Fixed point indices and fixed words at infinity of selfmaps of graphs

ZHANG Qiang 张 强 (joint with Xuezhi Zhao)

> Xi'an Jiaotong University 西安交通大学

> > 2021.01.25

Fixed point class: path approach

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in \operatorname{Fix}(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

Fixed point class: path approach

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class F is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

Fixed point class: path approach

Let X be a connected compact polyhedron, and $f: X \to X$ a selfmap. The fixed point set splits into a disjoint union of **fixed point classes**

$$\operatorname{Fix} f := \{ x \in X | f(x) = x \} = \bigsqcup_{\mathbf{F} \in \operatorname{Fpc}(f)} \mathbf{F}$$

Definition (path approach)

Two fixed points $x, x' \in Fix(f)$ are in the same fixed point class \iff there is a path c (called a Nielsen path) from x to x' such that $c \simeq f \circ c$ rel endpoints.

The index of a fixed point class **F** is the sum

$$\operatorname{ind}(\mathbf{F}) := \operatorname{ind}(f, \mathbf{F}) := \sum_{x \in \mathbf{F}} \operatorname{ind}(f, x) \in \mathbb{Z}.$$

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

ullet Let $f:\mathbb{R}^n o \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \left\{ \begin{array}{ll} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{array} \right.$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f,z_0)=\operatorname{multiplicity}$ of the zero z_0 of the function z-f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \begin{cases} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{cases}$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f,z_0)=\operatorname{multiplicity}$ of the zero z_0 of the function z-f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \left\{ \begin{array}{ll} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{array} \right.$$

• If n=2, f has a complex analytic expression $z\mapsto f(z)$, then $\operatorname{ind}(f,z_0)=\operatorname{multiplicity}$ of the zero z_0 of the function z-f(z).

For an isolated fixed point x_0 of $f: \mathbb{R}^n \to \mathbb{R}^n$, the index is defined:

$$\operatorname{ind}(f, x_0) := \operatorname{deg}\varphi$$

where

$$\varphi: S_{x_0}^{n-1} \to S_{x_0}^{n-1}, \quad x \mapsto \frac{x - f(x)}{|x - f(x)|}.$$

• Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be a diff. map, x a isolated fixed point. Then

$$\operatorname{ind}(f,x) = \operatorname{sgn} \det(I - Df_x) = (-1)^k.$$

If $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto \lambda x$, then

$$\operatorname{ind}(f,0) = \left\{ \begin{array}{ll} -1, & \lambda > 1, \\ 1, & \lambda < 1. \end{array} \right.$$

• If n = 2, f has a complex analytic expression $z \mapsto f(z)$, then $\operatorname{ind}(f, z_0) = \operatorname{multiplicity}$ of the zero z_0 of the function z - f(z).

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and $\tilde{f'}$ of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f'} = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and $\tilde{f'}$ of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f'} = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When $\mathrm{Fix}\tilde{f}=\emptyset$, we call $\mathbf{F}=p(\mathrm{Fix}\tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When ${\rm Fix} \tilde{f}=\emptyset$, we call ${\bf F}=p({\rm Fix} \tilde{f})$ an empty fixed point class.

Let $p: \tilde{X} \to X$ be the universal covering of X, with deck group π identified with $\pi_1(X)$.

Definition (covering approach)

- For any lifting $\tilde{f}: \tilde{X} \to \tilde{X}$ of f, the projection $p(\operatorname{Fix}\tilde{f})$ of its fixed point set is called a fixed point class of f.
- Two liftings \tilde{f} and \tilde{f}' of f are conjugate if there exists $\gamma \in \pi$ such that $\tilde{f}' = \gamma^{-1} \circ \tilde{f} \circ \gamma$
- A fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ carries a label by a conjugacy class of \tilde{f} .
- When ${\rm Fix} \tilde{f}=\emptyset$, we call ${\bf F}=p({\rm Fix} \tilde{f})$ an empty fixed point class.

Let a reference lifting \tilde{f} of f be chosen. Then every lifting of f can be unique written as $\beta \circ \tilde{f}$ for some $\beta \in \pi$.

ullet Each lifting ilde f induces an endomorphism $ilde f_\pi:\pi o\pi$ defined by

$$\tilde{f} \circ \gamma = \tilde{f}_{\pi}(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

$$\beta' = \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}).$$

- \tilde{f}_{π} -conjugacy class $[\beta]_{\tilde{f}_{\pi}} := \{ \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}) | \gamma \in \pi \}$ is said to be the coordinate for the fixed point class $p(\operatorname{Fix}(\beta \circ \tilde{f}))$.
- $\mathcal{R}(\tilde{f}_{\pi}) := \{ [\beta]_{\tilde{f}_{\pi}} | \beta \in \pi \}$: Reidemeister set of \tilde{f}_{π} .

