
ConcSpectre: Be Aware of Forthcoming Malware
Hidden in Concurrent Programs

Yang Liu
Xi’an Jiaotong University

Xi’an, Shaanxi, China
yangliu@xjtu.edu.cn

Ming Fan
Xi’an Jiaotong University

Xi’an, Shaanxi, China
mingfan@xjtu.edu.cn

Ting Liu
Xi’an Jiaotong University

Xi’an, Shaanxi, China
tingliu@mail.xjtu.edu.cn

Yu Hao
University of California Riverside

CA, USA
yhao016@ucr.edu

Zisen Xu
Xi’an Jiaotong University

Xi’an, Shaanxi, China
xzs05350332@stu.xjtu.edu.cn

Kai Chen
Chinese Academy of Sciences

Beijing, China
chenkai@iee.ac.cn

Hao Chen
University of California, Davis

CA, USA
chen@ucdavis.edu

Yan Cai
Chinese Academy of Sciences

Beijing, China
ycai.mail@gmail.com

Abstract—Concurrent programs with multiple threads exe-
cuting in parallel are widely used to unleash the power of
multi-core computing systems. Due to their complexity, large
amounts of researches focus on testing and debugging concurrent
programs. Besides correctness, we find that security can also
be compromised by concurrency. In this paper, we present
concurrent program spectre (ConcSpectre), a new security threat
that hides malware in non-deterministic thread interleavings. To
demonstrate such threat, we have developed a stealth malware
technique called Concurrent Logic Bomb (CLB) by partitioning
a piece of malicious code and injecting its components separately
into a concurrent program. The malicious behavior can be
triggered by certain thread interleavings that rarely happen
(e.g., <1%) under a normal execution environment. However,
with a new technique called Controllable Probabilistic Activation
(CPA), we can activate such ConcSpectre malware with a very
high probability (e.g., >90%) by remotely disturbing thread
scheduling. In the evaluation, more than 1,000 ConcSpectre
samples are generated, which bypassed most of the anti-virus
engines in VirusTotal and four well-known online dynamic
malware analysis systems. We also demonstrate how to remotely
trigger a ConcSpectre sample on a web server and control its
activation probability. Our work shows an urgent need for new
malware analysis methods for concurrent programs. All source
code and analysis results are available on https://git.io/CLB.

Index Terms—Concurrent Programs; Software Security; Conc-
Spectre; Concurrent Logic Bomb; Controllable Probabilistic
Activation

I. INTRODUCTION

Many strategies have been implemented to unleash the
full potential of modern processors, such as out-of-order
execution, branch prediction and speculative execution strate-
gies. These optimization technologies significantly enhance

This work was partially supported by National Key R&D Program of
China (2018YFB0803501), National Natural Science Foundation of China
(U1766215, 61772408, 61632015, 61833015, 62002281, 61902306), the Fun-
damental Research Funds for the Central Universities, China Postdoctoral
Science Foundation (2019TQ0251, 2020M683520, 2020M673439), the 2020
Industrial Internet Innovation Development Project - Industrial Internet Pen-
etration Testing and Crowdsourced Testing Platform (No. TC200H01P), the
Youth Talent Support Plan of Xi’an Association for Science and Technology
(095920201303), CCF-Tencent Open Research Fund. Corresponding author:
Ming Fan.

the performance but at the same time dramatically increase
the complexity of the hardware systems. Complexity may
introduce security risks such as Meltdown [1] and Spectre [2].
Meltdown utilizes side effects of out-of-order execution to
read arbitrary kernel-memory locations, including personal
data and passwords. Spectre attacks involve inducing a victim
to speculatively perform operations that leak the victim’s
confidential information via a side channel to the adversary.
The community was astonished by these discoveries due to
its severity, as these optimization technologies have been used
for decades.

In this paper, we present a new threat to hide malware
in concurrent programs. Concurrent programs with multiple
threads executing in parallel are widely used to improve
system efficiency. Meanwhile, the inherent non-determinism of
thread interleavings also significantly increases the complexity
of programs. In general, the number of possible interleavings
of a concurrent program with n threads each executing k steps
can be as large as (nk)!/(k!)n ≥ (n!)k [3], a number that
is double exponential to both n and k. Since it is impossible
to check all interleavings of a nontrivial program, a piece of
malware triggered only by several specific thread interleavings
would be extremely difficult to detect. Similar to Spectre,
this threat also exploits the complexity of the concurrency
mechanism to cover its malicious behavior, which is used to
unleash the power of modern multi-core computing systems.
We name it concurrent program spectre (ConcSpectre).

Current malware detection techniques mainly rely on static
malicious signatures and dynamic analysis results [4]. How-
ever, the static signatures can be easily changed using obfusca-
tion techniques. Dynamic analysis technologies aim to execute
each execution path to trigger the malicious behavior for
further verification. However, exploring all paths is extremely
hard in the era of multi-core processors due to the non-
determinism of thread interleavings.

Consider the multi-threaded program given in Fig. 1. The
main thread creates two threads T1 and T2 to concurrently
execute the function multi download to download four files in

https://git.io/CLB

1 void multi download (i n t N) {
2 f o r (i n t i = 0 ; i < N; i++) {
3 LOCK;
4 i f (! i s download (i)) {
5 set download (i) ;
6 download (i) ; }
7 UNLOCK; }
8 }
9 void main (i n t N){

10 CREATE(T1 , multi download , 4) ;
11 CREATE(T2 , multi download , 4) ; }

1

Fig. 1: Code snippet of a multi-threaded download program.

total. The functions is download and set download are used
to avoid downloading the same file more than once. A typical
execution trace is π1: T1(download(0)) - T2(download(1))
- T1(download(2)) - T2(download(3)). However, π1 is not
the only trace under input N = 4. For example, if there
is a congestion during the execution of download(0), a dif-
ferent trace can be π2: T1(download(0)) - T2(download(1))
- T2(download(2)) - T1(download(3)). A malware analysis
on π1 and π2 may report different results. The behavior of
a concurrent program relies on not only its inputs but also
the thread scheduling. The inherent non-determinism of multi-
threaded executions invalidates the assumption of deterministic
behavior under fixed inputs and thus exhibits a threat to the
current malware detection techniques, which is the intuition
of our ConcSpectre.

In order to implement ConcSpectre by exploiting concur-
rency, there are two main challenges. The first is to snugly
hide a malware sample in a concurrent program while by-
passing the malicious behavior detection of modern malware
detection tools. The second is to trigger the malicious behavior
effectively in a controllable manner. This paper addresses
these challenges with a new stealth malware technique called
Concurrent Logic Bomb (CLB) and a new activation technique
called Controllable Probabilistic Activation (CPA).

The idea of the CLB technique is to partition a piece of
malware and inject its components into many concurrently
executed program fragments such that (1) each individual
component is benign so the malware detection tool does not
raise alarms when monitoring its execution, (2) there exist
specific orderings of the components that trigger the malicious
behavior, and (3) malicious behaviors are well-hidden from
typical executions. There are different strategies to partition
malware, identify the injection locations in a host program and
arrange the orders to manifest malicious behavior. Therefore,
a piece of malware processed by the CLB technique may yield
multiple pieces before injecting into a concurrent program. To
demonstrate the feasibility of the CLB technique with a real
case, we partition the malware sample BullMoose and inject its
components into various locations of several publicly available
concurrent programs. More than 1,000 malware samples have
been generated, which evade the detection of most of the anti-
virus engines in VirusTotal [5], as well as four well-known
online dynamic malware analysis systems.

For each piece of CLB malware, there exist certain order-

ings that can trigger the malicious behavior. These orderings
rarely happen during normal execution conditions. The idea
of CPA is to disturb the normal execution condition such that
the orderings that trigger malicious behavior are no longer
rare. In the experiments, we implement a CPA technique based
on the system load, and demonstrate that this CPA technique
can significantly increase the probability of the rare orderings
with a group of real attacks. By combining CLB and CPA
techniques, attackers can control the activation probability of
ConcSpectre malware, which is less than 1% under normal
execution environment and higher than 90% under attack.

