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Fixed point class: path approach

Let X be a connected compact polyhedron, and f : X → X a self-
map. The fixed point set splits into a disjoint union of fixed point
classes

Fixf := {x ∈ X |f (x) = x} =
⊔

F∈Fpc(f )

F

Definition (path approach)

Two fixed points x , x ′ ∈ Fix(f ) are in the same fixed point class
⇐⇒ there is a path c (called a Nielsen path) from x to x ′ such that
c ' f ◦ c rel endpoints.

The index of a fixed point class F is the sum

ind(F) := ind(f ,F) :=
∑
x∈F

ind(f , x) ∈ Z.
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Index: examples

For an isolated fixed point x0 of f : Rn → Rn, the index is defined:

ind(f , x0) := degϕ

where

ϕ : Sn−1
x0 → Sn−1

x0 , x 7→ x − f (x)

|x − f (x)|
.

Let f : Rn → Rn be a diff. map, x a isolated fixed point. Then

ind(f , x) = sgn det(I − Dfx) = (−1)k .

If f : R→ R, x 7→ λx , then

ind(f , 0) =

{
−1, λ > 1,
1, λ < 1.

If n = 2, f has a complex analytic expression z 7→ f (z), then
ind(f , z0) = multiplicity of the zero z0 of the function z− f (z).
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Fixed point class: covering approach

Let p : X̃ → X be the universal covering of X , with deck group π
identified with π1(X ).

Definition (covering approach)

For any lifting f̃ : X̃ → X̃ of f , the projection p(Fixf̃ ) of its
fixed point set is called a fixed point class of f .

Two liftings f̃ and f̃ ′ of f are conjugate if there exists γ ∈ π
such that f̃ ′ = γ−1 ◦ f̃ ◦ γ

A fixed point class F = p(Fixf̃ ) carries a label by a conjugacy
class of f̃ .

When Fixf̃ = ∅, we call F = p(Fixf̃ ) an empty fixed point
class.

Empty fixed point classes have the same index 0 but may have
different labels and hence be regarded as different. We would better
think of them as hidden rather than nonexistent.
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Reidemeister set

Let a reference lifting f̃ of f be chosen. Then every lifting of f can
be unique written as β ◦ f̃ for some β ∈ π.

Each lifting f̃ induces an endomorphism f̃π : π → π defined by

f̃ ◦ γ = f̃π(γ) ◦ f̃ , γ ∈ π.

Two liftings β ◦ f̃ and β′ ◦ f̃ are conjugate if and only if
β, β′ ∈ π are f̃π-conjugate, i.e., there exists γ ∈ π such that

β′ = γβ f̃π(γ−1).

f̃π-conjugacy class [β]f̃π := {γβ f̃π(γ−1)|γ ∈ π} is said to be

the coordinate for the fixed point class p(Fix(β ◦ f̃ )).

R(f̃π) := {[β]f̃π |β ∈ π}: Reidemeister set of f̃π.
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Reidemeister trace formula

Let X be a bouquet of n circles with one 0-cell and n 1-cells a1, . . . , an,
and f : X → X a cellular map. Then

π := π1(X ) = 〈a1, a2, . . . , an|−〉 ∼= Fn.

Let F denote the fixed point class labeled by f̃ : X̃ → X̃ , and ϕ = f̃π
be the induced injective endomorphism of f̃ , that is,

f̃ ◦ γ = ϕ(γ) ◦ f̃ , γ ∈ π.

Then the coordinate of F is the ϕ-conjugacy class [1]ϕ.

Proposition (Reidemeister trace formula)

The π-generalized Lefschetz number

Lπ(f ) :=
∑

[β]ϕ∈R(ϕ)

ind(f , [β]ϕ)·[β]ϕ = [1]ϕ−
n∑

j=1

[
∂ϕ(aj)

∂aj
]ϕ ∈ ZR(f̃π).
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Fixed subgroups: definitions

For any group G , denote the set of endomorphisms of G by End(G ).

Definition

For an endomorphism φ ∈ End(G ), the fixed subgroup of φ is

Fixφ := {g ∈ G |φ(g) = g}.

For a family B of endomorphisms of G (i.e., B ⊆ End(G )), the
fixed subgroup of B is

FixB := {g ∈ G |φ(g) = g , ∀φ ∈ B} =
⋂
φ∈B

Fixφ.
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Compactification of free group

F : free group of rank n. φ : F → F injective endomorphism.
Λ = {g1, . . . , gn}: a basis (i.e, a free generating set) of F .

F = the set of reduced words in the letters g±1i .
∂F = the set of infinite reduced words W = w1w2 · · ·wi · · · ,
i.e., wi ∈ Λ± = {g±11 , . . . , g±1n } and wi 6= w−1i+1.