Let a reference lifting \tilde{f} of f be chosen. Then every lifting of f can be unique written as $\beta \circ \tilde{f}$ for some $\beta \in \pi$.

ullet Each lifting ilde f induces an endomorphism $ilde f_\pi:\pi o\pi$ defined by

$$\tilde{f} \circ \gamma = \tilde{f}_{\pi}(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

$$\beta' = \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}).$$

- \tilde{f}_{π} -conjugacy class $[\beta]_{\tilde{f}_{\pi}} := \{ \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}) | \gamma \in \pi \}$ is said to be the coordinate for the fixed point class $p(\operatorname{Fix}(\beta \circ \tilde{f}))$.
- $\mathcal{R}(\tilde{f}_{\pi}) := \{ [\beta]_{\tilde{f}_{\pi}} | \beta \in \pi \}$: Reidemeister set of \tilde{f}_{π} .

Let a reference lifting \tilde{f} of f be chosen. Then every lifting of f can be unique written as $\beta \circ \tilde{f}$ for some $\beta \in \pi$.

ullet Each lifting ilde f induces an endomorphism $ilde f_\pi:\pi o\pi$ defined by

$$\tilde{f} \circ \gamma = \tilde{f}_{\pi}(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

$$\beta' = \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}).$$

- \tilde{f}_{π} -conjugacy class $[\beta]_{\tilde{f}_{\pi}} := \{ \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}) | \gamma \in \pi \}$ is said to be the coordinate for the fixed point class $p(\operatorname{Fix}(\beta \circ \tilde{f}))$.
- $\mathcal{R}(\tilde{f}_{\pi}) := \{ [\beta]_{\tilde{f}_{\pi}} | \beta \in \pi \}$: Reidemeister set of \tilde{f}_{π} .

Let a reference lifting \tilde{f} of f be chosen. Then every lifting of f can be unique written as $\beta \circ \tilde{f}$ for some $\beta \in \pi$.

ullet Each lifting ilde f induces an endomorphism $ilde f_\pi:\pi o\pi$ defined by

$$\tilde{f} \circ \gamma = \tilde{f}_{\pi}(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

$$\beta' = \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}).$$

- \tilde{f}_{π} -conjugacy class $[\beta]_{\tilde{f}_{\pi}} := \{ \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}) | \gamma \in \pi \}$ is said to be the coordinate for the fixed point class $p(\operatorname{Fix}(\beta \circ \tilde{f}))$.
- $\mathcal{R}(\tilde{f}_{\pi}) := \{ [\beta]_{\tilde{f}_{\pi}} | \beta \in \pi \}$: Reidemeister set of \tilde{f}_{π} .

Let a reference lifting \tilde{f} of f be chosen. Then every lifting of f can be unique written as $\beta \circ \tilde{f}$ for some $\beta \in \pi$.

ullet Each lifting ilde f induces an endomorphism $ilde f_\pi:\pi o\pi$ defined by

$$\tilde{f} \circ \gamma = \tilde{f}_{\pi}(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

$$\beta' = \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}).$$

- \tilde{f}_{π} -conjugacy class $[\beta]_{\tilde{f}_{\pi}} := \{ \gamma \beta \tilde{f}_{\pi}(\gamma^{-1}) | \gamma \in \pi \}$ is said to be the coordinate for the fixed point class $p(\operatorname{Fix}(\beta \circ \tilde{f}))$.
- $\mathcal{R}(\tilde{f}_{\pi}) := \{ [\beta]_{\tilde{f}_{\pi}} | \beta \in \pi \}$: Reidemeister set of \tilde{f}_{π} .

Reidemeister trace formula

Let X be a bouquet of n circles with one 0-cell and n 1-cells a_1, \ldots, a_n , and $f: X \to X$ a cellular map. Then

$$\pi := \pi_1(X) = \langle a_1, a_2, \ldots, a_n | - \rangle \cong F_n.$$

Let **F** denote the fixed point class labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\varphi = \tilde{f}_{\pi}$ be the induced injective endomorphism of \tilde{f} , that is,

$$\tilde{f} \circ \gamma = \varphi(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

Then the coordinate of **F** is the φ -conjugacy class $[1]_{\varphi}$.

