent with each other.
Type-annotating a in Listing 1 is trivial by only adding : int.

Non-trivial type practices are complex implementations that
require introducing additional definitions such as variables,
functions, and classes. This practice leads to the inconsistency
between the code and type-annotated code. In listing 2, P is
introduced to type-annotate a.

B. THProfiler

We designed and implemented THProfiler to support our
study. THProfiler analyzes the source code and mines revision
history of type-annotated Python codebases. As illustrated in
Figure 1, the input of THProfiler is a Python codebase with
type implementations. THProfiler consists of three parts as
follows.

1) Typing Practice Identification: This part detects entities
annotated with types and type usages in source code.

Typing Coverage Detection. Using Python ast library, this
module first identifies all code entities and type-annotated
entities. Then it calculates the typing coverages at various
levels. We define typing coverage as the proportion of entities
(i.e., functions, files, variables) with type hints.

Diverse Type Extraction. Through traversing the AST struc-
tures of source files and stub files (if available), this module
detects all types assigned to entities.

Complex Typing Usage Detection. This module detects the
usage of protocols and function overloadings. Overloaded



Fig. 1: The overview of THProfiler

functions are declared with @overload decorator, which is
imported from typing module. The @overload decorator
allows describing functions with same names but with different
combinations of argument types [16]. Protocol classes [17]
explicitly extend from typing.Protocol that supports struc-
tural typing. Structural typing can be considered as a static
equivalent of duck typing [18]. Protocol classes act as an
implicit base-class in the static type analysis. That is, if a class
has some members that are also defined by protocols, this class
can be (implicitly) treated as a sub-class of the protocols.

2) Dependency Structure Characterization: This part ex-
tracts and analyzes dependency structure of source code,
following the Design Rule Theory [19]. Design Rule Theory
assumes that design rules and modules are major design
concerns in a software system. Design rules decouple the rest
of a system into mutually independent modules. In the source
code that follows Object-Oriented Programming pragmatics,
design rules are often manifested as interfaces or abstract
classes. The removal, modification, and addition of a module
should have no influence on design rules.

Dependency Extraction. This module considers both explicit
and possible dependencies in source code. As termed by Jin
et al. [10], explicit dependencies are syntactic dependencies
that are explicitly referenced in source code, while possible
dependencies are invisible and non-deterministic dependencies
due to duck typing [18]. Following this work [10], this module
also employs SCITool Understand [20] and ENRE [21] to
extract explicit and possible dependencies, respectively.

Graph Construction. This module constructs the Attributed
Dependency Graph (ADG) from the union of explicit and
possible dependencies. In an ADG, each node denotes one
source file, and each directed edge denotes one dependency
between two files. The node attribute specifies whether a
node has type hints (denoted as typed) or not. The attribute
information is obtained from the Typing Practice Identification
of THProfiler.

Design Rule Hierarchy (DRH). Based on the ADG, this
module employs DRH [22], [23] algorithm to identify design
rules and independent modules in a software system. Fol-
lowing the Design Rule Theory [19], DRH clusters source
files into a layering structure, where files in upper layers
represent design rules, and files in lower layers are organized
into independent modules decoupled by those design rules.
Modules in lower layers depend on the modules in upper

layers, but not vice versa. Modules in the same layer are
mutually independent.

We use a subset of source files in Django, one of our
subjects, to explain hierarchical structures created by DRH. In
Figure 2, each row or column corresponds to a file and “dp”
in a cell (i, j) indicates one dependency from file i to file j.
Dependencies can be “inherit” or “call” relations identified by
Dependency Extraction of THProfiler. A diagonal cell means a
self-dependency. DRH clusters these 14 files into three layers,
i.e., L0, L1, and L2. The uppermost layer L0 (rows 1 to 6)
contains 6 files that denote design rules of this sub-system; L1

contains row 7 to 8; L2 (row 9 to 14) includes four mutually
independent modules and they are row 9, 10, 11-13, and 14.

Fig. 2: The hierarchical structure formed by a subset of files in Django

3) Maintenance Measurement: This part computes the
maintenance cost of typed and untyped files according to the
revision history managed by VCS (Version Control System)
like Git.

Revision History Preprocess. This module exports the com-
mit log from a code repository. Each commit record includes
the commit ID, the author making this commit, a list of
modified files, the IDs of issues fixed by this commit, and
the LoC (Lines of Code) of addition and deletion.

Maintenance Cost Measurement. Based on commit records,
this module quantifies the effort taken on maintaining source
files. Similar to the work of [10], [24], six measures are
computed, including #commit—the number of commits made
to a file; #changeLoc—the total lines of changed code of
modifying a file; #author—the number of developers for
maintaining a file; #issue—the number of issues that a file
gets involved; #issueCmt—the number of commits of a file
for fixing issues; #issueLoc—the total LoC changed to a file



for fixing issues. The bigger value of these measures indicates
the more maintenance cost invested on a file.

