Fixed point indices and fixed words at infinity of selfmaps of graphs

Qiang ZHANG

Xi'an Jiaotong University

The 7th Chinese-Russian Knot Conference Beijing Normal University 2020.12.6

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Let X be a space, and $f: X \to X$ a self-map.

- $x \in X$ is a fixed point of $f \iff f(x) = x$.
- Fix $f := \{x \in X | f(x) = x\}$: the set of all fixed points of f.

- Existence: is $Fix f \neq \emptyset$?
- Number of fixed points #Fixf
- Behavior under homotopy: how Fixf changes when f changes continuously?
-

Nielsen fixed point theory

Jakob Nielsen (1890-1959)

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point** classes

$$Fix f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in Fpc(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0.

We emit the definition in this talk

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0.

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$Fix f := \{x \in X | f(x) = x\} = \bigsqcup_{\mathbf{F} \in Fpc(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with ind = 0.

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

There is a subtle notion of empty fixed point class with $\operatorname{ind} = 0$.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When ${\rm Fix} \tilde{f}=\emptyset$, we call ${\bf F}=p({\rm Fix} \tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$.
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When ${\rm Fix} \tilde{f}=\emptyset$, we call ${\bf F}=p({\rm Fix} \tilde{f})$ an empty fixed point class.

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \begin{cases} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{cases}$$

• If n = 2, f has a complex analytic expression $z \mapsto f(z)$, then $\operatorname{ind}(f, z_0) = \operatorname{multiplicity}$ of the zero z_0 of the function z - f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

$$\operatorname{ind}(f,0) = \begin{cases} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{cases}$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f, z_0) = \operatorname{multiplicity}$ of the zero z_0 of the function z - f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \left\{ \begin{array}{ll} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{array} \right.$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f,z_0)=\operatorname{multiplicity}$ of the zero z_0 of the function z-f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \left\{ \begin{array}{ll} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{array} \right.$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f,z_0)=\operatorname{multiplicity}$ of the zero z_0 of the function z-f(z).

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{essential \ fixed \ point \ classes \ of \ f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{f} \in \mathrm{Fpc}(f)} \mathrm{ind}(f, \mathbf{F}) = L(f).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{f} \in \mathrm{Fpc}(f)} \mathrm{ind}(f, \mathbf{F}) = L(f).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_{q} (-1)^q \operatorname{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{f \in \operatorname{Fpc}(f)} \operatorname{ind}(f, \mathbf{F}) = L(f).$$

Definition

- A fixed point class **F** of f is essential if $\operatorname{ind}(f, \mathbf{F}) \neq 0$.
- Nielsen number $N(f) := \#\{\text{essential fixed point classes of } f\}.$
- Lefschetz number

$$L(f) := \sum_q (-1)^q \mathrm{Trace}(f_* : H_q(X; \mathbb{Q}) \to H_q(X; \mathbb{Q})).$$

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)}\mathrm{ind}(f,\mathbf{F})=L(f).$$

Example

For the identity $\mathrm{id}:X\to X$, the whole space X is the unique nonempty fixed point class and

$$\operatorname{ind}(X) = L(\operatorname{id}) = \chi(X),$$

$$N(\mathrm{id}) = \begin{cases} 1, & \chi(X) \neq 0, \\ 0, & \chi(X) = 0. \end{cases}$$

Example

For the identity $\mathrm{id}:X\to X$, the whole space X is the unique nonempty fixed point class and

$$\operatorname{ind}(X) = L(\operatorname{id}) = \chi(X),$$

$$N(\mathrm{id}) = \begin{cases} 1, & \chi(X) \neq 0, \\ 0, & \chi(X) = 0. \end{cases}$$

Example

For the identity $\mathrm{id}:X\to X$, the whole space X is the unique nonempty fixed point class and

$$\operatorname{ind}(X) = L(\operatorname{id}) = \chi(X),$$

$$N(\mathrm{id}) = \left\{ egin{array}{ll} 1, & \chi(X)
eq 0, \\ 0, & \chi(X) = 0. \end{array}
ight.$$

Nielsen Theory

Theorem (Nielsen)

The Nielsen number N(f) is homotopy invariant.

Corollary (Nielsen)

If $g \simeq f$, then g has at least N(f) fixed points. That is,

$$M[f] := \min\{\#\operatorname{Fix}(g)|g \simeq f\} \geq N(f).$$

Theorem (Jiang, 1980)

Let X be a compact, connected polyhedron and let $f: X \to X$ be a map. If X does not have local separating points and X is not a surface (with or without boundary) then

$$M[f] = N(f).$$

Nielsen Theory

Theorem (Nielsen)

The Nielsen number N(f) is homotopy invariant.

Corollary (Nielsen)

If $g \simeq f$, then g has at least N(f) fixed points. That is,

$$M[f] := \min\{\#\operatorname{Fix}(g)|g \simeq f\} \geq N(f).$$

Theorem (Jiang, 1980)

Let X be a compact, connected polyhedron and let $f: X \to X$ be a map. If X does not have local separating points and X is not a surface (with or without boundary) then

$$M[f] = N(f).$$

Nielsen Theory

Theorem (Nielsen)

The Nielsen number N(f) is homotopy invariant.

Corollary (Nielsen)

If $g \simeq f$, then g has at least N(f) fixed points. That is,

$$M[f] := \min\{\#\operatorname{Fix}(g)|g \simeq f\} \geq N(f).$$

Theorem (Jiang, 1980)

Let X be a compact, connected polyhedron and let $f: X \to X$ be a map. If X does not have local separating points and X is not a surface (with or without boundary) then

$$M[f] = N(f).$$

Fixed subgroups: definitions

For any group G, denote the set of endomorphisms of G by $\operatorname{End}(G)$.