Proposition (Reidemeister trace formula)

The π -generalized Lefschetz number

$$L_{\pi}(f) := \sum_{[\beta]_{\varphi} \in \mathcal{R}(\varphi)} \operatorname{ind}(f, [\beta]_{\varphi}) \cdot [\beta]_{\varphi} = [1]_{\varphi} - \sum_{j=1}^{n} [\frac{\partial \varphi(a_{j})}{\partial a_{j}}]_{\varphi} \in \mathbb{Z}\mathcal{R}(\tilde{f}_{\pi}).$$

Reidemeister trace formula

Let X be a bouquet of n circles with one 0-cell and n 1-cells a_1, \ldots, a_n , and $f: X \to X$ a cellular map. Then

$$\pi := \pi_1(X) = \langle a_1, a_2, \ldots, a_n | - \rangle \cong F_n.$$

Let **F** denote the fixed point class labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\varphi = \tilde{f}_{\pi}$ be the induced injective endomorphism of \tilde{f} , that is,

$$\tilde{f} \circ \gamma = \varphi(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

Then the coordinate of **F** is the φ -conjugacy class $[1]_{\varphi}$.

Proposition (Reidemeister trace formula)

The π -generalized Lefschetz number

$$L_{\pi}(f) := \sum_{[\beta]_{\varphi} \in \mathcal{R}(\varphi)} \operatorname{ind}(f, [\beta]_{\varphi}) \cdot [\beta]_{\varphi} = [1]_{\varphi} - \sum_{j=1}^{n} [\frac{\partial \varphi(a_{j})}{\partial a_{j}}]_{\varphi} \in \mathbb{Z}\mathcal{R}(\tilde{f}_{\pi}).$$

Reidemeister trace formula

Let X be a bouquet of n circles with one 0-cell and n 1-cells a_1, \ldots, a_n , and $f: X \to X$ a cellular map. Then

$$\pi := \pi_1(X) = \langle a_1, a_2, \ldots, a_n | - \rangle \cong F_n.$$

Let **F** denote the fixed point class labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\varphi = \tilde{f}_{\pi}$ be the induced injective endomorphism of \tilde{f} , that is,

$$\tilde{f} \circ \gamma = \varphi(\gamma) \circ \tilde{f}, \quad \gamma \in \pi.$$

Then the coordinate of ${\bf F}$ is the φ -conjugacy class $[1]_{\varphi}$.

Proposition (Reidemeister trace formula)

The π -generalized Lefschetz number

$$L_{\pi}(f) := \sum_{[\beta]_{\varphi} \in \mathcal{R}(\varphi)} \operatorname{ind}(f, [\beta]_{\varphi}) \cdot [\beta]_{\varphi} = [1]_{\varphi} - \sum_{j=1}^{n} [\frac{\partial \varphi(a_{j})}{\partial a_{j}}]_{\varphi} \in \mathbb{Z}\mathcal{R}(\tilde{f}_{\pi}).$$

Fixed subgroups: definitions

For any group G, denote the set of endomorphisms of G by $\operatorname{End}(G)$.

Definition

For an endomorphism $\phi \in \operatorname{End}(G)$, the fixed subgroup of ϕ is

$$Fix \phi := \{ g \in G | \phi(g) = g \}.$$

For a family $\mathcal B$ of endomorphisms of G (i.e., $\mathcal B\subseteq \operatorname{End}(G)$), the fixed subgroup of $\mathcal B$ is

$$\operatorname{Fix} \mathcal{B} := \{ g \in \mathcal{G} | \phi(g) = g, \forall \phi \in \mathcal{B} \} = \bigcap_{\phi \in \mathcal{B}} \operatorname{Fix} \phi.$$

- F: **free group** of rank n. $\phi: F \to F$ injective endomorphism.
 - $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^{\pm}=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hyper. group in the sense of Gromov), and F is dense in \bar{F} .

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^{\pm}=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F = the set of reduced words in the letters $g_i^{\pm 1}$. ∂F = the set of infinite reduced words $W = w_1 w_2 \cdots w_i \cdots$, i.e., $w_i \in \Lambda^{\pm} = \{g_1^{\pm 1}, \dots, g_n^{\pm 1}\}$ and $w_i \neq w_{i+1}^{-1}$. $\bar{F} := F \sqcup \partial F$. $W_i := w_1 \cdots w_i$
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{\geq 0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F = the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F =$ the set of infinite reduced words $W = w_1 w_2 \cdots w_i \cdots$, i.e., $w_i \in \Lambda^{\pm} = \{g_1^{\pm 1}, \dots, g_n^{\pm 1}\}$ and $w_i \neq w_{i+1}^{-1}$. $\bar{F} := F \cup \partial F \qquad W_i := w_1 \cdots w_i$
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \land V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{\geq 0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{\geq 0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i,s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

With this metric, \bar{F} is compact (compactification as a hypergroup in the sense of Gromov), and F is dense in \bar{F} .

 ∂F : a compact space homeo. to a Cantor set when $n \geq 2$.