III. STUDY SETUP

We collect Python projects that experience type annotation
practices and conduct a preliminary analysis during the setup.
We will explore three research questions as follows.

RQ1: What are the patterns that non-trivial type-annotation
practices follow? This study will figure out and categorize the
patterns that complex type-hint practices will follow.

RQ2: Do type-annotated files present different dependency
structure? This study will compare the type-annotated files
with other files, based on file-level dependency structure.

RQ3: Do type-annotated files incur different maintenance
cost? The answer will advance our understanding of the
maintainability of type-annotated files when compared with
other files.

A. Collection and Subjects

We manually selected Python projects as subjects. The basic
selection criteria include: the project 1) is partially type-hinted;
2) is widely used, frequently starred, or downloaded; 3) has
a well-managed revision history with commits and issues; 4)
follows type annotation syntax supported by Python 3.5 or
later versions; 5) uses non-Any types since Any is compatible
with every type and has no semantics.

Following these requirements, three contributors of our
work initially selected subjects from 105 public projects
studied by a recent work [10] and selected frequently starred
Python projects in Github. The selection process requires
manually inspecting projects, the source code, and community
discussions to determine type-related information, such as
type-hint manners they adopted and repositories that manage
type implementations.

To alleviate the bias to our study, from the projects col-
lected by three contributors, we finally selected subjects with
various diversities. 1) Diverse type hint manners: we chose
the projects, which only adopt inline type annotations, only
adopt stub type files, or adopt both inline and stub together.
2) Diverse domains: projects cover different domains such
as web framework, scientific computing, and type check. 3)
Diverse sizes: projects can be small-scale (less than 10k LoC),
medium-scale (at least 10k LoC), or large-scale (at least 100k
LoC). Finally, we collected 19 subjects, as shown in Table I.

In Table I, Version is the project version we studied, #File
counts files, #LoC counts lines of code, TypeManner lists
type-hint manners used by projects, TypeCodeURL is the
Github repositories holding type implementations of projects,
and Star denotes the project popularity. We can see that 3
projects manage type implementations in stub files; 9 projects
adopt inline type annotations; the remaining 7 projects adopt
both inline and stub manners. As listed in TypeCodeURL,
Django, DRF, and Matplotlib manage type stubs in separate
repositories from their codebase repositories.

B. Statistics of Typing Coverage

By employing Typing Coverage Detection of our THProfiler,
we detected type-annotated entities, then computed typing
coverage in terms of LoC, files, functions, and variables.
Coverage(loc) is the ratio of LoC annotated with types to
the total LoC. The total LoC counts both the source code
and stub code in ∗.pyi (if have). Coverage(file) is the
proportion of files with type hints. Coverage(func) is the
proportion of functions or methods containing type-annotated
declaration signatures. Coverage(var) counts the proportion
of type-annotated names or variables. The computation of
Coverage(var) excludes parameter variables since they are
considered for Coverage(func).

Table II lists typing coverage results. The values less
than 100% indicate that partial code entities are assigned
with type annotations. The values of Coverage(file) and
Coverage(func) are bigger than those of Coverage(loc)
and Coverage(var). For example, more than 90% files are
type-hinted in DRF, while the coverage values of variables
and functions are smaller. Besides, these results reveal a
substantial development and maintenance effort invested in
type implementations.

C. Statistics of Diverse Type Usage

We used Diverse Type Extraction of THProfiler to observe
type usages in subjects. We counted the types imported from
typing like Union and List since typing module is officially
designed to support optional typing.

Fig. 3: The usage of diverse types

Figure 3 depicts shows that Any and Optional are most
frequently used in subjects. Optional means that the type of
a symbol can be a specified type or None. The Optional
usage indicates code objects are prone to be declared with
None by default. Any has no type semantics, meaning that
objects annotated by it will escape from static type-checking.

Our study will focus on non-Any annotation practices. If
a file only has Any types associated with code symbols,
we consider this file is un-annotated. In this case, the type-
annotated file coverage as listed in Table III is sightly different
with that in Table II for some projects.