In summary, this paper makes the following contributions:
• We reveal a new security threat called ConcSpectre to

concurrent programs, which calls for an urgent redesign
of malware detection techniques for concurrent programs
to prevent forthcoming threats.

• We propose a new stealth malware technique called CLB
to hide a malware sample into concurrent programs.
Leveraging the difficulty of analyzing the interleaving of
different threads, the concealed malware can evade all the
state-of-the-art dynamic and static detectors.

• We design a new malware activating approach called
CPA to trigger ConcSpectre malware based on the system
workload. CPA can drastically increase the probability
of triggering malicious behavior that is stealthy under
normal execution conditions.

II. OVERVIEW

A. Motivating Example

We use the programs given in Fig. 2 as a running example to
explain the basic idea of ConcSpectre. As shown in Fig. 2(a),
a snippet of malware calls get data() and send data() to
retrieve sensitive data and transmit it. A dynamic malware
detection tool can report this illegal activity when it monitors
the execution of the malware since sensitive data are retrieved
and then transmitted.

As shown in Fig. 2(b), we transform the program to
malware C() where the order of the calls to get data() (Line
19) and send data() (Line 14) are reversed and separated into
two LOCK/UNLOCK components (S1 and S2). An additional
variable order is inserted for controlling the execution. Mon-
itoring the execution of malware C() by running it within a
single thread does not raise any alarms since no sensitive data
are being retrieved first and then transmitted.

Consider the host program given in Fig. 2(c) where two
threads (T1 and T2) simultaneously invoke malware C() in
func(). We show that with input x = 1, the malicious behav-
ior of data-stealing can happen under specific interleavings
between the two threads. Fig. 3 lists six execution traces that
cover all possible combinations of the two branches between
the two threads, where (S1,T) indicates the if-statement in
S1 executes with a true branch, and (S2,F) means S2 exe-
cutes with a false branch. While get data() is invoked in all
execution traces, send data() is only invoked in π1 and π4.
It can be observed that the malicious behavior manifests in

Listing 1: a snippet of
malware

1 void malware () {
2 LOCK(mutex) ;
3 get data () ;
4 send data () ;
5 UNLOCK(mutex) ;
6 }
7

8 void ge t data () ;
9 void send data () ;

Listing 2: malware snip-
per in CLB

10 void malware C () {
11 LOCK(mutex) ;
12 i f (order == 1) {
13 order = 2 ;
14 send data () ; }
15 UNLOCK(mutex) ;
16 LOCK(mutex) ;
17 i f (order == 0) {
18 order = 1 ;
19 get data () ; }
20 UNLOCK(mutex) ;
21 }

Listing 3: host program of
CLB

22 void host C (i n t x){
23 i f (x == 1) {
24 order = 0 ;
25 CREATE(T1 , func) ;
26 CREATE(T2 , func) ;
27 }
28 }
29 void func () {
30 f u n c o r i g i n a l () ;
31 malware C () ;
32 }

1

(a) A snippet of malware

Listing 1: a snippet of malware
1 void malware () {
2 LOCK(mutex) ;
3 get_data () ;
4 send_data () ;
5 UNLOCK(mutex) ;
6 }
7

8 void get_data () ;
9 void send_data () ;

Listing 2: malware snipper in CLB
10 void malware_C () {
11 LOCK(mutex) ; //S1
12 i f (order == 1) { //S1
13 order = 2 ; //S1
14 send_data () ; } //S1
15 UNLOCK(mutex) ; //S1
16 LOCK(mutex) ; //S2
17 i f (order == 0) { //S2
18 order = 1 ; //S2
19 get_data () ; } //S2
20 UNLOCK(mutex) ; //S2
21 }

Listing 3: host program of CLB
22 void host_C (i n t x){
23 i f (x == 1) {
24 order = 0 ;
25 CREATE(T1 , func) ;
26 CREATE(T2 , func) ;
27 }
28 }
29 void func () {
30 f unc_or i g ina l () ;
31 malware_C () ;
32 }

1

(b) ConcSpectre Malware

Listing 1: a snippet of malware

1 void malware () {
2 LOCK(mutex) ;
3 get data () ;
4 send data () ;
5 UNLOCK(mutex) ;
6 }
7

8 void ge t data () ;
9 void send data () ;

Listing 2: malware snipper in
CLB

10 void malware C () {
11 LOCK(mutex) ;
12 i f (order == 1) {
13 order = 2 ;
14 send data () ; }
15 UNLOCK(mutex) ;
16 LOCK(mutex) ;
17 i f (order == 0) {
18 order = 1 ;
19 get data () ; }
20 UNLOCK(mutex) ;
21 }

Listing 3: host program of CLB

22 void host C (i n t x){
23 i f (x == 1) {
24 order = 0 ;
25 CREATE(T1 , func) ;
26 CREATE(T2 , func) ;
27 }
28 }
29 void func () {
30 f u n c o r i g i n a l () ;
31 malware C () ;
32 }

1

(c) Host program of ConcSpectre

Fig. 2: A demo case of ConcSpectre.

T1(S1,F)

T1(S2,T)

T2(S1,T)

T2(S2,F)

T1(S2,T)

T2(S2,F)

T2(S1,F)

T2(S2,T)

T1(S2,F)

T2(S1,F)

T2(S2,T)

T1(S1,T)

T1(S2,F)

T1(S2,T)

T2(S2,F)

T1(S1,F)

T2(S2,T)

T1(S2,F)

time

π1
active

π2
inactive

π3
inactive

π4
active

π5
inactive

π6
inactive

Fig. 3: Execution traces of ConcSpectre malware in Fig. 2. The last row
indicates whether the malicious behavior is activated.

π1 when T2 transmits the data obtained by T1, and in π4
when T1 transmits it obtained by T2. That is, by monitoring
an execution, the malware detection tool has a probability
of 1/3 to detect the malicious behavior. This seems not bad,
but the number of interleavings can increase drastically and
the probability can decrease sharply when the number of
malware components and host program’s threads increases.
For example, there are 1,680 possible interleavings when there
are three malicious components injected into three parallel
threads. If the trigger condition of malware is their execution
and injected orders are fully reversed, only 5.7% of all possible
interleavings can trigger the malicious behavior. The number
becomes 63,063,000 with 0.07% activating malicious behavior
when there are four components and four threads. It shows
that the chance of detecting ConcSpectre malware diminishes
when the malware sample or the host concurrent program is
nontrivial.

ConcSpectre can be exploited in at least two scenarios.
Firstly, it can be used to launch advanced persistent threat
attacks against high-security targets. The ConcSpectre may
hide malware in some large concurrent software to bypass the
rigorous security reviews in these high-security systems, even
when the source code is open to the security analyst. Secondly,
ConcSpectre can be applied to launch various large-scale
attacks, such as Botnet and worm. Specifically, ConcSpectre
zombies in a Botnet could hide their abnormal behavior well
by randomly activating once in thousands of runs.

B. Basic Assumptions

The work in this paper is built on the following assumptions.

Firstly, a piece of malware can be partitioned and each
component is not detectable by current malware analysis
techniques. Since each component by itself does not cause
any harm, its behavior is usually not suspicious. In Sec. V-C,
we partition four real malware samples into many components
and no malware detection engines raise alarms.

Secondly, ConcSpectre malware can be installed on a vic-
tim’s system that supports multithreading using various meth-
ods (e.g., fishing, social engineering, etc.). Then, ConcSpectre
can hide malicious code, bypass current malware detection,
and probabilistically activate the malware. In Sections IV and
V, we demonstrate how to inject malware into programs in
common concurrency benchmarks. The generated ConcSpec-
tre malware can bypass current malware detection tools.

Thirdly, the attacker can influence the thread scheduling of
the victim’s system. This assumption is reasonable since we
do not require precise thread scheduling. Specifically, attackers
can perturb thread switching by sending suspend commands,
increasing the system load, etc. In Sec. V, we demonstrate
how to remotely activate a ConcSpectre malware on a web
server by increasing the workload on the target machine.