8 / 23

- F: free group of rank n. $\phi: F \to F$ injective endomorphism. $\Lambda = \{g_1, \dots, g_n\}$: a basis (i.e, a free generating set) of F.
- F= the set of reduced words in the letters $g_i^{\pm 1}$. $\partial F=$ the set of infinite reduced words $W=w_1w_2\cdots w_i\cdots$, i.e., $w_i\in \Lambda^\pm=\{g_1^{\pm 1},\ldots,g_n^{\pm 1}\}$ and $w_i\neq w_{i+1}^{-1}$. $\bar{F}:=F\sqcup \partial F.$ $W_i:=w_1\cdots w_i$.
- |W|: word length of $W \in F$ with respect to Λ . $W \wedge V$:=the longest common initial segment of W and V.
- The initial segment metric $d_{i.s}: \bar{F} \times \bar{F} \to \mathbb{R}_{>0}$ is defined:

$$d_{i.s}(W,V) = \frac{1}{1+|W\wedge V|}, \quad W\neq V.$$

Extended map on the boundary

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

Let $\phi: F \to F$ be an injective endomorphism of F. Then ϕ can be extended to a continuous injective map $\bar{\phi}: \partial F \to \partial F$.

Extended map on the boundary

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to\partial F$ and $\overline{f}:\partial F\to\partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

Let $\phi: F \to F$ be an injective endomorphism of F. Then ϕ can be extended to a continuous injective map $\bar{\phi}: \partial F \to \partial F$.

Extended map on the boundary

- A sequence of reduced words $V_p \in \overline{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

Let $\phi: F \to F$ be an injective endomorphism of F. Then ϕ can be extended to a continuous injective map $\bar{\phi}: \partial F \to \partial F$.

Extended map on the boundary

- A sequence of reduced words $V_p \in \bar{F}$ converges to an infinite word $W \in \partial F \iff \lim_{p \to +\infty} |W \wedge V_p| = +\infty$.
- The natural actions of F and $\operatorname{Aut}(F)$ on F extend continuously to \overline{F} : a left multiply $W:F\to F$ by a word $W\in F$ and an automorphism $f:F\to F$ extend uniquely to homeomorphisms $W:\partial F\to \partial F$ and $\overline{f}:\partial F\to \partial F$, respectively.
- Any f.g. subgroup F' < F is quasi-convex, and hence an inclusion induces a natural embedding $\partial F' \hookrightarrow \partial F$. For an injective endomorphism $\phi: F \to F$, since $F \cong \phi(F) < F$, we have $\partial F \cong \partial (\phi(F)) \hookrightarrow \partial F$. Therefore

Lemma

Let $\phi: F \to F$ be an injective endomorphism of F. Then ϕ can be extended to a continuous injective map $\bar{\phi}: \partial F \to \partial F$.

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

① W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty}|W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W\in \bar F$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

1 W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty}|W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W \in \bar{F}$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

Attracting fixed words at infinity

Let $\phi : F \to F$ be an injective endomorphism, and $W = w_1 \cdots w_i \cdots$ be a **fixed infinite reduced word** of ϕ .

Definition

1 W is an attracting fixed word of ϕ if

$$\lim_{i\to+\infty}|W\wedge\phi(W_i)|-i=+\infty.$$

② W is an attracting fixed point of ϕ if \exists a neighborhood $\mathcal U$ of $W\in \bar{\mathcal F}$ s.t.

$$W' \in \mathcal{U} \Longrightarrow \lim_{p \to +\infty} \phi^p(W') = W.$$

The two definitions above are equivalent.

Proposition

W is an attracting fixed word \iff W is an attracting fixed point \implies W $\notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

The two definitions above are equivalent.

Proposition

W is an attracting fixed word \iff W is an attracting fixed point \implies $W \notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

The two definitions above are equivalent.

Proposition

W is an attracting fixed word \iff W is an attracting fixed point \implies $W \notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

The two definitions above are equivalent.

Proposition

W is an attracting fixed word \iff W is an attracting fixed point \implies $W \notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

The two definitions above are equivalent.

Proposition

W is an attracting fixed word \iff W is an attracting fixed point \implies $W \notin \partial(\operatorname{Fix}\phi)$.

Definition

- Two fixed infinite words $W, W' \in \partial F$ of ϕ are equivalent if \exists a fixed word $U \in \text{Fix}(\phi)$ s.t. W' = UW.
- Let $\mathscr{A}(\phi)$ be the set of equivalence classes of attracting fixed words of ϕ , and $a(\phi)$ the cardinality of $\mathscr{A}(\phi)$.