TABLE I: Subjects

Project Version File LoC TypeManner TypeCodeURL Star

Chainer 522e01 1,169 163,349 stub,inline https://github.com/chainer/chainer 5.6k
Django v3.1.7 2,531 280,529 stub https://github.com/typeddjango/django-stubs 56.4k
DRF v3.12.2 240 38,825 stub https://github.com/typeddjango/djangorestframework-stubs 20.6k
Elasticsearch 25b50e 225 42,546 stub,inline https://github.com/elastic/elasticsearch-py 3.2k
gRPC v1.36.2 280 32,317 inline https://github.com/grpc/grpc 29.8k
Matplotlib v3.3.3 1,151 213,369 stub https://github.com/predictive-analytics-lab/data-science-types 13.3k
Mypy v0.812 408 100,264 inline https://github.com/python/mypy 10.4k
Numpy v1.20.0 896 312,134 stub,inline https://github.com/numpy/numpy 16.6k
Pandas v1.2.3 1,350 349,932 inline https://github.com/pandas-dev/pandas/ 29.1k
Prefect c423a7 538 87,311 inline https://github.com/PrefectHQ/prefect 6.6.k
Pyproj dd84df 51 14,699 inline https://github.com/pyproj4/pyproj 633
PySpark v3.1.1 181 39,506 stub,inline https://github.com/apache/spark 29.2k
Pytest 940c6e 236 63,761 inline https://github.com/pytest-dev/pytest 7.5k
Rasa a4ee09 474 97,490 inline https://github.com/RasaHQ/rasa 11.7k
Returns v0.15.0 332 19,119 stub,inline https://github.com/dry-python/returns/ 1.6k
Sanic 021da3 141 18,943 inline https://github.com/sanic-org/sanic 15.1k
Scipy 6caa33 787 290,055 stub,inline https://github.com/scipy/scipy 8.4k
Uvicorn 62825d 64 5,554 inline https://github.com/encode/uvicorn 4.1k
Werkzeug 08624d 134 29,209 stub,inline https://github.com/pallets/werkzeug 5.8k

1 DRF is Django-Rest-Framework.

TABLE II: Typing coverage results

Project Coverage
(loc)

Coverage
(file)

Coverage
(func)

Coverage
(var)

Project Coverage
(loc)

Coverage
(file)

Coverage
(func)

Coverage
(var)

Chainer 0.21% 2.86% 2.63% 0.00% Django 14.75% 75.89% 50.96% 27.92%
DRF 19.47% 91.67% 68.14% 33.56% Elasticsearch 43.46% 96.77% 95.88% 44.77%
gRPC 1.46% 8.20% 7.66% 0.00% Matplotlib 0.03% 4.87% 0.09% 0.01%
Mypy 10.22% 90.00% 99.98% 0.00% Numpy 2.12% 10.09% 2.07% 3.59%
Pandas 1.26% 20.37% 14.90% 0.57% Prefect 7.44% 69.78% 90.04% 0.00%
Pyproj 4.91% 61.90% 74.12% 0.00% PySpark 14.09% 43.55% 55.70% 6.38%
Pytest 11.48% 89.06% 93.11% 0.00% Rasa 8.45% 79.92% 100.00% 0.00%
Returns 11.82% 80.36% 90.64% 11.32% Sanic 7.32% 78.05% 52.19% 0.00%
Scipy 0.22% 3.01% 0.67% 0.03% Uvicorn 8.02% 75.61% 62.59% 0.00%
Werkzeug 11.98% 91.49% 98.39% 1.62%

TABLE III: Coverage(file) results after excluding Any types

Project Coverage Project Coverage Project Coverage

Chainer 2.86% Django 56.77% DRF 79.17%
Elasticsearch 60.22% gRPC 8.20% Matplotlib 2.21%
Mypy 90.00% Numpy 7.62% Pandas 20.37%
Prefect 69.40% Pyproj 61.90% PySpark 42.47%
Pytest 89.06% Rasa 79.92% Returns 80.36%
Sanic 78.05% Scipy 3.01% Uvicorn 73.17%
Werkzeug 91.49%

IV. EVALUATION

A. RQ1: Patterns of Non-trivial Type-annotation Practices

This RQ explores the patterns that non-trivial type annota-
tion practices follow. We first illustrate this motivation. After
that, we manually screen subjects to categorize and explain
the patterns. We automatically detect these patterns through a
static code analysis on ASTs of subjects.

1) Motivation: When we employed Typing Coverage De-
tection of THProfiler in Section III-B, we found an interesting
observation in subjects with stub files: besides adding a single
type to a symbol, developers sometimes define new entities
which were absent in the source files.

Table IV summarizes the stub files, classes, and functions
in the stub code, which are directly unmatched with the

source code. The results indicate that nine projects (exclud-
ing Chainer) have a substantial number of entities newly
introduced for type implementations. In Django, 13 stub files
(∗.pyi) have no corresponding source files (∗.py); 50 classes
and 266 functions are additionally defined in stub code.

We assume that this inconsistency may capture non-trivial
type-annotation practices. Inspired by this assumption, we
inspect the projects with such inconsistency.

2) Categorization Results: Due to the non-negligible in-
consistency (as shown in Table IV) between source code and
stub code, we manually inspected the subjects with stub files,
as listed in Table I. We conducted a qualitative analysis and
quantitative analysis supported by Complex Typing Usage De-
tection of THProfiler. Finally, we figured out and categorized
six patterns that non-trivial type-hint practices follow.
Category 1 (Typing Compatibility): With the evolution of
typing module, typing inevitably provides fresh types that
were unavailable in earlier versions. When implementing type
annotations in older versions, such fresh types need to be user-
defined for version compatibility.