III. CONCURRENT LOGIC BOMB

CLB is a technique for hiding malware by partitioning a
piece of malware and hiding its components into a concurrent
program. In this paper, we partition a malware sample man-
ually with the following consideration: (1) automated code
partition has been a difficult problem for decades; (2) with
domain and code knowledge, an attacker may give a partition
trickier than any automated approach. In this section, we will
first focus on automatically finding suitable locations to inject
partitioned malware sections, and then confirm the stealthiness
of the proposed CLB technique.

A. Malware Injection

The CLB technique injects partitioned malware components
into different functions of a concurrent program. To choose
the right hosting functions, we classify the functions in a
concurrent program into three types, as illustrated in Fig. 4:
Non-parallel-execution (NPE) functions cannot be executed
with any other functions simultaneously (e.g., F1).
Cross-parallel-execution (CPE) functions can be executed

1 void main (){
2 F1 ;
3 CREATE(T1 , F2) ;
4 CREATE(T2 , F3) ;
5 WAIT(T1) ;
6 WAIT(T2) ;
7 CREATE(T1 , F4) ;
8 CREATE(T2 , F4) ;
9 }

1

T0

T1

T2 F3

F2

F1

F4

t0 t1 t2

F4

Fig. 4: Three types of functions in concurrent programs.

Function A

m1 m2

Function A

m1 m2

T1

T2

m3

m3

(a) SPE

Function A

m1 m2

Function B

m1 m3

T1

T2

(b) CPE

Fig. 5: Malware section injection methods.

with other functions concurrently (e.g., F2 and F3).
Self-parallel-execution (SPE) functions can be executed by
multiple threads concurrently, but cannot be executed with
other functions in parallel (e.g., F4).

Both code analysis and execution monitoring can be applied
to identify the aforementioned three types of functions. Ap-
parently, NPE functions are not good host candidates because
their executions are affected by thread interleaving indirectly
through CPE and SPE functions.

Assuming that three malware components (m1: stealing and
saving sensitive data, m2: sending data, and m3: releasing
data) are injected into an SPE function, as shown in Fig. 5(a),
two types of faults may occur: (1) Repeated execution. If m3
has been executed in Thread 1, its re-execution in Thread 2 is
erroneous. (2) Execution with wrong order. If m2 in Thread 2
sends the sensitive data that has been cleared by m3 in Thread
1, its execution is erroneous.

Therefore, we have to design a control module to ensure
the malware components are executed correctly. One approach
is to create a shared variable to indicate whether a malware
component can be executed. After one component is executed,
the variable is set to the value representing the next compo-
nent. In Fig. 2, we adopt this approach by using the variable
order. Of course, other strategies can also be used, such as
backward setting and forward searching. In backward setting,
the current component can turn on the execution permission
of the next component while turning off others. In forward
searching, the current component has to confirm whether cer-
tain other components have been executed successfully before
its execution. We define a malware component with its control
module as a malware section that is a basic unit in a piece
of ConcSpectre malware. Although control modules introduce
additional dependency among malware sections, such type of
dependency cannot be exploited by malware analysis tools.
We will discuss this in Sec. III-B.

When we inject malware components into CPE functions,
the injection positions of all sections are different. As shown

1 void main (){
2 order=0;
3 CREATE(T1 , CLB) ;
4 CREATE(T2 , CLB) ; }
5 void CLB(){
6 LOCK(mutex) ;
7 i f (order==1) {
8 order=2;
9 send data (a []) ; }

10 UNLOCK(mutex) ;
11 LOCK(mutex) ;
12 i f (order==0) {
13 order=1;
14 a []= get data () ; }
15 UNLOCK(mutex) ;
16 }

1

(a) Code snippet (b) Program Dependency

Fig. 6: Control and data dependency analysis.

in Fig. 5(b), (m1) is injected into two CPE functions, and (m2
and m3) is only in one CPE function. When these two CPE
functions are invoked in parallel, three malware sections would
be executed with different orders, which may face similar
faults as SPE: Repeated execution and Execution with wrong
order. Thus, the control module is also needed to ensure the
malware components are executed correctly.

Both CPE and SPE functions could be selected to inject
malware sections. We need to analyze at least two different
CPE functions, but only one SPE function. Meanwhile, the
activation methods of malware injected into CPE and SPE are
different. Thus, we focus on the SPE function-targeted CLB
technique in this paper due to the page limit.

B. Stealthiness of CLB

Since the CLB technique partitions the malware and hides
its components into various places in a hosting program, it
is almost impossible for static analysis techniques to detect
malware, as confirmed by the experiments in Sec. V-B. In this
section, we will show that the CLB technique could also evade
current dynamic analysis techniques.

Dynamic malware detection exploits control dependency
and data dependency to find suspicious executions path, and
guides dynamic analysis to identify malicious behavior. Such
an approach is not applicable to defend CLB. As shown in
Fig. 6(a), there are two malware sections. An array a[] is
used to store the sensitive data between the two sections. This
malware is detected if send data is executed after get data
in one execution. As shown in Fig. 6(b), we extract the
control dependency of the malware sample in red. It shows
that send data at Line 9 depends on Line 7 and get data at
Line 14 depends on Line 12. The data dependency of the
two global variables order and a[] is depicted in blue. For
order, the conditional statement at Line 12 is dependent on
the assignment statement at Line 8. For a[], note that the
a[] transmitted by send data (Line 9) is irrelevant to the
a[] obtained by get data (Line 14). Considering the control
dependency and data dependency, there is no execution path
containing the get-send pattern. Therefore, the dependencies

could not guide dynamic analysis to defend CLB. Moreover,
we envision many stealth techniques can be implemented with
the CLB technique to make it even harder for current malware
analysis. For example, side-channel leakage can be used to
provide a more stealthy data flow among various malware
sections [6]–[8].

Another attempted defense against CLB is to explore all the
possible executions, by integrating dynamic malware detection
techniques with concurrent testing, such as model checking
(e.g. ESBMC [9]) or symbolic execution (e.g. DTAM [10],
Proactive-Debugger [11], Conc-iSE [12]). These tools can be
applied to explore all interleavings. However, this approach is
not practical and scalable due to the inherent issues of model
checking and symbolic execution, such as state explosion,
availability of source code and nonlinear computation, the
sheer size of interleavings.

IV. CONTROLLABLE PROBABILISTIC ACTIVATION

A. Definition

The malicious behavior in a sequential program is triggered
when the input vector (in) is among the activation inputs
INACT . In most cases, the execution of a sequential program
is deterministic. Then, the activation of sequential malware
can be formally presented as

P (malwareseq = active|in ∈ INACT) = 1 (1)

where P (·) is the probability function.
As demonstrated by Fig. 3, the triggering condition in

Eq. (1) cannot guarantee the activation of the malicious
behavior in a concurrent program because the execution traces
can be different with the same input. Thus Eq. (1), which is
valid for sequential programs, is no longer valid for concurrent
programs. We define probabilistic activation for concurrent
malware as

P (malwarecon = active|in ∈ INACT) = θ (2)

Eq. (2) states that a concurrent malware is triggered with a
probability of θ ∈ [0, 1] when its input is among the activation
inputs. A lower θ indicates that a concurrent malware sample
is more stealthy and less likely to be triggered under a normal
execution environment.

However, θ alone does not reveal the severity as it does not
indicate how likely the concurrent malware can be triggered
by an attacker. Thus, we introduce the concept of controllable
probabilistic activation (CPA) as below.

P (ConcS = active|in ∈ INACT) = θ

P (ConcS = active|in ∈ INACT ∧ side cond) = γ
(3)

where side cond is a side condition that is irrelevant to inputs
but can be controlled or influenced by an attacker. With a side
condition, the probability of activating a ConcSpectre malware
sample γ can be significantly greater than θ. Therefore, θ and
γ represent the stealthiness and controllability, respectively.
The gap δ = γ − θ can indicate the severity of a piece of
concurrent malware.

B. Probabilistic Activation

For each thread interleaving, there is an execution trace that
contains malware sections. The number of execution traces
with different ordering of malware sections is (a ∗ b)!/(b!)a,
where a and b are the number of threads and malware sections,
respectively. The activation of ConcSpectre malware relies on
whether all malware sections have been executed successfully
in the intended order. We can calculate the rate of malware-
activated traces by traversing all possible thread interleavings.
In a real system, the occurrence probabilities of thread inter-
leaving are affected by the predetermined malware-activation
order, and various uncertain factors, such as synchroniza-
tion primitives in host programs, OS scheduling mechanism,
system load, hardware, etc. The rate of activation order is
considered as a reference for activation strategy selection.