Let $F = \langle g \rangle \cong \mathbb{Z}$. Then any endomorphism $\phi : F \to F$ has the form $\phi(g) = g^k$. The boundary ∂F consists of two points: $gg \cdots g \cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
	1	{1}		N/A
1	g	\mathbb{Z}	1	
>1	g^k	{1}		2
	g ^k	{1}		

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
	1	{1}		N/A
1	g	\mathbb{Z}	1	
>1	g^k	{1}		2
	g ^k	{1}		

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
>1	g^k	{1}	0	2
< 0	g^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
> 1	g^k	{1}	0	2
< 0	g^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Let $F=\langle g\rangle\cong\mathbb{Z}$. Then any endomorphism $\phi:F\to F$ has the form $\phi(g)=g^k$. The boundary ∂F consists of two points: $gg\cdots g\cdots$ and $g^{-1}g^{-1}\cdots g^{-1}\cdots$. We have

k	$\phi(g)$	$Fix(\phi)$	$rkFix(\phi)$	$a(\phi)$
0	1	{1}	0	N/A
1	g	\mathbb{Z}	1	0
> 1	g^k	{1}	0	2
< 0	g ^k	{1}	0	0

For the identity id, each element in F is fixed. It is obvious that the two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n$$
.

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ a fixed point class of f labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\tilde{f}_{\pi}: \pi \to \pi$ the induced endomorphism by \tilde{f} .

Definition

Define

$$\operatorname{rk}(f, \mathbf{F}) := \operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}), \quad a(f, \mathbf{F}) := a(\tilde{f}_{\pi}),$$

the characteristic of **F** to be

$$\operatorname{chr}(f, \mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(Fix\tilde{f}_{\pi}) - a(\tilde{f}_{\pi}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ a fixed point class of f labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\tilde{f}_{\pi}: \pi \to \pi$ the induced endomorphism by \tilde{f} .

Definition

Define

$$\operatorname{rk}(f,\mathbf{F}) := \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}), \quad a(f,\mathbf{F}) := a(\tilde{f}_{\pi}),$$

the characteristic of F to be

$$\operatorname{chr}(f, \mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(Fix\tilde{f}_{\pi}) - a(\tilde{f}_{\pi}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ a fixed point class of f labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\tilde{f}_{\pi}: \pi \to \pi$ the induced endomorphism by \tilde{f} .

Definition

Define

$$\operatorname{rk}(f,\mathbf{F}) := \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}), \quad a(f,\mathbf{F}) := a(\tilde{f}_{\pi}),$$

the characteristic of F to be

$$\operatorname{chr}(f, \mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}),$$

and the improved characteristic of F to be

$$ichr(f, \mathbf{F}) := 1 - rk(Fix\tilde{f}_{\pi}) - a(\tilde{f}_{\pi}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ a fixed point class of f labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\tilde{f}_{\pi}: \pi \to \pi$ the induced endomorphism by \tilde{f} .

Definition

Define

$$\operatorname{rk}(f,\mathbf{F}) := \operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}), \quad a(f,\mathbf{F}) := a(\tilde{f}_{\pi}),$$

the characteristic of F to be

$$\operatorname{chr}(f, \mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}),$$

and the improved characteristic of F to be

$$\operatorname{ichr}(f,\mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}) - a(\tilde{f}_{\pi}).$$

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ a fixed point class of f labeled by $\tilde{f}: \tilde{X} \to \tilde{X}$, and $\tilde{f}_{\pi}: \pi \to \pi$ the induced endomorphism by \tilde{f} .

Definition

Define

$$\operatorname{rk}(f,\mathbf{F}) := \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}), \quad a(f,\mathbf{F}) := a(\tilde{f}_{\pi}),$$

the characteristic of F to be

$$\operatorname{chr}(f, \mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}),$$

and the improved characteristic of F to be

$$\operatorname{ichr}(f,\mathbf{F}) := 1 - \operatorname{rk}(\operatorname{Fix} \tilde{f}_{\pi}) - a(\tilde{f}_{\pi}).$$

Homotopy invariance

A homotopy $H = \{h_t\}: f_0 \simeq f_1: X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 .

Remark. A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1), a(f_0, \mathbf{F}_0) = a(f_1, \mathbf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Homotopy invariance

A homotopy $H = \{h_t\}: f_0 \simeq f_1: X \to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathbf{F}_0) = \operatorname{ind}(f_1, \mathbf{F}_1), \operatorname{rk}(f_0, \mathbf{F}_0) = \operatorname{rk}(f_1, \mathbf{F}_1), a(f_0, \mathbf{F}_0) = a(f_1, \mathbf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Homotopy invariance

A homotopy $H=\{h_t\}: f_0\simeq f_1:X\to X$ gives rise to a natural one-one correspondence

$$H: \mathbf{F}_0 \mapsto \mathbf{F}_1$$

from the fixed point classes of f_0 to the fixed point classes of f_1 . **Remark.** A homotopy may create or remove fixed point classes. The correspondence is one-one only when empty fixed point classes are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

$$\operatorname{ind}(f_0, \mathsf{F}_0) = \operatorname{ind}(f_1, \mathsf{F}_1), \operatorname{rk}(f_0, \mathsf{F}_0) = \operatorname{rk}(f_1, \mathsf{F}_1), a(f_0, \mathsf{F}_0) = a(f_1, \mathsf{F}_1).$$

Hence the index $\operatorname{ind}(F)$ and the improved characteristic $\operatorname{ichr}(F)$ are homotopy invariants.