Listing 5: An example for Category 1
#numpy/core/function_base.pyi
if sys.version_info >= (3, 8):
from typing import SupportsIndex



TABLE IV: Summary of stub files, classes and functions that are defined in
∗.pyi but absent in ∗.py

Project Absent Stub File Absent Class Absent Function

Chainer 0 0 0
Django 13 50 266
DRF 0 23 14
Elasticsearch 0 1 10
Matplotlib 3 5 0
Numpy 3 35 309
PySpark 8 0 96
Returns 0 1 2
Scipy 9 2 4
Werkzeug 0 0 56

* Since values in Chainer are zero, the study of RQ1 will exclude Chainer.

else:
from typing_extensions import Protocol
class SupportsIndex(Protocol):
def __index__(self) -> int: ...

For example, in Numpy project listed in Listing 5,
SupportsIndex is only supported by typing in Python3.8
and later versions. SupportsIndex should be user-defined
in older versions. As a result, SupportsIndex is ab-
sent in function base.py while it is introduced in
function base.pyi.
Category 2 (API Visibility): One module defines an API while
its corresponding type-annotated API is declared in the stub
file of another module that depends on this API. In this case,
type-annotated APIs are directly visible to their dependents.

Listing 6: An example for Category 2
#numpy/core/multiarray.py
__all__ = [’empty_like’, ...]
def empty_like
(prototype, dtype=None, order=None, subok=None,

shape=None):
return (prototype,)

#numpy/core/numeric.pyi
def empty_like(a: _ArrayType, dtype: None = ...,

order: _OrderKACF = ..., subok: Literal[True] =
..., shape: None = ...,) -> _ArrayType: ...

In Listing 6 excerpted from Numpy, empty like() is de-
fined in multiarray.py module. This function is also in-
cluded in all , meaning that it is visible to other modules
by “from multiarray import ∗”. However, type implemen-
tation of empty like() appears in numeric.pyi instead of
multiarray.pyi. As a result, numeric can access the seman-
tic types of empty like().
Category 3 (Baseclass Presentation): Baseclasses, either ex-
tending from typing.Protocol1 or not, are newly introduced
into type implementations, making originally invisible inter-
faces explicit.

Listing 7: An example for Category 3
#rest_framework/permissions.py
class AND:
def __init__(self, op1, op2): ...
def has_permission(self, request, view): ...

1https://mypy.readthedocs.io/en/stable/protocols.html

TABLE V: The classes present in stub code

Project Class All new class Protocol class Subclass

Django 1528 50 (3.27%) 10 25
DRF 236 2 (0.85%) 8 9
Elasticsearch 74 1 (1.35%) 0 0
Matplotlib 23 5 (21.74%) 0 2
Numpy 36 35 (97.22%) 27 18
PySpark 483 0 (0%) 0 0
Returns 1 1 (100%) 1 1
Scipy 1619 2 (0.12%) 3 0
Werkzeug 207 0 (0%) 1 0

def has_object_permission(self, request, view, obj
): ...

class OR:
def __init__(self, op1, op2): ...
def has_permission(self, request, view): ...
def has_object_permission(self, request, view, obj

): ...

#rest_framework-stubs/permissions.pyi
class _SupportsHasPermission(Protocol):
def has_permission(self, request: Request, view:

APIView) -> bool: ...
def has_object_permission(self, request: Request,

view: APIView, obj: Any) -> bool: ...
class AND(_SupportsHasPermission): ...
class OR(_SupportsHasPermission): ...

In Listing 7, classes And and OR have no explicit relation-
ship in permissions.py. However, in permissions.pyi, both
of them explicitly inherit a newly defined baseclass named

SupportHasPermission. The baseclass acts as an interface,
which was implicitly implemented by AND and OR in
permissions.py.

Table V summarizes the classes defined in stub files. Con-
sidering Django, 1528 classes are type-annotated. 3.27% (i.e.,
50) of them are absent in source code but defined for type
hints. Among 50 new classes, 10 classes explicitly extend from
typing.Protocol. 25 classes extend from these new classes.
The presence of new base-classes helps build an explicit
relationship between base-classes and their sub-classes.
Category 4 (Function Overloading): A function in source
code may become overloaded in its type implementations.
Overloaded functions have the same name but are declared
with different types of parameters or returns. In Listing 8,
smart text() is overloaded, generating two different defini-
tions in type stub code.

Listing 8: An example for Category 4
#django/utils/encodings.py
def smart_text(s, encoding=’utf-8’, strings_only=

False, errors=’strict’):
warnings.warn("...")
return smart_str(s, encoding, strings_only,

errors)

#django-stubs\utils\encoding.pyi
from typing import TypeVar, overload
@overload
def smart_text(s: _P, encoding: str = ...,

strings_only: bool = ..., errors: str = ...)
-> _P: ...

@overload

https://mypy.readthedocs.io/en/stable/protocols.html


TABLE VI: Summary of the overloaded functions (i.e., OFunc)

Project #OFuncall #OFunc2 #OFunc3 Max(OFunci, i)

Django 45 35 9 4
DRF 4 4 0 2
Numpy 33 22 9 4
Pyspark 115 92 14 28
Scipy 18 2 16 3
Werkzeug 18 12 5 4

def smart_text(s: _PT, encoding: str = ...,
strings_only: Literal[True] = ..., errors: str
= ...) -> _PT: ...