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$Fix \phi := \{ g \in G | \phi(g) = g \}.$$

For a family $\mathcal B$ of endomorphisms of G (i.e., $\mathcal B\subseteq \operatorname{End}(G)$), the fixed subgroup of $\mathcal B$ is

$$\operatorname{Fix} \mathcal{B} := \{ g \in \mathcal{G} | \phi(g) = g, \forall \phi \in \mathcal{B} \} = \bigcap_{\phi \in \mathcal{B}} \operatorname{Fix} \phi.$$

Compactification of free group

- F: free group of rank n. $\phi: F \to F$ injective endomorphism.
 - $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F = the set of reduced words in the letters $g_i^{\pm 1}$. • $\partial F =$ the set of infinite reduced words $W = w_1 w_2 \cdots w_i \cdots$, i.e., $w_i \in \Lambda^{\pm} = \{g_1^{\pm 1}, \dots, g_n^{\pm 1}\}$ and $w_i \neq w_{i+1}^{-1}$. • $\bar{F} := F \sqcup \partial F$. $W_i := w_1 \cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and \bar{F} is dense in \bar{F} .

Compactification of free group

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^{\pm}=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo, to a Cantor set when $n \geq 2$.

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F = the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F =$ the set of infinite reduced words $W = w_1 w_2 \cdots w_i \cdots$, i.e., $w_i \in \Lambda^{\pm} = \{g_1^{\pm 1}, \dots, g_n^{\pm 1}\}$ and $w_i \neq w_{i+1}^{-1}$. $\bar{F} := F \sqcup \partial F$. $W_i := w_1 \cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F = the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F =$ the set of infinite reduced words $W = w_1 w_2 \cdots w_i \cdots$, i.e., $w_i \in \Lambda^{\pm} = \{g_1^{\pm 1}, \dots, g_n^{\pm 1}\}$ and $w_i \neq w_{i+1}^{-1}$. $\bar{F} := F \cup \partial F \qquad W_i := w_1 \cdots w_i$
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hypergroup in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

11 / 36

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \land V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{\geq 0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hypergroup in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- F: **free group** of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{\geq 0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hypergroup in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- F: **free group** of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V)=\frac{1}{1+|W\wedge V|},\quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V)=\frac{1}{1+|W\wedge V|},\quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hypergroup in the sense of Gromov), and F is dense in \bar{F} .

 ∂F : a compact space homeo. to a Cantor set when $n \ge 2$.

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V)=\frac{1}{1+|W\wedge V|},\quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} . ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to\partial F$ and $\overline{f}:\partial F\to\partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

① W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty} |W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W \in \bar{F}$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

• W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty}|W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W \in \bar{F}$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

1 W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty}|W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W\in \bar{\mathcal F}$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

Proposition

- Let W be an attracting fixed word of ϕ . Then $\exists i_0$ s.t $|W \wedge W'| \ge i_0 \Longrightarrow |W \wedge \phi(W')| > |W \wedge W'|$.
- W is an attracting fixed word \iff W is an attracting fixed point \implies W $\notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Proposition

- Let W be an attracting fixed word of ϕ . Then $\exists i_0$ s.t $|W \land W'| \ge i_0 \Longrightarrow |W \land \phi(W')| > |W \land W'|$.
- W is an attracting fixed word $\iff W$ is an attracting fixed point $\implies W \notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Proposition

- Let W be an attracting fixed word of ϕ . Then $\exists i_0$ s.t $|W \land W'| \ge i_0 \Longrightarrow |W \land \phi(W')| > |W \land W'|$.
- W is an attracting fixed word \iff W is an attracting fixed point \implies W $\notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Proposition

- Let W be an attracting fixed word of ϕ . Then $\exists i_0$ s.t $|W \land W'| \ge i_0 \Longrightarrow |W \land \phi(W')| > |W \land W'|$.
- W is an attracting fixed word \iff W is an attracting fixed point \implies W $\notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Proposition

- Let W be an attracting fixed word of ϕ . Then $\exists i_0$ s.t $|W \land W'| \ge i_0 \Longrightarrow |W \land \phi(W')| > |W \land W'|$.
- W is an attracting fixed word \iff W is an attracting fixed point \implies W $\notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
	1	{1}		N/A
1	g	\mathbb{Z}	1	
> 1	g^k	{1}		2
	g ^k	{1}		

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
	1	{1}		N/A
1	g	\mathbb{Z}	1	
>1	g^k	{1}		2
	g ^k	{1}		

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
> 1	g^k	{1}	0	2
< 0	g^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
> 1	g^k	{1}	0	2
< 0	g^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
> 1	g^k	{1}	0	2
< 0	g ^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n$$
.

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and \mathbf{F} be a fixed point class of f. For a fixed point $x \in \mathbf{F}$, let $f_{\pi}: \pi_1(X,x) \to \pi_1(X,x)$ be the induced endomorphism.

Definition

Define

$$\operatorname{rk}(f, \mathbf{F}) := \operatorname{rkFix}(f_{\pi}), \quad a(f, \mathbf{F}) := a(f_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(f, \mathbf{F}) - a(f, \mathbf{F}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and \mathbf{F} be a fixed point class of f. For a fixed point $x \in \mathbf{F}$, let $f_{\pi}: \pi_1(X,x) \to \pi_1(X,x)$ be the induced endomorphism.

Definition

Define

$$\operatorname{rk}(f, \mathbf{F}) := \operatorname{rkFix}(f_{\pi}), \quad a(f, \mathbf{F}) := a(f_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(f, \mathbf{F}) - a(f, \mathbf{F}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and \mathbf{F} be a fixed point class of f. For a fixed point $x \in \mathbf{F}$, let $f_{\pi}: \pi_1(X,x) \to \pi_1(X,x)$ be the induced endomorphism.

Definition

Define

$$\operatorname{rk}(f, \mathbf{F}) := \operatorname{rkFix}(f_{\pi}), \quad a(f, \mathbf{F}) := a(f_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(f, \mathbf{F}) - a(f, \mathbf{F}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and \mathbf{F} be a fixed point class of f. For a fixed point $x \in \mathbf{F}$, let $f_{\pi}: \pi_1(X,x) \to \pi_1(X,x)$ be the induced endomorphism.

Definition

Define

$$\operatorname{rk}(f, \mathbf{F}) := \operatorname{rkFix}(f_{\pi}), \quad a(f, \mathbf{F}) := a(f_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(f, \mathbf{F}) - a(f, \mathbf{F}).$$

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1), a(f_0, \mathbf{F}_0) = a(f_1, \mathbf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance

Under the correspondence via a homotopy H

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1), a(f_0, \mathbf{F}_0) = a(f_1, \mathbf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathsf{F}_0) = \operatorname{ind}(f_1, \mathsf{F}_1), \operatorname{rk}(f_0, \mathsf{F}_0) = \operatorname{rk}(f_1, \mathsf{F}_1), a(f_0, \mathsf{F}_0) = a(f_1, \mathsf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi$.