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi.$

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi, \mathsf{F}_X) = \operatorname{ind}(\phi \circ \psi, \mathsf{F}_Y),$$

$$\operatorname{rk}(\psi \circ \phi, \mathbf{F}_X) = \operatorname{rk}(\phi \circ \psi, \mathbf{F}_Y), \quad a(\psi \circ \phi, \mathbf{F}_X) = a(\phi \circ \psi, \mathbf{F}_Y).$$

Hence $\operatorname{ind}(\mathbf{F})$ and $\operatorname{ichr}(\mathbf{F})$ are commutation invariants.

Commutation invariance

Suppose $\phi: X \to Y$ and $\psi: Y \to X$ are maps. Then $\psi \circ \phi: X \to X$ and $\phi \circ \psi: Y \to Y$ are said to differ by a commutation. The map ϕ sets up a natural one-one correspondence

$$\mathsf{F}_X o \mathsf{F}_Y$$

from the fixed point classes of $\psi \circ \phi$ to the fixed point classes of $\phi \circ \psi$.

Theorem (Commutation invariance)

Under the correspondence via commutation,

$$\operatorname{ind}(\psi \circ \phi, \mathbf{F}_X) = \operatorname{ind}(\phi \circ \psi, \mathbf{F}_Y),$$

$$\operatorname{rk}(\psi \circ \phi, \mathsf{F}_X) = \operatorname{rk}(\phi \circ \psi, \mathsf{F}_Y), \quad a(\psi \circ \phi, \mathsf{F}_X) = a(\phi \circ \psi, \mathsf{F}_Y).$$

Hence $ind(\mathbf{F})$ and $ichr(\mathbf{F})$ are commutation invariants.

(ロ) (部) (目) (目) (目) (の)

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then

- (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;
- (B) when X is not a tree,

$$\sum_{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})<0}\{\mathrm{ind}(\mathbf{F})+\mathrm{chr}(\mathbf{F})\}\geq 2\chi(X),$$

where the sum is taken over all fixed point classes ${\bf F}$ with ${\rm ind}({\bf F})+{\rm chr}({\bf F})<0$.

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;

(B) when X is not a tree,

$$\sum_{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})<0} \{\mathrm{ind}(\textbf{F})+\mathrm{chr}(\textbf{F})\} \geq 2\chi(X),$$

where the sum is taken over all fixed point classes **F** with $\operatorname{ind}(\mathbf{F}) + \operatorname{chr}(\mathbf{F}) < 0$.

Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite **graph** or a connected compact hyperbolic **surface**, and $f: X \to X$ is a **selfmap**. Then

- (A) $\operatorname{ind}(\mathbf{F}) \leq \operatorname{chr}(\mathbf{F})$ for every fixed point class \mathbf{F} of f;
- (B) when X is not a tree,

$$\sum_{\operatorname{ind}(\boldsymbol{\mathsf{F}}) + \operatorname{chr}(\boldsymbol{\mathsf{F}}) < 0} \{ \operatorname{ind}(\boldsymbol{\mathsf{F}}) + \operatorname{chr}(\boldsymbol{\mathsf{F}}) \} \geq 2\chi(\boldsymbol{\mathsf{X}}),$$

where the sum is taken over all fixed point classes **F** with $\mathrm{ind}(\mathbf{F}) + \mathrm{chr}(\mathbf{F}) < 0$.

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

Thanks to Boju Jiang for pointing out a result due to Cohen and Lustig, using which and the Reidemeister trace formula, we can prove that

Theorem (Z.-Zhao, 2021)

Under the same hypothesis as in the above theorem,

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}).$$

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

Thanks to Boju Jiang for pointing out a result due to Cohen and Lustig, using which and the Reidemeister trace formula, we can prove that

Theorem (Z.-Zhao, 2021)

Under the same hypothesis as in the above theorem

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}).$$

Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and $f: X \to X$ be a π_1 -injective selfmap. Then for every fixed point class \mathbf{F} of f, we have

$$\operatorname{ind}(\mathbf{F}) \leq \operatorname{ichr}(\mathbf{F}).$$

Thanks to Boju Jiang for pointing out a result due to Cohen and Lustig, using which and the Reidemeister trace formula, we can prove that

Theorem (Z.-Zhao, 2021)

Under the same hypothesis as in the above theorem,

$$\operatorname{ind}(\mathbf{F}) = \operatorname{ichr}(\mathbf{F}).$$

The first consequence of the main Theorem is

Theorem (Z.-Zhao, 2021)

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and $\tilde{f}: \tilde{X} \to \tilde{X}$ a lifting of f to the universal covering \tilde{X} . If

$$\operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}) + a(\tilde{f}_{\pi}) \neq 1,$$

then f has a fixed point.