Consider the ConcSpectre malware sample in Fig. 6(a),
where two threads execute two malware sections, respectively.
There are (2 ∗ 2)!/(2!)2 = 6 possible thread interleavings, as
shown in the first column of Table I. The activation strategy
of the malware sample is that section 1 should be executed
after the execution of section 2 (S2 < S1). The thread
interleavings, execution traces and the activation states are
shown in Columns 2, 3 and 4, respectively. Malicious behavior
would be activated in two traces. Assuming the activation
strategy is revised to section 1 should be executed before
section 2 (S1 < S2), malicious behavior is then activated in
all traces. This is illustrated in the last two columns in Table
I. The reason is that malware section 1 is always executed
before malware section 2 in any individual thread.

We define the order of two adjacent malware sections as
(Si < Sj). If i < j, then (Si < Sj) is an Ordered Pair.
On the other hand, if i > j, (Si < Sj) is a Reverse-Order
Pair, and i−j is the Reverse-Order Degree. Since all Ordered
Pairs are satisfied in any individual thread, the Reverse-Order
Pair in the activation strategy is the key to decide whether the
malicious behavior can be triggered.

In our work, we have analyzed nine situations, including 2–
4 threads and 2–4 malware sections per thread. The number
of malware-activated thread interleavings is shown in Table II.
With activation strategy “S1 < S2 < S3”, malicious behavior
would always be triggered. However, with “S3 < S2 < S1”,
only 0%, 6% and 14% thread interleavings would trigger the
malicious behavior when there are 2–4 threads, respectively.

Observation 1: With more reversed orders and a higher
reverse-order degree in an activation strategy, fewer thread
interleavings can activate a ConcSpectre malware sample.

C. Load-based Controllable Probabilistic Activation on Win-
dows

According to Eq. (3), an exploitable piece of ConcSpectre
malware requires a side condition to improve the activation
probability. A feasible side condition must meet two require-
ments: (1) accessible, and (2) irrelevant to the malware itself.

On Windows OS, the scheduler divides the available pro-
cessor time in a round-robin fashion among the processes or
threads following scheduling priority. Thus, there are three

TABLE I: Thread interleavings and their activation states.

ID Interleaving
Activation Strategy: S2 < S1 Activation Strategy: S1 < S2

Execution trace Result Execution trace Result

π1 T1-T1-T2-T2 T1(1,F)-T1(2,T)-T2(1,T)-T2(2,F) Active T1(1,T)-T1(2,T)-T2(1,F)-T2(2,F) Active
π2 T1-T2-T1-T2 T1(1,F)-T2(1,F)-T1(2,T)-T2(2,F) Inactive T1(1,T)-T2(1,F)-T1(2,T)-T2(2,F) Active
π3 T1-T2-T2-T1 T1(1,F)-T2(1,F)-T2(2,T)-T1(2,F) Inactive T1(1,T)-T2(2,F)-T2(1,T)-T1(2,F) Active
π4 T2-T2-T1-T1 T2(1,F)-T2(2,T)-T1(1,T)-T1(2,F) Active T2(1,T)-T2(2,T)-T1(1,F)-T1(2,F) Active
π5 T2-T1-T1-T2 T2(1,F)-T1(1,F)-T1(2,T)-T2(2,F) Inactive T2(1,T)-T1(1,F)-T1(2,T)-T2(2,F) Active
π6 T2-T1-T2-T1 T2(1,F)-T1(1,F)-T2(2,T)-T1(2,F) Inactive T2(1,T)-T1(1,F)-T2(2,T)-T1(2,F) Active

TABLE II: Number of effective interleavings (three malware sections) under various activation strategies.

#Thread #Section #Interleavings
Activation Strategy

S1 < S2 < S3 S1 < S3 < S2 S2 < S1 < S3 S2 < S3 < S1 S3 < S1 < S2 S3 < S2 < S1

2 3 20 20 8 8 2 2 0
3 3 1,680 1,680 1,140 1,140 384 384 96
4 3 396,000 396,000 309,120 309,120 132,000 132,000 56,832

variable factors to influence thread scheduling: available pro-
cessor time, scheduling priority and round-robin mechanism.
Obviously, it is difficult to access and control the scheduling
priority or round-robin on the victim’s system. In our work,
we find the available processor time is relevant to system load
that can be influenced remotely.

Assume that the example in Fig. 6 runs on a dual-core CPU
system. When the system is in an idle state, the scheduler
may assign CPU1 and CPU2 to two threads. Two threads can
start to execute malware section 1 simultaneously, as shown
in Fig. 7(a). Since there is LOCK to maintain the atomicity
of all malware sections, two threads would be executed one
by one (as the execution trace π2 in Table I). In such cases,
the malware would be triggered with low probability, since the
second malware section is unlikely to be activated.

When the system is in a high load state (e.g., CPU 2 is
occupied by a high priority task), only one thread can obtain
the resource to execute. Thus, two threads would be executed
sequentially, as shown in Figures 7(b). Two malware sections
would be activated within two threads, and the ConcSpectre
malware would be triggered with high probability.

When the threads are executed concurrently, the malware
sections in different threads may start in the same time slice.
There will be fewer reverse orders in an execution trace.
When the threads are executed sequentially, there will be more
reverse orders. Thus, we could disturb the thread scheduling
on victim’s system by influencing its load. In particular, we
can increase the occurrence probability of thread interleavings
with more reverse orders by increasing its workload, which
leads to the Load-based CPA.

To verify the Load-based CPA, we run a concurrent program
on a Windows server with Intel Xeon CPU E7-4850 and 8GB
memory. We create four threads to execute four functions (S1

to S4) that read and write some local files with the same order.
We simulate nine groups of experiments. In each group, the
concurrent program runs 10,000 times, and we execute 0 to 8
programs with infinite-loops to simulate the system load from
0% to 100%. All execution traces of the concurrent program
are recorded. Then, we match all possible control strategies in
all traces to calculate their activation probabilities. As shown in
Fig. 8, the activation probability increases significantly when

CPU1 H 1,F H 2

H H1,F1 2

2,T

2,FCPU2

T2

T1 H 1,F H 2 2,T

H H1,F1 2 2,F

CPU1 H 1,F H H H1,T2,T 2,F

CPU2

T1

T2

H 1,F H 2,T

H H1,T 2,F

tT1(1)

Occupied

W

CPU1 H 1,F H

H H1,T1

2,T

2,FCPU2

T2

T1 H 1,F H 2,T

H H1,T1 2,F

tT2(1)t0

tT1(1) tT2(1)t0

tT1(1) tT2(1) tT1(2) tT2(2)t0

(a) Low system load

(b) High system load

(c) tHost < tGet_CPU

B

B B

B W B

tT1(2)tx

Fig. 7: Thread interleavings (1,T/1,F means the malware section 1 has (not)
been executed, H is the execution of the host program, B means the thread
is blocked by the LOCK, and W means the thread is waiting for processor
slicing).

2% 14% 27% 39% 52% 64% 77% 89% 100%
0%

20%

40%

60%

80%

100%

CPU Usage

A
c
ti

v
a
ti

o
n

 P
ro

b
a
b

il
it

y

S
1
<S

2
<S

3
<S

4

S
2
<S

1
<S

4
<S

3

S
1
<S

2
<S

4
<S

3

S
4
<S

1
<S

2
<S

3

S
3
<S

2
<S

4
<S

1

S
4
<S

3
<S

2
<S

1

Fig. 8: Activation probability under different activation strategies.

the CPU usage rises. In particular, the occurrence rate of
the full reverse-order sequence S4 < S3 < S2 < S1 is
dramatically increased from 0.04% (2% CPU usage, i.e., the
average system load) to 90.24% (100% CPU usage). Note that
the sequence S1 < S2 < S3 < S4 would be activated within
each individual thread, so its activation probability is always
100%.