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y),$$

$$\operatorname{rk}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_Y), \quad a(\psi \circ \phi; \mathbf{F}_X) = a(\phi \circ \psi; \mathbf{F}_Y).$$

Hence $ind(\mathbf{F})$ and $ichr(\mathbf{F})$ are commutation invariants.

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi$.

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi; \mathbf{F}_Y),$$

$$\operatorname{rk}(\psi \circ \phi; \mathbf{F}_X) = \operatorname{rk}(\phi \circ \psi; \mathbf{F}_Y), \quad a(\psi \circ \phi; \mathbf{F}_X) = a(\phi \circ \psi; \mathbf{F}_Y).$$

Hence $\operatorname{ind}(\mathbf{F})$ and $\operatorname{ichr}(\mathbf{F})$ are commutation invariants.

Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ① $X_{i+1} = X_i$ and $f_{i+1} \simeq f_i$, or
- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $\operatorname{ind}(\mathbf{F})$ and the improved characteristic $\operatorname{ichr}(\mathbf{F})$ are mutation invariants.

Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance

The index $\operatorname{ind}(\mathbf{F})$ and the improved characteristic $\operatorname{ichr}(\mathbf{F})$ are mutation invariants.

Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $\operatorname{ind}(\mathbf{F})$ and the improved characteristic $\operatorname{ichr}(\mathbf{F})$ are mutation invariants.

Mutation invariance

Among selfmaps of compact polyhedra, homotopy and commutation generates an equivalence relation:

Definition

A sequence $\{f_i: X_i \to X_i | i=0,\cdots,k\}$ of self-maps is a mutation if for each i, either

- ② f_{i+1} is obtained from f_i by commutation.

A mutation sets up a one-one correspondence between fixed point classes of the end maps.

Theorem (Mutation invariance)

The index $\operatorname{ind}(\mathbf{F})$ and the improved characteristic $\operatorname{ichr}(\mathbf{F})$ are mutation invariants.

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then

- (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;
- (B) when X is not a tree,

$$\sum_{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0}\{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})\}\geq 2\chi(X),$$

where the sum is taken over all fixed point classes ${\bf F}$ with ${\rm ind}({\bf F})+{\rm chr}({\bf F})<0$.

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;

$$\sum_{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})<0} \{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})\} \geq 2\chi(X),$$

where the sum is taken over all fixed point classes ${\bf F}$ with ${\rm ind}({\bf F})+{\rm chr}({\bf F})<0$.

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then

- (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;
- (B) when X is not a tree,

$$\sum_{\text{ind}(\mathbf{F}) + \text{chr}(\mathbf{F}) < 0} \{ \text{ind}(\mathbf{F}) + \text{chr}(\mathbf{F}) \} \ge 2\chi(X),$$

where the sum is taken over all fixed point classes ${\bf F}$ with ${\rm ind}({\bf F})+{\rm chr}({\bf F})<0$.

Bounds for Seifert 3-manifolds

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold, and $f: M \to M$ is a homeomorphism. Then

(A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every **essential** fixed point class **F** of f; (B)

$$\sum_{\operatorname{ind}(\textbf{F}) + \operatorname{chr}(\textbf{F}) < 0} \{ \operatorname{ind}(\textbf{F}) + \operatorname{chr}(\textbf{F}) \} \ge \mathcal{B},$$

where the sum is taken over all essential fixed point classes ${\bf F}$ with ${\rm ind}({\bf F})+{\rm chr}({\bf F})<0$, and

$$\mathcal{B} = \begin{cases} 4(3 - \operatorname{rk}\pi_1(M)) & M \text{ is a closed surface } F \times S^1 \\ 4(2 - \operatorname{rk}\pi_1(M)) & \text{others} \end{cases}$$

Bounds for Seifert 3-manifolds

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold, and $f: M \to M$ is a homeomorphism. Then (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every **essential** fixed point class \mathbf{F} of f; (B)

$$\sum_{\operatorname{ind}(\boldsymbol{F}) + \operatorname{chr}(\boldsymbol{F}) < 0} \{ \operatorname{ind}(\boldsymbol{F}) + \operatorname{chr}(\boldsymbol{F}) \} \geq \mathcal{B},$$

where the sum is taken over all essential fixed point classes **F** with $\operatorname{ind}(\mathbf{F}) + \operatorname{chr}(\mathbf{F}) < 0$, and

$$\mathcal{B} = \left\{ egin{array}{ll} 4(3 - \operatorname{rk}\pi_1(M)) & \textit{M is a closed surface } F imes S^1 \ 4(2 - \operatorname{rk}\pi_1(M)) & \textit{others} \end{array}
ight.$$

Bounds for Seifert 3-manifolds

Theorem (Z., 2012)

Suppose M is a compact orientable **Seifert** 3-manifold with hyperbolic orbifold, and $f: M \to M$ is a homeomorphism. Then (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every **essential** fixed point class \mathbf{F} of f; (B)

$$\sum_{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})<0} \{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})\} \geq \mathcal{B},$$

where the sum is taken over all essential fixed point classes **F** with $\operatorname{ind}(\mathbf{F}) + \operatorname{chr}(\mathbf{F}) < 0$, and

$$\mathcal{B} = \left\{ egin{array}{ll} 4ig(3-\mathrm{rk}\pi_1(extbf{ extit{M}}ig) & extit{ extit{M} is a closed surface $F imes S^1$} \ 4ig(2-\mathrm{rk}\pi_1(extbf{ extit{M}}ig)) & extit{others} \end{array}
ight.$$

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

When the Euler characteristic $\chi(X) \geq 0$, the equality $\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F})$ holds immediately.

Theorem (Z.-Zhao, 2020)

If X is a connected finite graph with $\chi(X) = -1$ and $f: X \to X$ is a π_1 -injective selfmap, then for every essential fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}),$$

and for every inessential fixed point class \mathbf{F} , we have $0 = \operatorname{ind}(\mathbf{F}) \le \operatorname{ichr}(\mathbf{F}) \le 1$.