Table VI lists function overloading in subjects. For instance,
45 different functions in Django are overloaded in type im-
plementations, as indicated by #OFuncall. #OFunc2 = 35
means that 35 of 45 functions are overloaded twice, i.e., each
function has two different declarations; #OFunc3 = 9 shows
that 9 functions are overloaded with 3 times; the remaining
one (i.e., 45-35-9=1) is overloaded with more than 3 times.
Max(OFunci, i) = 4 shows that there exists a function
overloaded with up to 4 separate declarations.

The common usage of function overloading in Table VI
implies a non-trivial effort for “splitting hairs” influenced by
different parameters.
Category 5 (Function-assigned Variable): For variables as-
signed with function objects, type implementations may ex-
plicitly declare them as functions. This practice will generate
new function definitions in stub files.

Listing 9: An example for Category 5
#numpy/core/_internal.py
class _ctypes:
get_data = data.fget
get_shape = shape.fget

#numpy/core/_internal.pyi
class _ctypes:
def get_data(self) -> int: ...
def get_shape(self) -> Any: ...

get data in Listing 9 is a variable in internal.py,
then declared as an explicit function get data(self) in
internal.pyi. get shape is a similar case.

Category 6 (Typing Extension): Some stub files correspond
to extension files like ∗.pxd. ∗.pxd works like C header files
and is provided by Cython, supporting writing C extensions
for Python language.

Listing 10: An example for Category 6
#numpy/__init__.pxd
ctypedef class numpy.flatiter [object

PyArrayIterObject, check_size ignore]:...

#numpy/__init__.pyi
class flatiter(Generic[_NdArraySubClass]):...

In Listing 10, class flatiter with type annotations is defined
in init .pyi while its declaration appears in init .pxd
instead of init .py.

Pattern Summary: Table VII summarizes the six patterns
detected in projects with stub files. First, Function Overloading

and Function-assigned Variable are common practices adopted
by developers. The numbers of Baseclass Presentation, Typing
Compatibility, and Typing Extension are smaller. API Visibil-
ity is the most infrequent pattern. Second, projects in diverse
domains present different number of patterns. For instance,
SciPy and Numpy have the Typing Extension since they
integrate with C/C++ extensions for scientific computation.

3) Answering RQ1: We figured out and categorized six
kinds of type practices that are non-trivial to conduct. They
tightly require recovering and expressing design decisions in
long-lasting codebase:

• Typing Compatability practice introduces new dependen-
cies into a codebase, due to new definitions for compat-
ibility with older versions of typing module.

• Baseclass Presentation practice recovers and explicitly
expresses design rules, which are manifested as base-
classes or protocols in type implementations.

• API Visibility practice makes some APIs directly visible
to the API dependents.

• Function Overloading practice reconstructs type seman-
tics for complex functions, unambiguously presenting
return types based on different parameter types.

• Function-assigned Variable practice makes implicit func-
tions explicit.

• Typing Extension practice connects code modules across
different programming languages in a software system.

Fig. 4: Using degree centrality to capture type-annotated files in Django

Fig. 5: Performance of degree centrality when capturing type-annotated files



TABLE VII: The number of patterns detected in subjects with type stubs

Project Typing
Compatibility

API
Visibility

Baseclass Presentation Function
Overloading

Typing
Extension

Function-assigned
VariableNew Baseclass New Protocol

Django 0 2 7 7 45 0 6
DRF 0 0 2 8 4 0 1
Elasticsearch 0 1 0 0 0 0 0
Matplotlib 0 0 2 0 0 0 0
Numpy 12 4 4 4 33 2 4
PySpark 0 0 0 0 115 0 73
Returns 0 0 1 0 0 0 0
Scipy 2 0 0 2 18 8 0
Werkzeug 0 0 0 0 18 0 56

Sum 14 7 16 21 233 10 140

B. RQ2: Characterizing Dependency Structure

This study explores whether type-annotated files present
different dependency structures when compared to files with-
out type annotations. Since Degree Centrality [25] and DRH
method [22], [23] have been widely used by prior work [25]–
[27], we also employed them to observe software dependency
structure.

Degree centrality of a file is the fraction of files it connects
to. The higher value of the degree centrality, the more central
it is in the dependency structure. DRH, as aforementioned,
creates a hierarchical structure of a software system. Files
at the uppermost layers (L0) are most influential since they
represent design rules of software architecture. We assume that
type-annotated files would dominate the file set with higher
degree centrality and dominate L0 layers in the hierarchical
structure.

1) Measures: We first employed Networkx [28] to compute
degree centrality of files in the ADG built by Dependency
Structure Analysis of THProfiler. We used Precision (P ) and
Recall (R) to measure the ability of degree centrality when
capturing type-annotated files.