Observation 2: We can significantly change the activation
probability of reverse-order control strategy by influencing the
workload on the victim’s system.

The running time of malware sections is an important factor
in deciding when and on which thread they execute. On
Windows OS, the scheduler allocates a processor time slice
(approximately 20 milliseconds) for each thread it executes.
The running thread is suspended when its time slice elapses,
allowing another thread to run [13]. Thus, if the interval
between two malware sections is too short, the expected thread
interleaving may be changed. As shown in Fig. 7(c), Thread
2 will be blocked when malware section 1 has been locked
by Thread 1 at tT1(1). At tx, Thread 1 releases the LOCK
and Thread 2 starts to request the processor again. If Thread
1 starts to execute malware section 2 before Thread 2 gets
the processor slicing, Thread 2 will be blocked again. The
expected thread switching in Fig. 7(a) would not happen. And,
all malware sections would be executed successfully with high
probability, regardless of the system loads.

In our experiments, we design a concurrent program, in
which four threads execute four functions in the same order.
These functions only record their execution time. We run
the program 10,000 times under different system loads. As
shown in Fig. 9 (the pink line marked as 0k), more than 6,000
executions contain the sequence S4 < S3 < S2 < S1 when
CPU usage is less than 40%, which are much higher than the
experiments in Fig. 8.

Thus, we add a waiting section to extend the running time
of malware sections. As shown in Fig. 9, four groups of
empty loops are added into the malware sections, in which
the number of loops is 30k, 60k, 90k and 120k. We run
the concurrent program 10,000 times under different system

2% 14% 27% 39% 52% 64% 77% 89% 100%
0%

20%

40%

60%

80%

100%

CPU Usage

A
c
ti

v
a
ti

o
n

 P
ro

b
a
b

il
it

y

0k

30k

60k

90k

120k

Fig. 9: Activation probability of S4 < S3 < S2 < S1.

loads. It presents expected activation probability during low
and high system load. If a 90k-empty-loop is added, there
are fewer than 0.68% executions containing the sequence
S4 < S3 < S2 < S1 when CPU usage is less than 30%;
but as high as 92% when CPU usage is 100%.

Observation 3: To obtain different activation probabilities
under different workloads, the running time of malware sec-
tions should be longer than the time slice of thread scheduling.

V. EVALUATION

In this section, we select four widely-studied open-source
malware samples from VX Heavens [14], including Bull-
Moose, Branko, Hunatcha and Hunatchab, as shown in Ta-
ble III [15]. BullMoose is selected as the demo sample to
demonstrate how to generate and remotely trigger ConcSpectre
malware. All four malware are hidden into benign concurrent
programs to construct ConcSpectre and verify its stealth
against current malware analysis techniques.

As shown in Table IV, we select nine programs from the
well-known concurrent testing benchmark SPLASH [16] and
one program from Microsoft Open Source Code [17] as the
host programs. By analyzing their source codes, we identify
217 SPE functions from these programs. Then, we select 1
to 15 SPE functions in each host program that result in 77
suitable injection points in total, which could be invoked by
at least four threads in parallel.

In this paper, we generate over 1,000 samples of Conc-
Spectre malware by injecting four malware samples and their
variants into ten benign concurrent programs with differ-
ent activation strategies at the code level. The processes of
malware partition, benign program analysis and ConcSpectre
construction are at code level. By debugging and compiling
these samples, we generate the executables of all original
malware and ConcSpectre samples, and pass them to Virus-
Total (integrating 67 anti-virus engines) and four dynamic
malware analysis systems to demonstrate: (1) How to generate
real ConcSpectre malware samples; (2) How to trigger Conc-
Spectre malware remotely; (3) Whether anti-virus systems can
detect ConcSpectre malware; (4) Whether dynamic malware
analysis systems can detect ConcSpectre malware.

TABLE III: Malware samples (LOC is the lines of code).

Malware Type LOC
BullMoose Trojan 30

Branko Worm 266
Hunatcha Worm 164

Hunatchab Worm 339

TABLE IV: Concurrent programs (LOC is the lines of code, #Function, #SPE
and #Injection Point are the number of functions, SPE functions and injection
points, respectively).

Program LOC #Function #SPE #Injection Point
cholesky 5491 127 102 5

fft 1482 20 14 8
lu c 1401 19 15 6
lu nc 1182 19 15 6

ocean c 5408 21 19 15
ocean nc 3561 21 19 15

radix 1547 12 8 7
water n 2593 16 12 7
water s 3139 16 12 7

Multiverso 16254 991 1 1

A. ConcSpectre Malware Generation

Fig. 10 is the workflow of ConcSpectre malware generation.
All ConcSpectre malware samples are constructed with C/C++
(mingw32-gcc 6.3.0) and Pthread (mingw32-libpthreadgc, ver-
sion: 2.10-pre-20160821-1) on Windows 7 and Windows 10.
In this section, we illustrate the detailed steps with a real case:

• malware=BullMoose, host program=fft;
• CPA is set as the system load-based strategy. The activa-

tion probability should be lower than 5% during normal
system load (CPU usage is less than 25%), and higher
than 50% during high load (CPU usage is higher than
75%).

• A global variable is used to control the execution of each
malware section;

• Self-parallel-execution (SPE) functions in the host pro-
gram are chosen to inject the malicious code.

In the Malware Separation module, a static analysis tech-
nique is applied to extract the control dependency and data
dependency of malware. These dependencies are used to
guide malware partition to make sure the relation between
different malware fragments is as little as possible. Then,
each component is checked with various anti-malware systems.
If there are any abnormal alarms, we need to partition the
abnormal component again or apply obfuscation and shelling
techniques to make sure that it does not cause any alarms.
By analyzing the source code of BullMoose, we partition it
into four components to ensure each component would not be
classified as a malicious program. A global variable is added
to control the execution order of the malware components1.

Malware

Host
Program

Malware
Separation

SPE Search &
Selection

ConcSpectre
Generation

Test

ConcSpectre
Malware

Y

N

Fig. 10: Workflow of ConcSpectre generation.
1The code of four malware sections is provided on https://git.io/CLB.

In the SPE Search & Selection module, we search the
source code of the host program to find all possible self-
parallel-execution functions. Meanwhile, we also execute the
host program and monitor its execution traces to check how
many threads are created. In fft, 14 SPE functions are found,
in which eight functions could invoke at least four threads in
parallel. In the demo case, we select function “Slavestart” as
the injection point.

In the ConcSpectre Generation module, all malware sec-
tions would be embedded into host programs at selected points.
To ensure the integrity of malware’s data flow, we identify the
shared variables of different malware sections and set them
as global variables. Other possible errors, such as variable
renaming, read-write collision, etc., could be fixed during
compiling. Then, the executables of the ConcSpectre malware
could be generated.

The activation probability of ConcSpectre malware relies on
various factors, including OS, thread scheduler, host program,
malware, etc. In our work, we firstly select a control strategy
guided by the rate of malware-activated trace (e.g., Tables II)
and generate a ConcSpectre malware sample. Then, the Test
module is applied to execute the sample under different system
loads to calculate its activation probability. If the probabilities
meet the requirement, we get a satisfactory sample; if not, we
generate a new sample with another activation strategy.

In our experiments, we have simulated various sequences
under different system loads with empty loops, and recorded
their activation probabilities. According to the requirement in
current case, we select the first variant whose activation order
is S4 < S1 < S2 < S3 and set the number of empty loop as
120k to generate a ConcSpectre malware sample, named as
BullMoose-fft-C1.

In this paper, we introduce how to construct ConcSpectre
malware with SPE function and under specific input. In most
concurrent programs, there are more CPE functions than
SPE. The attackers can use a similar method to partition
malware and inject their components into CPE functions to
bypass the static malware detection. However, the activation
strategy would be more complicated, since CPE functions
would present different privileges, external conditions, syn-
chronization constraints, etc. The input of host program would
also affect the thread interleavings when concurrent programs
execute. We randomly select the input and monitor the execu-
tion to search suitable injection points in this paper. Advanced
techniques, such as Logic Bomb, could be exploited to select
activation input of ConcSpectre.