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

When the Euler characteristic $\chi(X) \geq 0$, the equality $\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F})$ holds immediately.

Theorem (Z.-Zhao, 2020)

If X is a connected finite graph with $\chi(X) = -1$ and $f: X \to X$ is a π_1 -injective selfmap, then for every essential fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}),$$

and for every inessential fixed point class \mathbf{F} , we have $0 = \operatorname{ind}(\mathbf{F}) \le \operatorname{ichr}(\mathbf{F}) \le 1$.

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

When the Euler characteristic $\chi(X) \geq 0$, the equality $\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F})$ holds immediately.

Theorem (Z.-Zhao, 2020)

If X is a connected finite graph with $\chi(X)=-1$ and $f:X\to X$ is a π_1 -injective selfmap, then for every essential fixed point class ${\bf F}$ of f, we have

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}),$$

and for every inessential fixed point class \mathbf{F} , we have $0 = \operatorname{ind}(\mathbf{F}) \le \operatorname{ichr}(\mathbf{F}) \le 1$.

An example supporting ind = ichr for empty fixed point classes.

Example

Let $f:(R_2,*)\to (R_2,*), a\mapsto b, b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$ and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\mathrm{Fix}\tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

An example supporting ind = ichr for empty fixed point classes.

Example

Let $f:(R_2,*)\to (R_2,*), a\mapsto b, b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The *f*-route *a* induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

An example supporting ind = ichr for empty fixed point classes.

Example

Let $f:(R_2,*)\to (R_2,*), a\mapsto b, b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

An example supporting ind = ichr for empty fixed point classes.

Example

Let $f:(R_2,*)\to (R_2,*), a\mapsto b, b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

An example supporting $\operatorname{ind} = \operatorname{ichr}$ for nonempty fixed point classes with indices 0.

Example (Jiang, 1984)

Let $f:(R_2,*)\to (R_2,*)$ be a selfmap of the graph R_2 with one vertex * and two edges a,b, such that the induced endomorphism of $\pi_1(R_2,*)$ is given by $f_*(a)=a^{-1}$ and $f_*(b)=a^{-1}b^2$.

[Jiang1984] showed that f has two nonempty fixed point classes and both of them have indices zero.

Note that $\operatorname{Fix}(f_*) = \{1\}$ and f_* has an attracting fixed word

$$f_*^{\infty}(b^{-1}) = b^{-2}ab^{-4}ab^{-2}a\cdots$$

Hence, $a(f_*)=1$ and the nonempty fixed point class consisting of $\{*\}$ has

$$ind(*) = ichr(*) = 1 - rkFix(f_*) - a(f_*) = 0.$$

An example supporting $\operatorname{ind} = \operatorname{ichr}$ for nonempty fixed point classes with indices 0.

Example (Jiang, 1984)

Let $f:(R_2,*)\to (R_2,*)$ be a selfmap of the graph R_2 with one vertex * and two edges a,b, such that the induced endomorphism of $\pi_1(R_2,*)$ is given by $f_*(a)=a^{-1}$ and $f_*(b)=a^{-1}b^2$.

[Jiang1984] showed that f has two nonempty fixed point classes and both of them have indices zero.

Note that $\operatorname{Fix}(f_*) = \{1\}$ and f_* has an attracting fixed word

$$f_*^{\infty}(b^{-1}) = b^{-2}ab^{-4}ab^{-2}a\cdots$$

Hence, $\mathit{a}(\mathit{f}_*)=1$ and the nonempty fixed point class consisting of $\{*\}$ has

$$ind(*) = ichr(*) = 1 - rkFix(f_*) - a(f_*) = 0.$$

An example supporting $\operatorname{ind} = \operatorname{ichr}$ for nonempty fixed point classes with indices 0.

Example (Jiang, 1984)

Let $f:(R_2,*) \to (R_2,*)$ be a selfmap of the graph R_2 with one vertex * and two edges a,b, such that the induced endomorphism of $\pi_1(R_2,*)$ is given by $f_*(a)=a^{-1}$ and $f_*(b)=a^{-1}b^2$.

[Jiang1984] showed that f has two nonempty fixed point classes and both of them have indices zero.

Note that $\operatorname{Fix}(f_*) = \{1\}$ and f_* has an attracting fixed word

$$f_*^{\infty}(b^{-1}) = b^{-2}ab^{-4}ab^{-2}a\cdots$$

Hence, $a(f_*)=1$ and the nonempty fixed point class consisting of $\{*\}$ has

$$ind(*) = ichr(*) = 1 - rkFix(f_*) - a(f_*) = 0.$$

An example supporting $\operatorname{ind} = \operatorname{ichr}$ for nonempty fixed point classes with indices 0.

Example (Jiang, 1984)

Let $f:(R_2,*)\to (R_2,*)$ be a selfmap of the graph R_2 with one vertex * and two edges a,b, such that the induced endomorphism of $\pi_1(R_2,*)$ is given by $f_*(a)=a^{-1}$ and $f_*(b)=a^{-1}b^2$.

[Jiang1984] showed that f has two nonempty fixed point classes and both of them have indices zero.

Note that $\operatorname{Fix}(f_*) = \{1\}$ and f_* has an attracting fixed word

$$f_*^{\infty}(b^{-1}) = b^{-2}ab^{-4}ab^{-2}a\cdots$$

Hence, $\mathit{a}(\mathit{f}_*) = 1$ and the nonempty fixed point class consisting of $\{*\}$ has

$$ind(*) = ichr(*) = 1 - rkFix(f_*) - a(f_*) = 0.$$

An example supporting ind = ichr for nonempty fixed point classes with indices 0.

Example (Jiang, 1984)

Let $f:(R_2,*)\to (R_2,*)$ be a selfmap of the graph R_2 with one vertex * and two edges a,b, such that the induced endomorphism of $\pi_1(R_2,*)$ is given by $f_*(a)=a^{-1}$ and $f_*(b)=a^{-1}b^2$.

[Jiang1984] showed that f has two nonempty fixed point classes and both of them have indices zero.