F̄ := F t ∂F . Wi := w1 · · ·wi .

|W |: word length of W ∈ F with respect to Λ.
W ∧ V :=the longest common initial segment of W and V .

The initial segment metric di .s : F̄ × F̄ → R≥0 is defined:

di .s(W ,V ) =
1

1 + |W ∧ V |
, W 6= V .

With this metric, F̄ is compact (compactification as a hyper.
group in the sense of Gromov), and F is dense in F̄ .
∂F : a compact space homeo. to a Cantor set when n ≥ 2.
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Extended map on the boundary

A sequence of reduced words Vp ∈ F̄ converges to an infinite
word W ∈ ∂F ⇐⇒ limp→+∞ |W ∧ Vp| = +∞.

The natural actions of F and Aut(F ) on F extend continuously
to F̄ : a left multiply W : F → F by a word W ∈ F and an
automorphism f : F → F extend uniquely to homeomorphisms
W : ∂F → ∂F and f̄ : ∂F → ∂F , respectively.

Any f.g. subgroup F ′ < F is quasi-convex, and hence an inclu-
sion induces a natural embedding ∂F ′ ↪→ ∂F . For an injective
endomorphism φ : F → F , since F ∼= φ(F ) < F , we have
∂F ∼= ∂(φ(F )) ↪→ ∂F . Therefore

Lemma

Let φ : F → F be an injective endomorphism of F . Then φ can be
extended to a continuous injective map φ̄ : ∂F → ∂F .
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Attracting fixed words at infinity

Let φ : F → F be an injective endomorphism, and W = w1 · · ·wi · · ·
be a fixed infinite reduced word of φ.

Definition
1 W is an attracting fixed word of φ if

lim
i→+∞

|W ∧ φ(Wi )| − i = +∞.

2 W is an attracting fixed point of φ if ∃ a neighborhood U of
W ∈ F̄ s.t.

W ′ ∈ U =⇒ lim
p→+∞

φp(W ′) = W .
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The number a(φ)

The two definitions above are equivalent.

Proposition

W is an attracting fixed word ⇐⇒ W is an attracting fixed point
=⇒ W 6∈ ∂(Fixφ).

Definition

Two fixed infinite words W ,W ′ ∈ ∂F of φ are equivalent if ∃
a fixed word U ∈ Fix(φ) s.t. W ′ = UW .

Let A (φ) be the set of equivalence classes of attracting fixed
words of φ, and a(φ) the cardinality of A (φ).

Remark: Let A(φ) be the set of attracting fixed words of φ. Then
A (φ) = Fix(φ)\A(φ), the set of orbits of Fix(φ) acting on A(φ).
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An example

Let F = 〈g〉 ∼= Z. Then any endomorphism φ : F → F has the form
φ(g) = gk .The boundary ∂F consists of two points: gg · · · g · · · and
g−1g−1 · · · g−1 · · · . We have

k φ(g) Fix(φ) rkFix(φ) a(φ)

0 1 {1} 0 N/A
1 g Z 1 0
> 1 gk {1} 0 2
< 0 gk {1} 0 0

For the identity id , each element in F is fixed. It is obvious that the
two infinite words are both fixed, but are not attracting.

Theorem (Gaboriau-Jaeger-Levitt-Lustig, 1998)

Let φ be an automorphism of a free group Fn. Then

rkFix(φ) + a(φ)/2 ≤ n.
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Improved characteristic ichr(F)

Let f : X → X be a π1-injective selfmap of a connected finite graph,
F = p(Fixf̃ ) a fixed point class of f labeled by f̃ : X̃ → X̃ , and
f̃π : π → π the induced endomorphism by f̃ .

Definition

Define
rk(f ,F) := rk(Fixf̃π), a(f ,F) := a(f̃π),

the characteristic of F to be

chr(f ,F) := 1− rk(Fixf̃π),

and the improved characteristic of F to be

ichr(f ,F) := 1− rk(Fixf̃π)− a(f̃π).

For brevity, we may write rk(F), a(F), chr(F) and ichr(F) if no con-
fusion exists for the selfmap f .
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Homotopy invariance

A homotopy H = {ht} : f0 ' f1 : X → X gives rise to a natural
one-one correspondence

H : F0 7→ F1

from the fixed point classes of f0 to the fixed point classes of f1.
Remark. A homotopy may create or remove fixed point classes.
The correspondence is one-one only when empty fixed point classes
are taken into account.

Theorem (Homotopy invariance)

Under the correspondence via a homotopy H,

ind(f0,F0) = ind(f1,F1), rk(f0,F0) = rk(f1,F1), a(f0,F0) = a(f1,F1).