B. Remote Triggering ConcSpectre Malware

We further demonstrate the feasibility of remote controlling
to activate BullMoose-fft-C1 in a real network. We set up a
victim system (with Intel CORE I5 3470, 16G, JAVA 8) with
Red5 Media Server [18] as a local web server. BullMoose-fft-
C1 is injected into one web page. Initially, we use a script file
to request this page for 100 times. However, BullMoose-fft-
C1 is never triggered. This is actually reasonable as the CPU
usage is only up to 3% and there is only one user.

https://git.io/CLB

To simulate the real case with large-scale concurrent ac-
cesses, we run a real-world HTTP DDoS test tool Golden-
Eye [19] to visit our web server, and configure it to work
under five different groups of users: 3, 6, 10, 20, and 30.
Each user visits the web server with ten concurrent sockets.
Note that these sockets do not invoke the web page containing
ConcSpectre malware. At the same time, we also launch our
script to visit the web page that contains BullMoose-fft-C1
for 100 times. As shown in Fig. 11, we see that BullMoose-
fft-C1 is activated with different probabilities. In particular,
when the number of attackers increases from 0 to 3 and 30,
the average CPU usage on victim’s system increases from 3%
to 23% and 70%, respectively. Consequently, the activation
probability of BullMoose-fft-C1 increases from 0% to 4% and
51%, respectively.

Although the probability of activation in real-world exper-
iments (Fig. 11) differs from the simulation (Fig. 8), these
real-world experiments demonstrate that ConcSpectre malware
can be remotely triggered with high probability if attackers can
perturb the system load.

0%

20%

40%

60%

80%

0 3 6 10 20 30

Number of DDoS Attackers

Activation Probability
Average CPU Usage

Fig. 11: CPU usage and activation probability.

C. ConcSpectre vs Anti-virus System

One design requirement of ConcSpectre malware is to
escape from the anti-virus systems. Therefore, we select all
anti-virus engines from VirusTotal to analyze generated Conc-
Spectre malware. Note that these engines are well-configured
and also up-to-date. The set includes widely used ones such
as McAfee, Microsoft and Symantec.

We submit the executable file of BullMoose and BullMoose-
fft-C1 to VirusTotal. As shown in Fig. 12, the results are
impressive: (1) the original Bullmoose is detected by 16 out
of 67 engines in Fig. 12(a); (2) Only two engines (”Cylance”
and ”MaxSecure”) could detect threat from the ConcSpectre
samples as in Fig. 12(b). After further analysis, these two
alarms are both false postives, which are inherited from the
host program fft.

To justify whether the ConcSpectre can bypass various anti-
virus engines, we generate 924 samples by injecting four mal-
ware into 77 injection points of all host programs with the fol-
lowing three activation strategies: C2 (S4 < S3 < S2 < S1),
C3 (S4 < S1 < S3 < S2), and C4 (S4 < S2 < S3 < S1).
We submit four original malware samples and 924 generated
ConcSpectre samples to VirusTotal, the results are similar to

the previous one. The original malware samples could be
detected by most of the engines. Meanwhile, few engines
could detect ConcSpectre samples correctly.

From the result, even the widely-used and up-to-date anti-
virus engines fail to identify true threats of ConcSpectre
malware. This exposes potential threats of ConcSpectre.

(a) BullMoose

(b) BullMoose-fft-C1
Fig. 12: Detection results of VirusTotal.

D. ConcSpectre vs Dynamic Malware Analysis
To monitor the dynamic execution of a program and re-

port any suspicious operations, we select four popular dy-
namic malware analysis systems, including: Jevereg [20], Fal-
con [21], Anlyz [22] and ANYRUN [23]. They are developed
on different well-known sandboxs [10], [24], [25], such as
Amnpardaz, Falcon, etc.

Initially, we select the ConcSpectre samples generated from
the BullMoose in Table V. Since the numbers of SPE functions
in different host programs are different, the number of malware
samples in each host program is also different (listed as
#Sample). One special variant is generated with the activation
strategy S1 < S2 < S3 < S4, which would be always
be activated. We inject this variant into host program fft to
generate the ConcSpectre malware sample BullMoose-fft-A.

TABLE V: Detection results of dynamic malware analysis (three different
activation strategies C2, C3 and C4 are marked as -C, the strategy S1 < S2 <
S3 < S4 is marked as -A, #Sample is the number of malware samples).

Malware (#Sample) Jevereg Falcon Anlyz ANYRUN
BullMoose (1) 1 1 1 1
BullMoose-fft-A (1) 1 1 1 1
BullMoose-cholesky-C (15) 0 0 0 0
BullMoose-fft-C (24) 18 0 0 0
BullMoose-lu c-C (18) 16 0 0 6
BullMoose-lu nc-C (18) 17 0 0 6
BullMoose-ocean c-C (45) 41 0 0 30
BullMoose-ocean nc-C (45) 41 0 0 33
BullMoose-radix-C (21) 17 0 0 12
BullMoose-water n-C (21) 0 0 0 0
BullMoose-water s-C (21) 0 0 0 0
BullMoose-Multiverso-C (3) 0 0 0 0

Together with Bullmoose, we submit 233 programs to four
dynamic malware analysis systems. As shown in Table V,

Bullmoose and BullMoose-fft-A have been detected by all
systems. For the ConcSpectre samples, the results are different.
In particular, 150 samples from 6 host programs have been
identified as suspicious programs by Jevereg, 87 samples have
been detected by ANYRUN, and all samples have been identi-
fied as benign by the rest two systems. As shown in Fig. 13(a),
Jevereg detects two suspicious operations (OpenCreate and
WriterFile) on the files in /System32.

One possible reason for the high detection rate is that the
CPU resource is limited on the server of Jevereg and ANYRUN.
For example, when the server allocates one thread to execute
the uploaded samples, they would be executed sequentially,
and the malware would be triggered with high probability as
in Sec. IV-C. If our conjecture is true, Jevereg and ANYRUN
would fail on detect the ConcSpectre whose activation con-
dition contains parallel sequence. Thus, we design a hybrid
activation sequence: C5 (S1 < S1 < S1 < S4 < S3 < S2)
to generate the fourth variant of Bullmoose, in which S1
would be executed three times before S4. The first part
S1 < S1 < S1 would be activated with high probability
under low CPU load, and the second part S4 < S3 < S2
would be satisfied under high CPU load. Thus, it is not easy
to trigger this sequence under any conditions of CPU load.
We generate a new group of ConcSpectre malware samples
containing this variant. From Table VI, no samples are detected
as malware under the new activation strategy. Compared to its
high detection probability on the previous strategy, Jevereg
and ANYRUN fail on the parallel sequence. It proves our
conjecture that the Jevereg and ANYRUN servers allocate
limited resources for each application.

Fig. 13: Detection results of Jevereg.

These two sets of experiments show that ConcSpectre
malware can bypass many current malware detection systems.
Moreover, they can also escape from being detected under high
system load by introducing the parallel-execution requirement
into the activation sequence.

We further inject the rest three malware samples into all
host programs using the hybrid activation strategy C5. Since
the number restrictions on sample uploading of these online
analysis systems, we randomly select one ConcSpectre sample
for each host program and malware, in total 30. Together with

TABLE VI: Detection results of malware with hybrid activation strategy.

Malware Jevereg ANYRUN
BullMoose-cholesky-C5 0 0
BullMoose-fft-C5 0 0
BullMoose-lu c-C5 0 0
BullMoose-lu nc-C5 0 0
BullMoose-ocean c-C5 0 0
BullMoose-ocean nc-C5 0 0
BullMoose-radix-C5 0 0
BullMoose-water n-C5 0 0
BullMoose-water s-C5 0 0
BullMoose-Multiverso-C5 0 0

TABLE VII: Detection results of other malware samples (#Sample is the
number of malware samples).

Malware (#Sample) Jevereg Falcon Anlyz ANYRUN
Branko (1) 1 1 1 1
Branko-C5 (10) 0 0 0 0
Hunatcha (1) 1 1 1 1
Hunatcha-C5 (10) 0 0 0 0
Hunatchab (1) 1 1 1 1
Hunatchab-C5 (10) 0 0 0 0

three original malware samples, 33 samples are submitted to
four analysis systems. As shown in Table VII, all original
malware samples would be detected as malware by all systems.
Meanwhile, no ConcSpectre samples have been detected.