Note that $\operatorname{Fix}(f_*) = \{1\}$ and f_* has an attracting fixed word

$$f_*^{\infty}(b^{-1}) = b^{-2}ab^{-4}ab^{-2}a\cdots$$

Hence, $\mathit{a}(\mathit{f}_*) = 1$ and the nonempty fixed point class consisting of $\{*\}$ has

$$ind(*) = ichr(*) = 1 - rkFix(f_*) - a(f_*) = 0.$$

As corollaries, we have

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f:X\to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \le -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n.$$

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

As corollaries, we have

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f:X\to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \leq -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n$$
.

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

As corollaries, we have

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f: X \to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \leq -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n$$
.

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

200

For an injective endomorphism $\phi: F_n \to F_n$ of a free group F_n , it induces an endomorphism ϕ^{ab} of the abelianization of F_n ,

$$\phi^{\mathrm{ab}}: \mathbb{Z}^n \to \mathbb{Z}^n.$$

Let $\operatorname{Trace}(\phi^{\operatorname{ab}})$ be the trace of a matrix of ϕ^{ab} . For any $c \in F_n$, let $i_c : F_n \to F_n, \ g \mapsto cgc^{-1}$ be the inner automorphism induced by c.

Theorem (Z.-Zhao, 2020)

Let ϕ be an injective endomorphism of F_n . Then $\exists \ c \in F_n$ s.t

$$rkFix(i_c \circ \phi) = a(i_c \circ \phi) = 0$$

if the trace $\mathrm{Trace}(\phi^{\mathrm{ab}}) < 1$; and

$$\operatorname{rkFix}(i_c \circ \phi) + a(i_c \circ \phi) > 1$$

if $n \leq 2$ and $\operatorname{Trace}(\phi^{\mathrm{ab}}) > 1$.

For an injective endomorphism $\phi: F_n \to F_n$ of a free group F_n , it induces an endomorphism ϕ^{ab} of the abelianization of F_n ,

$$\phi^{\mathrm{ab}}: \mathbb{Z}^n \to \mathbb{Z}^n.$$

Let $\operatorname{Trace}(\phi^{\operatorname{ab}})$ be the trace of a matrix of ϕ^{ab} . For any $c \in F_n$, let $i_c : F_n \to F_n, \ g \mapsto cgc^{-1}$ be the inner automorphism induced by c.

Theorem (Z.-Zhao, 2020)

Let ϕ be an injective endomorphism of F_n . Then $\exists \ c \in F_n \ s.t$

$$\operatorname{rkFix}(i_c \circ \phi) = a(i_c \circ \phi) = 0$$

if the trace $Trace(\phi^{ab}) < 1$; and

$$\operatorname{rkFix}(i_c \circ \phi) + a(i_c \circ \phi) > 1$$

if $n \leq 2$ and $\operatorname{Trace}(\phi^{ab}) > 1$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3: \beta$ expands edges of $Z \setminus Z_0$ by a factor $\lambda > 1$ w.r.t a non-negative metric L supported on $Z \setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types.

Type 1 : eta sends Z into Z $_0$.

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3:\beta$ expands edges of $Z\setminus Z_0$ by a factor $\lambda>1$ w.r.t a non-negative metric L supported on $Z\setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3:\beta$ expands edges of $Z\setminus Z_0$ by a factor $\lambda>1$ w.r.t a non-negative metric L supported on $Z\setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3:\beta$ expands edges of $Z\setminus Z_0$ by a factor $\lambda>1$ w.r.t a non-negative metric L supported on $Z\setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3: \beta$ expands edges of $Z \setminus Z_0$ by a factor $\lambda > 1$ w.r.t a nonnegative metric L supported on $Z \setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

Type $3: \beta$ expands edges of $Z \setminus Z_0$ by a factor $\lambda > 1$ w.r.t a nonnegative metric L supported on $Z \setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

A graph map as follows is called a relative train track map (RTT).

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Let $f: X \to X$ be a π_1 -injective map of a connected graph (not a tree) X. Then f has the same homotopy type as a graph selfmap $\beta: Z \to Z$, where Z is a connected graph without vertices of valence 1 and all fixed points of β are vertices, and there is a β -invariant proper subgraph Z_0 , containing all vertices of Z. The map $\beta: (Z, Z_0) \to (Z, Z_0)$ of the pair is of one of the following types. Type $1: \beta$ sends Z into Z_0 .

Type 2 : β cyclically permutes the edges in $Z \setminus Z_0$.

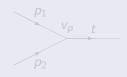
Type $3: \beta$ expands edges of $Z \setminus Z_0$ by a factor $\lambda > 1$ w.r.t a nonnegative metric L supported on $Z \setminus Z_0$, and has the properties (a)-(c) below.

- (a) For every oriented edge e in $Z \setminus Z_0$, $D\beta(e)$ lies in $Z \setminus Z_0$.
- (b) \exists at most one indivisible β -Nielsen path that intersects $Z \setminus Z_0$.

Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Continued from the previous page.

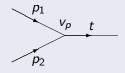
(c) If p is an indivisible β -Nielsen path that intersects $Z \setminus Z_0$, then $p = p_1 \bar{p}_2$, where p_1, p_2 are β -legal paths with length $L(p_1) = L(p_2)$, and the turn $\{\bar{p}_1, \bar{p}_2\}$ is the unique illegal turn in $Z \setminus Z_0$ (at a vertex $v_p = p_1(1) = p_2(1)$ of valence ≥ 3 in Z) which degenerates under $D\beta$. Moreover, $\beta(p_i) = p_i t$ (i = 1, 2) where t is a β -legal path.



Theorem (Bestvina-Handel, Dicks-Ventura, 1990s)

Continued from the previous page.

(c) If p is an indivisible β -Nielsen path that intersects $Z \setminus Z_0$, then $p = p_1 \bar{p}_2$, where p_1, p_2 are β -legal paths with length $L(p_1) = L(p_2)$, and the turn $\{\bar{p}_1, \bar{p}_2\}$ is the unique illegal turn in $Z \setminus Z_0$ (at a vertex $v_p = p_1(1) = p_2(1)$ of valence ≥ 3 in Z) which degenerates under $D\beta$. Moreover, $\beta(p_i) = p_i t$ (i = 1, 2) where t is a β -legal path.