Proof.

Suppose \tilde{f} has no fixed point, i.e., the fixed point class $\mathbf{F} = p(\operatorname{Fix}\tilde{f})$ is empty. Then $\operatorname{ichr}(\mathbf{F}) = \operatorname{ind}(\mathbf{F}) = 0$. So

$$\operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}) + a(\tilde{f}_{\pi}) = 1 - \operatorname{ichr}(\mathbf{F}) = 1,$$

a contradiction

The first consequence of the main Theorem is

Theorem (Z.-Zhao, 2021)

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and $\tilde{f}: \tilde{X} \to \tilde{X}$ a lifting of f to the universal covering \tilde{X} . If

$$\operatorname{rk}(\operatorname{Fix}\tilde{t}_{\pi}) + a(\tilde{t}_{\pi}) \neq 1,$$

then f has a fixed point.

Proof.

Suppose \tilde{f} has no fixed point, i.e., the fixed point class $\mathbf{F} = p(\operatorname{Fix}\tilde{f})$ is empty. Then $\operatorname{ichr}(\mathbf{F}) = \operatorname{ind}(\mathbf{F}) = 0$. So

$$\operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}) + a(\tilde{f}_{\pi}) = 1 - \operatorname{ichr}(\mathbf{F}) = 1,$$

a contradiction

The first consequence of the main Theorem is

Theorem (Z.-Zhao, 2021)

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and $\tilde{f}: \tilde{X} \to \tilde{X}$ a lifting of f to the universal covering \tilde{X} . If

$$\operatorname{rk}(\operatorname{Fix} \tilde{\mathit{f}}_{\pi}) + \mathit{a}(\tilde{\mathit{f}}_{\pi}) \neq 1,$$

then \tilde{f} has a fixed point.

Proof

Suppose \tilde{f} has no fixed point, i.e., the fixed point class $\mathbf{F} = p(\operatorname{Fix}\tilde{f})$ is empty. Then $\operatorname{ichr}(\mathbf{F}) = \operatorname{ind}(\mathbf{F}) = 0$. So

$$\operatorname{rk}(\operatorname{Fix}\tilde{f}_{\pi}) + a(\tilde{f}_{\pi}) = 1 - \operatorname{ichr}(\mathbf{F}) = 1,$$

a contradiction

The first consequence of the main Theorem is

Theorem (Z.-Zhao, 2021)

Let $f: X \to X$ be a π_1 -injective selfmap of a connected finite graph, and $\tilde{f}: \tilde{X} \to \tilde{X}$ a lifting of f to the universal covering \tilde{X} . If

$$\operatorname{rk}(\operatorname{Fix}\tilde{\mathit{f}}_{\pi}) + \mathit{a}(\tilde{\mathit{f}}_{\pi}) \neq 1,$$

then \tilde{f} has a fixed point.

Proof.

Suppose \tilde{f} has no fixed point, i.e., the fixed point class $\mathbf{F} = p(\operatorname{Fix} \tilde{f})$ is empty. Then $\operatorname{ichr}(\mathbf{F}) = \operatorname{ind}(\mathbf{F}) = 0$. So

$$\operatorname{rk}(\operatorname{Fix}\tilde{t}_{\pi}) + a(\tilde{t}_{\pi}) = 1 - \operatorname{ichr}(\mathbf{F}) = 1,$$

a contradiction.

The second consequence:

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f:X\to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \leq -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \le n$$

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

The second consequence:

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f: X \to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \leq -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n$$
.

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

The second consequence:

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and $f: X \to X$ is a π_1 -injective selfmap. Then

$$\sum_{\mathbf{F}\in \mathrm{Fpc}(f)} \max\{0, \ \mathrm{rk}(\mathbf{F}) + a(\mathbf{F})/2 - 1\} \leq -\chi(X).$$

Theorem (Z.-Zhao, 2020)

Let ϕ be any injective endomorphism of a free group F_n . Then

$$\operatorname{rkFix}(\phi) + a(\phi)/2 \leq n.$$

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for automorphisms of F_n , by using groups acting on \mathbb{R} -trees. Our proof for general case is based on Theorem J-W-Z and Bestvina-Handel's

For an injective endomorphism $\phi: F_n \to F_n$ of a free group F_n , it induces an endomorphism ϕ^{ab} of the abelianization of F_n ,

$$\phi^{\mathrm{ab}}: \mathbb{Z}^n \to \mathbb{Z}^n.$$

Let $\operatorname{Trace}(\phi^{\operatorname{ab}})$ be the trace of a matrix of ϕ^{ab} . For any $c \in F_n$, let $i_c : F_n \to F_n, \ g \mapsto cgc^{-1}$ be the inner automorphism induced by c.