VI. DEFENSE AND DISCUSSION

It is intractable for analysts to detect and defend ConcSpec-
tre malware, which might be widely used in multi-core systems
and multi-threaded programs. In this section, we present and
discuss several possible solutions for detection and defense.

Exhaustive Examination. It is well known that model check-
ing is a powerful technique for exploring the whole state space
for a program [26]–[28]. We can implement the ConcSpectre
detector based on the model checker, by adding the activation
property of malicious behaviors on the basis of current model
checkers [9], [29], [30]. We apply the latest version (2021)
of ESBMC [9] to analyze cholesky under a fixed input. The
verification of one input could not finish within 3600s. Since
the scalability of model checking is limited by state space
explosion, it could only be applied for small programs.

In addition, the symbolic execution is also used to analyze
the complex behavior among different threads [31]–[33]. Its
advantage lies in the capability of automatically finding intri-
cate interleavings. It encodes an execution trace of a multi-
threaded program and the activation condition of malicious
behavior into a symbolic formula and then symbolically seeks
an objective interleaving by solving the formula with an SMT
solver [34]. We reproduce the encoding method in [35] and
use it to verify an assertion in cholesky. For an execution
trace with 250k events, it spends 35s on looking for an
interleaving triggering the assertion. However, in real-world
systems, their executions are extremely long. Meanwhile, the
activation condition of malicious behavior is more complicated
than an assertion. In short, scalability is the major problem for
exhaustive examination approaches.

Affecting thread scheduling. Various methods of affecting
scheduler are applied in concurrent program testing to cover as

many different interleavings as possible [36]–[38]. A common
method is to randomly insert sleep statements or empty loops
into programs and keep running the programs up to a time
bound. It would increase the probability of exposing the
malicious code. However, there are many questions: 1) how
to select the place to inject these extra delays. It is another
state explosion of various threads and parallel functions; and
2) how to set the time bound. There is a trade-off between
interleaving coverage and testing cost.

Another method is to randomly change the CPU usages
during analyzing software, which is the same as the CPA
technique we proposed. As shown in Sec. V-D, the attackers
can design various CPA strategies which would not be easily
activated under both low and high system load. Thus, the
defender can randomly assign the CPU resource during testing.
It would increase the chance to detect the hidden malware.

Serialization. The simultaneous execution of many threads
is the fundamental cause of ConcSpectre malware being acti-
vated while bypassing the detection. A compromise approach
is to serialize the temporal orderings of shared access points by
inserting synchronization statements into program code. Thus,
we only permit the executions of benign temporal orderings.
It is an effective defense method, which simultaneously brings
performance reduction for multi-task processing.

In summary, it is possible to disturb the CPA strategies and
prevent the ConcSpectre malware from being triggered. For
example, the defender can change the thread scheduling by
randomly injecting sleep statements, keeping the workload sta-
ble with various load balance techniques, and serializing parts
of the program. Although these techniques cannot guarantee to
detect the ConcSpectre malware or prevent its activation, they
can markedly alleviate the impact of ConcSpectre malware.

VII. RELATED WORK

Current stealth malware techniques could be classified into
four types: rootkit, code mutation, anti-emulation and targeting
mechanism [39]. Code mutation aims to alter the appearance
of malicious code to bypass malware detection systems based
on pattern-matching algorithms. The malicious code would
be triggered under specific inputs or conditions. ConcSpectre
applies similar methods to partition malware and injects them
into benign programs. However, to the best of our knowledge,
it is the first malware technique to hide its malicious behavior
by exploiting the non-deterministic thread interleavings, which
can bypass current static and dynamic malware detection even
when the activation input is known.

There are some similar works, such as multi-stage malware
[40], concurrency attack [41], [42] and cooperative attack
[43]–[45] . Some well-known computer viruses, such as Inter-
net worm [46] and RMNS [47], are multi-stage, which achieve
an attack by cooperating distributed tasks across multiple
processes. Xu et al. find the Inter-Component Communication
(ICC) mechanism can be exploited by malware to obfuscate
malicious behaviors and bypass existing detection methods.
Thus, they design an ICC-Based malware detector to detect the
malicious behaviors hidden in different components [48]. A

cooperative attack is trickier in concealing malware. It spatially
divides and places the system-call sequences of malware into
separate processes. There is no single process that performs
the malicious actions, so any attempt to monitor individual
processes for malicious behaviors would fail. Meanwhile,
these processes can cooperate to perform malicious actions
in a temporal order. Especially, Wang et al. design an attacker
that can bypass the Apple Review, remotely exploit the planted
vulnerabilities and assemble the malicious logic at runtime
by chaining the code gadgets together [45]. However, the
cooperative attack suffers from two limitations: 1) it is difficult
for such malware to be applied in a real-time attack [49],
and 2) any failure in any process will lead to the failure of
the entire process [43]. This spatial and temporal division of
the malicious behaviors is similar to ConcSpectre. The major
difference is that ConcSpectre is implemented on different
threads, without cooperating with other hosts or processors.
Thus, ConcSpectre would be easier to control for attackers.

Yang et al. discover that errors in concurrent programs can
lead to concurrency attacks, and firstly prove that concurrency
attacks are indeed viable [41], [42]. The major difference be-
tween ConcSpectre and concurrency attacks is that ConcSpec-
tre attackers hide the malware within concurrency programs,
while concurrency attackers exploit the concurrency bugs. As
discussed in the previous section, it is difficult for an analyst to
trigger and detect the malicious code in ConcSpectre malware.

VIII. CONCLUSION

In this paper, we present ConcSpectre, a type of malware
that exploits concurrency. Its implementation can be based
on CLB, a new stealth malware technique, and CPA, a new
malware activation technique. More than 1,000 ConcSpectre
malware samples have been generated based on four real
malicious programs and ten concurrent programs. All of them
can bypass most of the anti-virus engines in VirusTotal and
four online dynamic malware detection systems. Experiment
results reveal the threat of ConcSpectre, which calls for an
urgent redesign of malware detection techniques for concurrent
programs.

We have explored several software testing techniques to
detect ConcSpectre malware. However, scalability and cor-
rectness are two major issues of current concurrent software
testing tools. A tentative solution is to actively control thread
scheduling or even serialize concurrent programs so that thread
scheduling cannot be perturbed. However, such a strategy
would incur a significant burden on programmers and also
limit concurrency.

In this paper, we have discussed the SPE function-targeted
CLB and CPA techniques. CPE is also common in concurrent
programs. We can use similar methods to partition malware
and inject their components into CPE functions to bypass
static malware detection. However, the activation strategy
would be more complicated, since the CPE functions would
present different privileges, external conditions, synchroniza-
tion constraints, etc. In the future, we plan to further investi-
gate the CPE function-targeted ConcSpectre techniques.

REFERENCES

[1] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” https:
//arxiv.org/abs/1801.01207, 2017.

[2] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy (SP), 2019, pp. 1–19.

[3] M. Musuvathi and S. Qadeer, “Iterative context bounding for systematic
testing of multithreaded programs,” ACM Sigplan Notices, vol. 42, no. 6,
pp. 446–455, 2007.

[4] G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and A. Ribagorda,
“Evolution, detection and analysis of malware for smart devices,” IEEE
Communications Surveys & Tutorials, vol. 16, no. 2, pp. 961–987, 2014.

[5] VirusTotal, “Virus total,” https://www.virustotal.com, 2021.
[6] D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and

D. Mazières, “Eliminating cache-based timing attacks with instruction-
based scheduling,” in European Symposium on Research in Computer
Security. Springer, 2013, pp. 718–735.

[7] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution for de-
tecting concurrency-related cache timing leaks,” in ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), 2018.

[8] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis.
ACM, 2018, p. 15–26.

[9] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and
D. A. Nicole, “ESBMC 5.0: An industrial-strength C model checker,”
in 33rd ACM/IEEE Int. Conf. on Automated Software Engineering
(ASE’18). New York, NY, USA: ACM, 2018, pp. 888–891.