P =
Ftyped ∩ Ftop

Ftop
, R =

Ftyped ∩ Ftop

Ftyped
(1)

where Ftyped is a set of all type-annotated files in a project.
Ranking all files based on degree centrality measurements in
a decreasing order, Ftop is a set of top files such as top 10%,
top 20%, ..., and top 100%. Top 100% files include all files
in a project. We can obtain ten pairs of P and R results from
top 10%, top 20%, ..., to top 100%. Based on them, we will
observe whether top ranking files with higher degree centrality
are prone to be type-annotated.

Second, we employed Design Rule Hierarchy (DRH)
of THProfiler to construct hierarchical structure based on
the ADG. We computed the proportion of type-annotated
files at the layer L0 (i.e., Coverage(L0)) vs. other layers
(i.e., Coverage(LOthers)). If Coverage(L0) is bigger than
Coverage(LOthers), it would indicate that files, which are
manifested as software design rules, are prone to be type-
annotated.

2) Results: Using Django as an example, Figure 4 il-
lustrates precision (P ) and recall (R) results when using

top 10%, 20%, ..., 100% files ranked by degree centrality to
capture type-hinted files. The red-dotted line labeled with
56.77% is the baseline precision, and the green-dotted line is
the baseline recall. Now we explain the baseline performance.
The baseline denotes the performance when capturing type-
annotated files by a random sample of project files. Consider-
ing a random sample of 10% files, type-annotated files should
take 56.77% of this sample since 56.77% files (as listed in
Table III) are type-annotated in Django. Because only 10%
files of a project are randomly sampled, 10% type-annotated
files should be captured statistically. We can observe that,
the precision and recall results (at top 10%, top 20%, ...,
and 100%) present consistent observations: the performance
of precision and recall based on degree centrality is bigger
than baseline performance.

Figure 5 shows the boxplots of precision and recall im-
provements when compared with baselines in all subjects.
∆P = P − Pbaseline and ∆R = R − Rbaseline. Due to the
page limitation, we only present performance improvement
results from top 10% (∆P10%, ∆R10%), top 20% (∆P20%,
∆R20%), to top 30% (∆P30%, ∆R30%). The boxplots indi-
cate that performance improvements of degree centrality are
commonly positive despite the existence of several outliers.
On average, precision improvements are 14.80%, 11.40%, and
9.18%; recall improvements are 11.73%, 12.79%, and 13.50%,
respectively at top 10%, top 20%, and top 30%.

Figure 6 depicts the results of Coverage(L0)
and Coverage(LOthers). We can observe that
13/19 projects exhibit consistent results with
Coverage(L0) > Coverage(LOther). Recall that files
in layer L0 represent design rules of a software system. In
Django, 82.97% files are type-annotated at the uppermost layer
L0 while 40.46% files are type-annotated at other layers. The
results indicate that files manifested as architectural design
rules are more likely to be type-hinted than other files.

3) Answering RQ2: Our results indicate that type-annotated
files present different features in the software structure. Con-
cretely, they have a higher value of degree centrality and they
reside at the uppermost layer in a hierarchical structure, hence
manifesting as design rules of a software system.

C. RQ3: Characterizing Maintenance Cost
This study investigates whether the maintenance cost

of type-annotated files differs from other files. Using



Fig. 6: The proportion of type-annotated files at the uppermost layer (L0) vs. other layers (LOthers) formed by the DRH

TABLE VIII: The performance of maintenance cost measures when capturing type-annotated files in Django project

Subject Top #author #commit #changeLoc #issue #issueCmt #issueLoc
(Coverage) P R P R P R P R P R P R

Django 10% 95.24 16.74 95.24 16.74 96.43 16.95 96.43 16.95 96.43 16.95 96.43 16.95
(56.77%) 20% 89.88 31.59 91.07 32.01 91.07 32.01 89.29 31.38 89.88 31.59 92.86 32.64

30% 89.29 47.07 89.68 47.28 88.89 46.86 84.52 44.56 88.89 46.86 87.70 46.23

Fig. 7: The performance of maintenance cost measures when capturing type-annotated files

the Maintenance Measurement of THProfiler, we com-
puted #author, #changeCmt, #changeLoc, #issue,
#issueCmt, #issueLoc for a source file. These measures
have been used by the work of [10], [24] to assess software
maintainability. The larger these measurements of a file, the
heavier maintenance effort taken on it.

1) Measures: Similar to RQ2, we evaluated the precision
and recall when using top files ranked by maintenance cost
to capture type-hinted files. The precision measure, recall
measure, and baseline values are same with those used in
Section IV-B. If values of precision and recall are bigger than
those of baseline, it would indicate that type-annotated files
present a different feature in terms of maintenance cost.

2) Results: Table VIII lists evaluation results in Django.
56.77% files are type-annotated in total as shown in the first
column. The (#author, P ) column indicates that, among the

top 10% files with higher maintenance cost 95.24% files have
type annotations, greatly larger than the baseline precision
(56.77%). As shown in (#author,R) column, type-annotated
files captured by top 10% measurements take 16.74% of all
typed files in Django, bigger than the baseline recall, i.e.,10%.