Theorem (Z.-Zhao, 2021)

Let ϕ be an injective endomorphism of F_n . Then $\exists c \in F_n$ s.t

$$rkFix(i_c \circ \phi) = a(i_c \circ \phi) = 0$$

if the trace $\operatorname{Trace}(\phi^{ab}) < 1$; and

$$\operatorname{rkFix}(i_c \circ \phi) + a(i_c \circ \phi) > 1$$

if Trace
$$(\phi^{\mathrm{ab}}) > 1$$
.

For an injective endomorphism $\phi: F_n \to F_n$ of a free group F_n , it induces an endomorphism ϕ^{ab} of the abelianization of F_n ,

$$\phi^{\mathrm{ab}}: \mathbb{Z}^n \to \mathbb{Z}^n.$$

Let $\operatorname{Trace}(\phi^{\operatorname{ab}})$ be the trace of a matrix of ϕ^{ab} . For any $c \in F_n$, let $i_c : F_n \to F_n, \ g \mapsto cgc^{-1}$ be the inner automorphism induced by c.

Theorem (Z.-Zhao, 2021)

Let ϕ be an injective endomorphism of F_n . Then $\exists \ c \in F_n \ s.t$

$$\operatorname{rkFix}(i_c \circ \phi) = a(i_c \circ \phi) = 0$$

if the trace $\operatorname{Trace}(\phi^{ab}) < 1$; and

$$\operatorname{rkFix}(i_c \circ \phi) + a(i_c \circ \phi) > 1$$

if Trace(ϕ^{ab}) > 1.

Example

Let $f:(R_2,*)\to (R_2,*)$, $a\mapsto b,b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$ and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

By computing, we have $|f_a(W_i)| \le i + 2$,, it implies that f_a has no attracting fixed words. So $a(f_a) = 0$ and hence

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

Example

Let $f:(R_2,*)\to (R_2,*)$, $a\mapsto b,b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

By computing, we have $|f_a(W_i)| \le i + 2$,, it implies that f_a has no attracting fixed words. So $a(f_a) = 0$ and hence

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

Example

Let $f: (R_2, *) \to (R_2, *), a \mapsto b, b \mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a, b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with
$$\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$$
.

By computing, we have $|f_a(W_i)| \le i + 2$,, it implies that f_a has no attracting fixed words. So $a(f_a) = 0$ and hence

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

Example

Let $f:(R_2,*)\to (R_2,*)$, $a\mapsto b,b\mapsto a$ be a selfmap of the graph R_2 with one vertex * and two edges a,b.

Fix a universal covering $q: \tilde{R}_2 \to R_2$ with a given point $\tilde{*} \in q^{-1}(*)$, and a lifting $\tilde{a}: (I,0,1) \to (\tilde{R}_2,\tilde{*},\tilde{a}(1))$ of the loop a. Then $\operatorname{Fix} \tilde{f} = \emptyset$, namely, the fixed point class \mathbf{F}_a is empty.

The f-route a induces an injective endomorphism

$$f_a: \pi_1(R_2, *) \to \pi_1(R_2, *), \quad a \mapsto aba^{-1}, \quad b \mapsto a^{-1},$$

with $\operatorname{Fix}(f_a) = \langle aba^{-1}b^{-1}\rangle \cong \mathbb{Z}$.

By computing, we have $|f_a(W_i)| \le i+2$,, it implies that f_a has no attracting fixed words. So $a(f_a) = 0$ and hence

$$\operatorname{ind}(\mathbf{F}_a) = \operatorname{ichr}(\mathbf{F}_a) = 1 - \operatorname{rkFix}(f_a) - a(f_a) = 0.$$

References

Q. Zhang and X. Zhao, Fixed point indices and fixed words at infinity of selfmaps of graphs, arXiv:2003.13940v3, 27pp.

Q. Zhang and X. Zhao, Fixed point indices and fixed words at infinity of selfmaps of graphs II, Preprint (2021).

M. Cohen and M. Lustig, *On the dynamics and the fixed subgroup of a free group automorphism*, Invent. Math. 96 (1989), 613–638.

D. Gaboriau, A. Jaeger, G. Levitt and M. Lustig, *An index for counting fixed points for automorphisms of free groups*, Duke Math. J. 93 (1998)(3), 425–452.

B. Jiang, *A primer of Nielsen fixed point theory*. Handbook of topological fixed point theory, 617–645, Springer, 2005.

B. Jiang, S.D. Wang and Q. Zhang, *Bounds for fixed points and fixed subgroups on surfaces and graphs*, Alg. Geom. Topology, 11 (2011), 2297–2318.

Thanks! 谢谢!