[10] M. Ganai, D. Lee, and A. Gupta, “DTAM: Dynamic taint analysis of
multi-threaded programs for relevancy,” in Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. ACM, 2012, pp. 46–56.

[11] X. Zhang, Z. Yang, Q. Zheng, Y. Hao, P. Liu, L. Yu, and T. Liu,
“Debugging multithreaded programs as if they were sequential,” IEEE
Access, vol. 6, no. 1, pp. 40 024–40 040, 2018.

[12] S. Guo, M. Kusano, and C. Wang, “Conc-iSE: Incremental symbolic
execution of concurrent software,” in Automated Software Engineering
(ASE), 2016 31st IEEE/ACM International Conference on. IEEE, 2016,
pp. 531–542.

[13] Microsoft, “Multitasking,” https://bit.ly/3ayU5gt, 2021.
[14] “VX heaven,” https://bit.ly/32AzHHw, 2021.
[15] J. Ming, Z. Xin, P. Lan, D. Wu, P. Liu, and B. Mao, “Replacement

attacks: automatically impeding behavior-based malware specifications,”
in In International Conference on Applied Cryptography and Network
Security, 2015, pp. 497–517.

[16] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological consider-
ations,” in Computer Architecture, 1995. Proceedings., 22nd Annual
International Symposium on. IEEE, 1995, pp. 24–36.

[17] “Microsoft open source code,” https://git.io/JOXnk, 2021.
[18] Microoft, “Red5,” http://red5.org/, 2021.
[19] jseidl, “Goldeneye,” https://github.com/jseidl/GoldenEye/, 2021.
[20] A. Software, “Jevereg,” http://jevereg.amnpardaz.com/, 2021.
[21] “Falcon,” https://www.reverse.it/, 2021.
[22] “Anlyz,” https://sandbox.anlyz.io/, 2021.
[23] “Anyrun,” https://app.any.run/, 2021.
[24] A. Kharraz, S. Arshad, C. Mulliner, W. K. Robertson, and E. Kirda,

“Unveil: A large-scale, automated approach to detecting ransomware,”
in USENIX Security Symposium, 2016, pp. 757–772.

[25] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal analysis-
based evasive malware detection.” in USENIX Security Symposium,
2014, pp. 287–301.

[26] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking
without BDDs,” Tools and Algorithms for the Construction and Analysis
of Systems, pp. 193–207, 1999.

[27] N. Chong, B. Cook, K. Kallas, K. Khazem, F. R. Monteiro, D. Schwartz-
Narbonne, S. Tasiran, M. Tautschnig, and M. R. Tuttle, “Code-level
model checking in the software development workflow,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2020, pp. 11–20.

[28] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “NetSMC: A custom
symbolic model checker for stateful network verification,” in 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). Santa Clara, CA: USENIX Association, Feb. 2020, pp.
181–200.

[29] D. Kroening and M. Tautschnig, “CBMC–C bounded model checker,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2014, pp. 389–391.

[30] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar, “The software
model checker blast,” International Journal on Software Tools for
Technology Transfer, vol. 9, no. 5-6, pp. 505–525, 2007.

[31] M. Said, C. Wang, Z. Yang, and K. Sakallah, “Generating data race
witnesses by an SMT-based analysis,” in NASA Formal Methods Sym-
posium. Springer, 2011, pp. 313–327.

[32] M. K. Ganai, N. Arora, C. Wang, A. Gupta, and G. Balakrishnan, “Best:
A symbolic testing tool for predicting multi-threaded program failures,”
in Proceedings of the 2011 26th IEEE/ACM International Conference
on Automated Software Engineering. IEEE Computer Society, 2011,
pp. 596–599.

[33] X. Zhang, Z. Yang, Q. Zheng, Y. Hao, P. Liu, and T. Liu, “Tell you a
definite answer: Whether your data is tainted during thread scheduling,”
IEEE Transactions on Software Engineering, vol. 46, no. 9, pp. 916–931,
2020.

[34] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[35] X. Zhang, Z. Yang, Q. Zheng, P. Liu, J. Chang, Y. Hao, and T. Liu, “Au-
tomated testing of definition-use data flow for multithreaded programs,”
in 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), March 2017, pp. 172–183.

[36] S. Hong, J. Ahn, S. Park, M. Kim, and M. J. Harrold, “Testing concurrent
programs to achieve high synchronization coverage,” in Proceedings of
the 2012 International Symposium on Software Testing and Analysis.
ACM, 2012, pp. 210–220.

[37] C. Wang, M. Said, and A. Gupta, “Coverage guided systematic concur-
rency testing,” in Proceedings of the 33rd International Conference on
Software Engineering. ACM, 2011, pp. 221–230.

[38] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam, “Maple: a coverage-
driven testing tool for multithreaded programs,” ACM SIGPLAN Notices,
vol. 47, no. 10, pp. 485–502, 2012.

[39] E. Rudd, A. Rozsa, M. Gunther, and T. Boult, “A survey of stealth
malware: Attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys & Tutorials,
2016.

[40] M. Ramilli and M. Bishop, “Multi-stage delivery of malware,” in
5th International Conference on Malicious and Unwanted Software
(MALWARE). IEEE, 2010, pp. 91–97.

[41] S. Zhao, R. Gu, H. Qiu, T. O. Li, Y. Wang, H. Cui, and J. Yang,
“OWL: Understanding and detecting concurrency attacks,” in 48th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), 2018, pp. 219–230.

[42] J. Yang, A. Cui, S. Stolfo, and S. Sethumadhavan, “Concurrency
attacks,” in 4th USENIX Workshop on Hot Topics in Parallelism (HotPar
12). Berkeley, CA: USENIX Association, Jun. 2012.

[43] M. Ramilli, M. Bishop, and S. Sun, “Multiprocess malware,” in Ma-
licious and Unwanted Software (MALWARE), 2011 6th International
Conference on. IEEE, 2011, pp. 8–13.

[44] W. Ma, P. Duan, S. Liu, G. Gu, and J.-C. Liu, “Shadow attacks:
automatically evading system-call-behavior based malware detection,”
Journal in Computer Virology, vol. 8, no. 1, pp. 1–13, 2012.

[45] T. Wang, K. Lu, L. Lu, S. P. Chung, and W. Lee, “Jekyll on iOS: When
benign apps become evil.” in Usenix Security, vol. 13, 2013.

[46] M. W. Eichin and J. A. Rochlis, “With microscope and tweezers: An
analysis of the internet virus of November 1988,” in Proceedings. 1989
IEEE Symposium on Security and Privacy. IEEE, 1989, pp. 326–343.

[47] E. Kaspersky, “RMNS-the perfect couple,” Virus Bulletin, pp. 8–9, 1995.
[48] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-based malware

detection on Android,” IEEE Transactions on Information Forensics and
Security, vol. 11, no. 6, pp. 1252–1264, June 2016.

[49] Y. Ji, Y. He, D. Zhu, Q. Li, and D. Guo, “A mulitiprocess mechanism
of evading behavior-based bot detection approaches,” in International
Conference on Information Security Practice and Experience. Springer,
2014, pp. 75–89.

https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01207
https://www.virustotal.com
https://bit.ly/3ayU5gt
https://bit.ly/32AzHHw
https://git.io/JOXnk
http://red5.org/
https://github.com/jseidl/GoldenEye/
http://jevereg.amnpardaz.com/
https://www.reverse.it/
https://sandbox.anlyz.io/
https://app.any.run/

	Introduction
	Overview
	Motivating Example
	Basic Assumptions

	Concurrent Logic Bomb
	Malware Injection
	Stealthiness of CLB

	Controllable Probabilistic Activation
	Definition
	Probabilistic Activation
	Load-based Controllable Probabilistic Activation on Windows

	Evaluation
	ConcSpectre Malware Generation
	Remote Triggering ConcSpectre Malware
	ConcSpectre vs Anti-virus System
	ConcSpectre vs Dynamic Malware Analysis

	Defense and Discussion
	Related Work
	Conclusion
	References