Index for RTT

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

where $\operatorname{ind}(\beta_0, \mathbf{F}) = \sum_{i=1}^k \operatorname{ind}(\beta_0, \mathbf{F}_i)$ if $\mathbf{F} = \sqcup \mathbf{F}_i$ is a union of finitely many β_0 -fixed point classes $\mathbf{F}_i, i = 1, \ldots, k$.

Index for RTT

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{ e \in \mathbb{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e \} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

where $\operatorname{ind}(\beta_0, \mathbf{F}) = \sum_{i=1}^k \operatorname{ind}(\beta_0, \mathbf{F}_i)$ if $\mathbf{F} = \sqcup \mathbf{F}_i$ is a union of finitely many β_0 -fixed point classes \mathbf{F}_i , $i = 1, \ldots, k$.

Let $\beta:(Z,Z_0)\to(Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta:(Z,Z_0)\to(Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathbb{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta:(Z,Z_0)\to(Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{ e \in \mathrm{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e \} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathrm{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, v) = \operatorname{ind}(\beta_0, v) - \delta(v)$ for any fixed point v of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta:(Z,Z_0)\to(Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathrm{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, \nu) = \operatorname{ind}(\beta_0, \nu) - \delta(\nu)$ for any fixed point ν of β_0 . So, by the additivity of index, for every β -fixed point class **F**, we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta: (Z, Z_0) \to (Z, Z_0)$ be an RTT, $\beta_0 := \beta|_{Z_0} : Z_0 \to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathrm{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, \nu) = \operatorname{ind}(\beta_0, \nu) - \delta(\nu)$ for any fixed point ν of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT, $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$.

- V(Z) = the set of vertices of Z.
- $E(Z \setminus Z_0)$ = the set of oriented edges of $Z \setminus Z_0$.
- $\Delta(v) = \{e \in E(Z \setminus Z_0) | e(0) = v, D\beta(e) = e\}, \quad \forall v \in V(Z).$
- $\Delta(\mathbf{F}) = \{e \in \mathrm{E}(Z \setminus Z_0) | e(0) \in \mathbf{F}, D\beta(e) = e\} = \bigsqcup_{v \in \mathbf{F}} \Delta(v).$
- $\delta(v) = \#\Delta(v)$, $\delta(\mathbf{F}) = \#\Delta(\mathbf{F}) = \sum_{v \in \mathbf{F}} \delta(v)$ for a nonempty fixed point class \mathbf{F} of β .

Recall that $\operatorname{ind}(\beta, \nu) = \operatorname{ind}(\beta_0, \nu) - \delta(\nu)$ for any fixed point ν of β_0 . So, by the additivity of index, for every β -fixed point class \mathbf{F} , we have

$$\operatorname{ind}(\beta, \mathbf{F}) = \operatorname{ind}(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.1)

ichr for RTT

Proposition (Z.-Zhao, 2020)

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT map and $\beta_0:=\beta|_{Z_0}:Z_0\to Z_0$. Then for every nonempty fixed point class **F** of β , we have

$$ichr(\beta, \mathbf{F}) = ichr(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.2)

where $ichr(\beta_0, \mathbf{F}) := \sum_{i=1}^k ichr(\beta_0, \mathbf{F}_i)$ if $\mathbf{F} = \sqcup \mathbf{F}_i$ is a union of $k \leq 2$ β_0 -fixed point classes \mathbf{F}_i , i = 1, ..., k.

Using Equation 0.1&0.2, the Main Result

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F})$$

can be proved by working inductively.

ichr for RTT

Proposition (Z.-Zhao, 2020)

Let $\beta: (Z, Z_0) \to (Z, Z_0)$ be an RTT map and $\beta_0:=\beta|_{Z_0}: Z_0 \to Z_0$. Then for every nonempty fixed point class **F** of β , we have

$$ichr(\beta, \mathbf{F}) = ichr(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.2)

where $ichr(\beta_0, \mathbf{F}) := \sum_{i=1}^k ichr(\beta_0, \mathbf{F}_i)$ if $\mathbf{F} = \sqcup \mathbf{F}_i$ is a union of $k \leq 2$ β_0 -fixed point classes \mathbf{F}_i , i = 1, ..., k.

Using Equation 0.1&0.2, the Main Result

$$\operatorname{ind}(\mathsf{F}) \leq \operatorname{ichr}(\mathsf{F})$$

can be proved by working inductively.

ichr for RTT

Proposition (Z.-Zhao, 2020)

Let $\beta: (Z, Z_0) \to (Z, Z_0)$ be an RTT map and $\beta_0 := \beta|_{Z_0} : Z_0 \to Z_0$. Then for every nonempty fixed point class **F** of β , we have

$$ichr(\beta, \mathbf{F}) = ichr(\beta_0, \mathbf{F}) - \delta(\mathbf{F}),$$
 (0.2)

where $ichr(\beta_0, \mathbf{F}) := \sum_{i=1}^k ichr(\beta_0, \mathbf{F}_i)$ if $\mathbf{F} = \sqcup \mathbf{F}_i$ is a union of $k \leq 2$ β_0 -fixed point classes \mathbf{F}_i , i = 1, ..., k.

Using Equation 0.1&0.2, the Main Result

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F})$$

can be proved by working inductively.

Proof of Equation 0.2, I: lifting to universal covering

Fix a universal covering $q: \tilde{Z} \to Z$ of Z. Pick $\tilde{v}_0 \in q^{-1}(v_0)$ and a lifting $\tilde{\beta}: \tilde{Z} \to \tilde{Z}$ of β with $\tilde{\beta}(\tilde{v}_0) = \tilde{v}_0$, then $\mathbf{F} = q(\operatorname{Fix}\tilde{\beta})$, and the lifting $\tilde{\beta}$ induces an injective endomorphism $\beta_{\pi}: \pi \to \pi$ defined by

$$\tilde{\beta} \circ \gamma = \beta_{\pi}(\gamma) \circ \tilde{\beta}, \quad \forall \gamma \in \pi.$$

Endow \tilde{Z} with a metric d with each edge length 1. Then the map

$$j: \pi \to \tilde{Z}, \quad \gamma \mapsto \gamma(\tilde{v}_0)$$

is π -equivariant (i.e. $\alpha(j(\gamma))=j(\alpha\gamma)$ for any $\alpha,\gamma\in\pi$), and gives a quasi-isometric embedding from the covering transformation group π to the covering space \tilde{Z} . This induces a π -equivariant homeomorphism $\tilde{j}:\partial\pi\to\partial\tilde{Z}$ between $\partial\pi$ and the space $\partial\tilde{Z}$ of ends of \tilde{Z} . It follows that the extension of $\tilde{\beta}$ to $\partial\tilde{Z}$ agrees with the extension of β_{π} to $\partial\pi$.