Hence the index ind(F) and the improved characteristic ichr(F) are
homotopy invariants.
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Commutation invariance

Suppose φ : X → Y and ψ : Y → X are maps. Then ψ ◦ φ : X →
X and φ ◦ ψ : Y → Y are said to differ by a commutation. The
map φ sets up a natural one-one correspondence

FX → FY

from the fixed point classes of ψ ◦ φ to the fixed point classes of
φ ◦ ψ.

Theorem (Commutation invariance)

Under the correspondence via commutation,

ind(ψ ◦ φ,FX ) = ind(φ ◦ ψ,FY ),

rk(ψ ◦ φ,FX ) = rk(φ ◦ ψ,FY ), a(ψ ◦ φ,FX ) = a(φ ◦ ψ,FY ).

Hence ind(F) and ichr(F) are commutation invariants.
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Bounds for graphs & surfaces

Theorem (Jiang-Wang-Z., 2011)

Suppose X is either a connected finite graph or a connected com-
pact hyperbolic surface, and f : X → X is a selfmap. Then
(A) ind(F) ≤ chr(F) for every fixed point class F of f ;
(B) when X is not a tree,∑

ind(F)+chr(F)<0

{ind(F) + chr(F)} ≥ 2χ(X ),

where the sum is taken over all fixed point classes F with ind(F) +
chr(F) < 0.
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Main Results

Theorem (Z.-Zhao, 2020)

Let X be a connected finite graph and f : X → X be a π1-injective
selfmap. Then for every fixed point class F of f , we have

ind(F) ≤ ichr(F).

Thanks to Boju Jiang for pointing out a result due to Cohen and
Lustig, using which and the Reidemeister trace formula, we can
prove that

Theorem (Z.-Zhao, 2021)

Under the same hypothesis as in the above theorem,

ind(F) = ichr(F).
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A criterion for a fixed point

The first consequence of the main Theorem is

Theorem (Z.-Zhao, 2021)

Let f : X → X be a π1-injective selfmap of a connected finite graph,
and f̃ : X̃ → X̃ a lifting of f to the universal covering X̃ . If

rk(Fixf̃π) + a(f̃π) 6= 1,

then f̃ has a fixed point.

Proof.

Suppose f̃ has no fixed point, i.e., the fixed point class F = p(Fixf̃ )
is empty. Then ichr(F) = ind(F) = 0. So

rk(Fixf̃π) + a(f̃π) = 1− ichr(F) = 1,

a contradiction.
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Fixed words in free groups

The second consequence:

Corollary (Z.-Zhao, 2020)

Suppose X is a connected finite graph but not a tree, and f : X → X
is a π1-injective selfmap. Then∑

F∈Fpc(f )

max{0, rk(F) + a(F)/2− 1} ≤ −χ(X ).

Theorem (Z.-Zhao, 2020)

Let φ be any injective endomorphism of a free group Fn. Then

rkFix(φ) + a(φ)/2 ≤ n.

Gaboriau-Jaeger-Levitt-Lustig proved the inequality above for au-
tomorphisms of Fn, by using groups acting on R-trees. Our proof
for general case is based on Theorem J-W-Z and Bestvina-Handel’s
train track maps.ZHANG Qiang Fixed point indices and fixed words at infinity of selfmaps of graphs 19 / 23
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Fixed words in free groups

For an injective endomorphism φ : Fn → Fn of a free group Fn, it
induces an endomorphism φab of the abelianization of Fn,

φab : Zn → Zn.

Let Trace(φab) be the trace of a matrix of φab. For any c ∈ Fn, let
ic : Fn → Fn, g 7→ cgc−1 be the inner automorphism induced by c .

Theorem (Z.-Zhao, 2021)

Let φ be an injective endomorphism of Fn. Then ∃ c ∈ Fn s.t

rkFix(ic ◦ φ) = a(ic ◦ φ) = 0

if the trace Trace(φab) < 1; and

rkFix(ic ◦ φ) + a(ic ◦ φ) > 1

if Trace(φab) > 1.
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An example for ind = ichr

Example

Let f : (R2, ∗) → (R2, ∗), a 7→ b, b 7→ a be a selfmap of the graph
R2 with one vertex ∗ and two edges a, b.
Fix a universal covering q : R̃2 → R2 with a given point ∗̃ ∈ q−1(∗),
and a lifting ã : (I , 0, 1)→ (R̃2, ∗̃, ã(1)) of the loop a. Then Fixf̃ =
∅, namely, the fixed point class Fa is empty.
The f -route a induces an injective endomorphism

fa : π1(R2, ∗)→ π1(R2, ∗), a 7→ aba−1, b 7→ a−1,

with Fix(fa) = 〈aba−1b−1〉 ∼= Z.
By computing, we have |fa(Wi )| ≤ i + 2,, it implies that fa has no
attracting fixed words. So a(fa) = 0 and hence

ind(Fa) = ichr(Fa) = 1− rkFix(fa)− a(fa) = 0.
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