Figure 7 illustrates the boxplots of precision improvements
(∆P ) and recall improvements (∆R) in all projects. The six
sub-figures correspond to the results of six maintainability
measures. Similar to Section IV-B, we consider the top 10%,
top 20%, and top 30% files ranked by maintenance cost
measurements.

From Figure 7, we can see that performance improvements
are positive when averaged on all 19 projects. The six sub-
figures present consistent observations: using heavily main-
tained files to capture type-annotated files, the precision values
and recall values outperform the baseline performance. This



observation indicates that files with greater maintenance costs
are more likely to be type-annotated in priority.

3) Answering RQ3: The results demonstrate the difference
of maintenance cost between type-annotated files and other
files. This observation indicates that files difficult to maintain
could be promising candidates to be type-annotated in priority.

V. POTENTIAL IMPACT

This section will discuss the possible impact of our findings
on type annotation practices, by citing developer discussion
lists in notable Python projects, including Django [29], Numpy
[30], and PySpark [31], which are studied in our work. They
have experienced type annotations for about four years, and
their developers have been discussing type hint practices.

A. The Consideration of Design Concerns

Python developers have noticed the non-trivialness of type
annotation implementations. “Annotating the original code is
more than just adding annotations”, as discussed by Django
contributors. PySpark developers said that “some parts (of
type annotations) are close to trivial, other(s) are rather.”
Recent academic works by Ore et al. [7], [8] demonstrate that
annotating a single variable consumes about two minutes on
average. However, it is still unknown about code-level patterns
of non-trivial type annotations, which may guide beginners
supplementing types more effectively.

Our results of RQ1 revealed six code patterns of non-
trivial type practices. First, these patterns demonstrate the
difficulty to include automated approaches for handling type
annotations, since type annotation of a code entity sometimes
requires introducing additional entities. Second, these patterns
highlight that such non-trivial type practices deeply involve
retrospecting, recovering, and expressing the design and cod-
ing decisions originally made in the codebase development.

We suggest that type practitioners should take design
concerns [32]–[35] into account. For example, when type-
annotating a group of classes that provide similar behaviors
but do not explicitly extend a base-class, we advice that
their common interfaces should be extracted as additional
definitions to manifest design rules, as inspired by Baseclass
presentation practice (Listing 7). Learning from Function
Overloading practice (Listing 8), we recommend overloading
the functions that have complex logic due to type diversity of
parameters and returns.

B. Candidate Module Recommendation for Type Annotations

Python developers have struggled with which part of code
should be type-annotated first. PySpark developers stated,
“It should be decided if annotations should cover only the
public API, or internals as well.” Django developers con-
sidered, “Partial type hinting is useful and viable, but not
randomly.” Developers agreed that they should “trade-off
between completeness (of the typing coverage) and the cost
of maintenance (of type annotations).” At the same time, they
complained about the lack of such guidance–“missing high

Fig. 8: The Venn diagram of project sets captured by three features

level guidance”, calling for “a type theory for beginners, both
in Python and more generally”.

Our findings in RQ2 and RQ3 shed a light on which portion
of modules (i.e., Python files) could be type-annotated in
priority. We revealed three features of the type-annotated files,
i.e., they present a bigger value of degree centrality, they
are located at the uppermost layer in a hierarchical structure,
and they incur a higher maintenance cost. These features are
complementary to each other, as visualized in Figure 8. Among
19 subjects in our study, degree centrality can effectively
capture type-annotated files in 1+2+2+8

19 = 13
19 projects; the

proportion is 13
19 for the hierarchical layer, and the proportion

is 14
19 for maintenance cost.
For a long-lasting large-scale project, migrating from an

un-annotated codebase to type-annotated one is a gradual and
expensive process. Our findings imply that Python modules
presenting three features could be type-annotated first for
a trade-off between the typing coverage and maintenance
efforts taken on type annotations. We believe our findings
and tools would benefit the projects and developers that plan
to experience modern type hint practices. Our study is a
preliminary trial at the file level, which will be continued at a
finer-grained level like APIs or functions.

VI. THREATS TO VALIDITY

First, subject collection is non-trivial. To reduce the bias to
our study, we followed the collection criteria to select projects
with diverse type-hint manners, domains, and sizes, as shown
in Section III-A. We will collect more projects for our study
in the future.

Second, we manually categorized six patterns in non-trivial
type-annotation practices. One threat is that the categories may
be insufficient to cover all non-trivial practices. To mitigate
this threat, we will continue mining more usable patterns.