Proof of Equation 0.2, I: lifting to universal covering

Fix a universal covering $q: \tilde{Z} \to Z$ of Z. Pick $\tilde{v}_0 \in q^{-1}(v_0)$ and a lifting $\tilde{\beta}: \tilde{Z} \to \tilde{Z}$ of β with $\tilde{\beta}(\tilde{v}_0) = \tilde{v}_0$, then $\mathbf{F} = q(\operatorname{Fix}\tilde{\beta})$, and the lifting $\tilde{\beta}$ induces an injective endomorphism $\beta_{\pi}: \pi \to \pi$ defined by

$$\tilde{\beta} \circ \gamma = \beta_{\pi}(\gamma) \circ \tilde{\beta}, \quad \forall \gamma \in \pi.$$

Endow \tilde{Z} with a metric d with each edge length 1. Then the map

$$j: \pi \to \tilde{Z}, \quad \gamma \mapsto \gamma(\tilde{v}_0)$$

is π -equivariant (i.e. $\alpha(j(\gamma))=j(\alpha\gamma)$ for any $\alpha,\gamma\in\pi$), and gives a quasi-isometric embedding from the covering transformation group π to the covering space \tilde{Z} . This induces a π -equivariant homeomorphism $\bar{j}:\partial\pi\to\partial\tilde{Z}$ between $\partial\pi$ and the space $\partial\tilde{Z}$ of ends of \tilde{Z} . It follows that the extension of $\tilde{\beta}$ to $\partial\tilde{Z}$ agrees with the extension of β_{π} to $\partial\pi$.

Proof of Equation 0.2, II: a bijective correspondence

Lemma

An attracting fixed word $W \in \partial \pi$ of β_{π} defines an attracting fixed point $\bar{j}(W) \in \partial \tilde{Z}$ of $\tilde{\beta}$, and the π -equivariant homeomorphism $\bar{j}: \partial \pi \to \partial \tilde{Z}$ induces a bijective correspondence

$$\bar{j}|_{\mathcal{A}(\beta_{\pi})}:\mathcal{A}(\beta_{\pi})\to\mathcal{A}(\tilde{\beta})$$

between the set $\mathcal{A}(\beta_{\pi})$ of attracting fixed words of β_{π} in $\partial \pi$ and the set $\mathcal{A}(\tilde{\beta})$ of attracting fixed points of $\tilde{\beta}$ in $\partial \tilde{Z}$.

Here a fixed end $\mathcal{E} \in \mathcal{A}(\tilde{\beta})$ represented by a ray $\tilde{\rho} = \tilde{e}_1 \cdots \tilde{e}_i \cdots \subset \tilde{Z}$ is an *attracting fixed point* of $\tilde{\beta}$, if there exists a number N > 0 such that for any point $\tilde{x} \in \tilde{Z}$, we have

$$d([\tilde{v}_0, \tilde{x}] \cap \tilde{\rho}) > N \Longrightarrow \lim_{k \to +\infty} d([\tilde{v}_0, \tilde{\beta}^k(\tilde{x})] \cap \tilde{\rho}) = +\infty,$$

which is the same as the one in free groups.

Proof of Equation 0.2, II: a bijective correspondence

Lemma

An attracting fixed word $W \in \partial \pi$ of β_{π} defines an attracting fixed point $\bar{j}(W) \in \partial \tilde{Z}$ of $\tilde{\beta}$, and the π -equivariant homeomorphism $\bar{j}: \partial \pi \to \partial \tilde{Z}$ induces a bijective correspondence

$$ar{j}|_{\mathcal{A}(eta_\pi)}:\mathcal{A}(eta_\pi) o\mathcal{A}(ilde{eta})$$

between the set $\mathcal{A}(\beta_{\pi})$ of attracting fixed words of β_{π} in $\partial \pi$ and the set $\mathcal{A}(\tilde{\beta})$ of attracting fixed points of $\tilde{\beta}$ in $\partial \tilde{Z}$.

Here a fixed end $\mathcal{E} \in \mathcal{A}(\tilde{\beta})$ represented by a ray $\tilde{\rho} = \tilde{e}_1 \cdots \tilde{e}_i \cdots \subset \tilde{Z}$ is an *attracting fixed point* of $\tilde{\beta}$, if there exists a number N > 0 such that for any point $\tilde{x} \in \tilde{Z}$, we have

$$d([\tilde{v}_0, \tilde{x}] \cap \tilde{\rho}) > N \Longrightarrow \lim_{k \to +\infty} d([\tilde{v}_0, \tilde{\beta}^k(\tilde{x})] \cap \tilde{\rho}) = +\infty,$$

which is the same as the one in free groups.

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT of Type 3, $v_0\in \mathbf{F}\subset \mathrm{V}(Z)$ a fixed point of β , and $\beta_\pi:\pi_1(Z,v_0)\to\pi_1(Z,v_0)$ the induced injective endomorphism of β . Then

Lemma (Z.-Zhao, 2020)

- (1) Every oriented edge $e \in \Delta(\mathbf{F})$ defines an equivalence class \mathscr{W}_e of attracting fixed words of β_{π} , and \mathscr{W}_e does not contain any attracting fixed word of $(\beta_0)_{\pi} : \pi_1(Z_0, v_0) \to \pi_1(Z_0, v_0)$.
- (2) Suppose $e_i \in \Delta(\mathbf{F})$ (i=1,2) are two distinct edges with initial points $e_i(0)$ two (possibly the same) fixed points in \mathbf{F} . Then \mathcal{W}_{e_1} and \mathcal{W}_{e_2} are equal if and only if there exists an indivisible Nielsen path $p=p_1\bar{p}_2$ as in Type 3(c) of Theorem BH such that $e_i=D\beta(p_i)$ are the initial edges of the β -legal paths p_i for i=1,2.
- (3) For every equivalence class \mathscr{W} of attracting fixed words of β_{π} not containing an attracting fixed word of $(\beta_0)_{\pi}$, there exists an oriented edge $e \in \Delta(\mathbf{F})$ such that $\mathscr{W} = \mathscr{W}_e$.