Third, different techniques may produce inconsistent ob-
servations. To reduce this threat, our study employed well-
accepted tools, techniques, and measures. Concretely, we used
Understand to extract code dependencies, which is suggested
by the industry [36]–[39]. We applied the DRH technique [35],
[40], [41] to cluster files hierarchically. Our research employed
six maintainability measures [10], [24]. Besides, as shown in
Figure 8, the revealed three features are complementary to
capture all subjects. One possible reason is that developers in
different projects may have different typing decisions. We will
analyze them in next work.



Finally, our study of RQ2 and RQ3 reveals the correlation
between three features and type-proneness of a source file,
but not the causality. We neither claim how the three features
cause a file to be type-annotated, nor the vice versa. Exploring
the causality will be our next work.

VII. RELATED WORK

A. Static Typing Systems vs. Dynamic Typing Systems

Much prior work has demonstrated that static typing sys-
tems benefit bug detection and software maintenance. Klein-
schmager et al. [42] assigned developers with a set of pro-
gramming tasks, and found that static typing systems can
capture type-related errors without program executions. Spiza
et al. [43] supported that developers already benefit from type
semantics of APIs even without static type checking. Gao et
al. [44] manually added annotations to buggy code written in
JavaScript and tested whether static typing systems can capture
the error on buggy code. Their experiments reported that
the static typing systems, Flow [45] and TypeScript [2], can
successfully detect a portion of public bugs in revision history.
Daly et al. [46] compared Ruby with DRuby, an extension to
Ruby with static typing. Their work indicated that DRuby fails
in capturing complex errors. Besides discussing the benefits,
the work of [47]–[49] concluded that developers who use
dynamic languages tend to switch between different files more
frequently than developers who use static languages. As shown
in their results, the frequent search for different files influences
the efficiency of development and maintenance activities.

These studies evaluated the benefits and disadvantages of
the usage of static typing feature in dynamically typed lan-
guages. Unlike them, our work figured out patterns of non-
trivial type annotation implementations and features of type-
annotated files.

B. Empirical Study of Type Annotation Practices

Existing work investigated the type annotation usage in
development activities. Souza et al. [50] conducted several
hypothesis tests to investigate type usage in Groovy language.
This work presented that test classes and script files use
types less frequently than other files. Another interesting
finding is that programmers, who often develop code in an
“untyped” language, tend to declare types less often. Groovy
is an object-oriented programming language for Java platform.
Quite different from Groovy, Python is dynamically typed in
nature, thus perhaps leading to different observations. Ore et
al. [7] studied 71 programmers using 20 code artifacts in
the cyber-physical domain. They assessed the time cost of
type annotation supplementation, showing that it takes more
than two minutes to annotate a single variable accurately.
The considerable time cost demonstrated the complexity and
difficulty for developers to assign types to variables. By
extending this study [7], a recent work [8] further pointed
that developers reason about variable types primarily based
on names and operations of identifiers, which points out a
direction to improve automated type annotation systems.

Similar to those work, we also studied type annotation prac-
tices but presented an evidence that type-annotated files are
critical to understanding and maintaining software architecture
by revealing three complementary features.

C. Static Type Inference in Dynamic Languages
Static type inference determines the types of program ex-

pressions statically without a need to run programs. Early type
inference methods such as [51], [52] formalize the type infer-
ence problem as the type constraint resolution. The method
in [51] first creates a trace graph, from which a set of type
constraints are extracted. At last, it computes the least solution
of the set of type constraints by least fixed-point derivation.
Milojkovic et al. [53], [54] leveraged heuristics such as naming
convention to enhance type inference. Recent type inference
methods employ machine learning or deep learning techniques.
JSNice [55] learns a probabilistic model to predict variable
names and variable types for Javascript. DeepTyper [56], [57]
transforms the type inference problem into a translation model
from a un-annotated code to annotated code. DLTPy [58] is a
deep learning type inference solution. It predicts the types in
function signatures based on identifier names, comments and
return expressions of a function. The work of [59] explored
how type inference techniques designed for static language
will perform on dynamic languages.

Automated type inference approaches can assist type anno-
tation implementation. Our work also promotes type annota-
tion practices but in a different view. We recommended that
such practices should consider architectural concerns due to
the existence of non-trivial type annotation implementations.

VIII. CONCLUSION

Our work is the first to detect non-trivial type annotation
practices and reveal possible features of type-annotated files,
to the best of our knowledge. We found six type annota-
tion patterns that involve recovering and expressing design
concerns made in original codebase development. We also
showed that the files, characterized by three complementary
features (i.e., presenting higher degree centrality, residing at
the uppermost layer of a hierarchical structure, and incurring
higher maintenance cost), are prone to be type-hinted.

More projects in dynamic languages are trying to embrace
optional typing practice, however, still lacking guidance. Dur-
ing a gradual and expensive process of type-annotating a code-
base, we suggest considering the revealed patterns with design
concerns and candidate type-annotated file recommendations.
A consideration of them would promote a better practice of
optional typing.
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empirical study of the influence of static type systems on the usability
of undocumented software,” ACM SIGPLAN Notices, vol. 47, no. 10,
pp. 683–702, 2012.

[49] S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik,
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