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT of Type 3, $v_0\in \mathbf{F}\subset \mathrm{V}(Z)$ a fixed point of β , and $\beta_\pi:\pi_1(Z,v_0)\to\pi_1(Z,v_0)$ the induced injective endomorphism of β . Then

Lemma (Z.-Zhao, 2020)

- (1) Every oriented edge $e \in \Delta(\mathbf{F})$ defines an equivalence class \mathcal{W}_e of attracting fixed words of β_{π} , and \mathcal{W}_e does not contain any attracting fixed word of $(\beta_0)_{\pi} : \pi_1(Z_0, v_0) \to \pi_1(Z_0, v_0)$.
- (2) Suppose $e_i \in \Delta(\mathbf{F})$ (i=1,2) are two distinct edges with initial points $e_i(0)$ two (possibly the same) fixed points in \mathbf{F} . Then \mathcal{W}_{e_1} and \mathcal{W}_{e_2} are equal if and only if there exists an indivisible Nielsen path $p=p_1\bar{p}_2$ as in Type 3(c) of Theorem BH such that $e_i=D\beta(p_i)$ are the initial edges of the β -legal paths p_i for i=1,2.
- (3) For every equivalence class \mathscr{W} of attracting fixed words of β_{π} not containing an attracting fixed word of $(\beta_0)_{\pi}$, there exists an oriented edge $e \in \Delta(\mathbf{F})$ such that $\mathscr{W} = \mathscr{W}_e$.

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT of Type 3, $v_0\in \mathbf{F}\subset \mathrm{V}(Z)$ a fixed point of β , and $\beta_\pi:\pi_1(Z,v_0)\to\pi_1(Z,v_0)$ the induced injective endomorphism of β . Then

Lemma (Z.-Zhao, 2020)

- (1) Every oriented edge $e \in \Delta(\mathbf{F})$ defines an equivalence class \mathscr{W}_e of attracting fixed words of β_{π} , and \mathscr{W}_e does not contain any attracting fixed word of $(\beta_0)_{\pi} : \pi_1(Z_0, v_0) \to \pi_1(Z_0, v_0)$.
- (2) Suppose $e_i \in \Delta(\mathbf{F})$ (i=1,2) are two distinct edges with initial points $e_i(0)$ two (possibly the same) fixed points in \mathbf{F} . Then \mathcal{W}_{e_1} and \mathcal{W}_{e_2} are equal if and only if there exists an indivisible Nielsen path $p=p_1\bar{p}_2$ as in Type 3(c) of Theorem BH such that $e_i=D\beta(p_i)$ are the initial edges of the β -legal paths p_i for i=1,2.
- (3) For every equivalence class \mathscr{W} of attracting fixed words of β_{π} not containing an attracting fixed word of $(\beta_0)_{\pi}$, there exists an oriented edge $e \in \Delta(\mathbf{F})$ such that $\mathscr{W} = \mathscr{W}_e$.

Let $\beta:(Z,Z_0)\to (Z,Z_0)$ be an RTT of Type 3, $v_0\in \mathbf{F}\subset \mathrm{V}(Z)$ a fixed point of β , and $\beta_\pi:\pi_1(Z,v_0)\to\pi_1(Z,v_0)$ the induced injective endomorphism of β . Then

Lemma (Z.-Zhao, <u>2020)</u>

- (1) Every oriented edge $e \in \Delta(\mathbf{F})$ defines an equivalence class \mathscr{W}_e of attracting fixed words of β_{π} , and \mathscr{W}_e does not contain any attracting fixed word of $(\beta_0)_{\pi} : \pi_1(Z_0, v_0) \to \pi_1(Z_0, v_0)$.
- (2) Suppose $e_i \in \Delta(\mathbf{F})$ (i=1,2) are two distinct edges with initial points $e_i(0)$ two (possibly the same) fixed points in \mathbf{F} . Then \mathcal{W}_{e_1} and \mathcal{W}_{e_2} are equal if and only if there exists an indivisible Nielsen path $p=p_1\bar{p}_2$ as in Type 3(c) of Theorem BH such that $e_i=D\beta(p_i)$ are the initial edges of the β -legal paths p_i for i=1,2.
- (3) For every equivalence class \mathscr{W} of attracting fixed words of β_{π} not containing an attracting fixed word of $(\beta_0)_{\pi}$, there exists an oriented edge $e \in \Delta(\mathbf{F})$ such that $\mathscr{W} = \mathscr{W}_e$.

References I

- Qiang Zhang and Xuezhi Zhao, Fixed point indices and fixed words at infinity of selfmaps of graphs, arXiv:2003.13940v3, 27pp.
- M. Bestvina and M. Handel, *Train tracks and automorphisms of free groups*, Ann. of Math., 135 (1992), 1–51.
- W. Dicks and E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemp. Math. 195, AMS(1996).
- D. Gaboriau, A. Jaeger, G. Levitt and M. Lustig, *An index for counting fixed points for automorphisms of free groups*, Duke Math. J. 93 (1998)(3), 425–452.

References II

- B. Jiang, Lectures on Nielsen Fixed Point Theory, Contemp. Math. 14, AMS(1983).
- B. Jiang, Fixed points and braids, Invent. Math. 75 (1984) 69–74.
- B. Jiang, Bounds for fixed points on surfaces, Math. Ann. 311 (1998), 467–479.
- B. Jiang, S. Wang and Q. Zhang, Bounds for fixed points and fixed subgroups on surfaces and graphs, Alg. Geom. Topology, 11 (2011), 2297–2318.
- Q. Zhang, Bounds for fixed points on Seifert manifolds, Topology Appl. 159 (15) (2012), 3263–3273.

Thanks! 谢谢!