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Image Inpainting by Patch Propagation
Using Patch Sparsity

Zongben Xu and Jian Sun

Abstract—This paper introduces a novel examplar-based in-
painting algorithm through investigating the sparsity of natural
image patches. Two novel concepts of sparsity at the patch level
are proposed for modeling the patch priority and patch repre-
sentation, which are two crucial steps for patch propagation in
the examplar-based inpainting approach. First, patch structure
sparsity is designed to measure the confidence of a patch located
at the image structure (e.g., the edge or corner) by the sparseness

I. INTRODUCTION

HE filling-in of missing region in an image, which is

called image inpainting, is an important topic in the field
of computer vision and image processing. Image inpainting has
been widely investigated in the applications of digital effect
(e.g., object removal), image restoration (e.g., scratch or text
removal in photograph), image coding and transmission (e.g.,
recovery of the missing blocks), etc.

The most fundamental inpainting approach is the diffusion-
based approach [1]-[3], in which the missing region is filled
by diffusing the image information from the known region into
the missing region at the pixel level. These algorithms are well
founded on the theory of partial differential equation (PDE)
and variational method. Bertalmio et al. [1] filled in holes by
continuously propagating the isophote (i.e., lines of equal gray
values) into the missing region. They further introduced the

Manuscript received April 15, 2009; revised December 20, 2009; accepted
December 20, 2009. First published February 02, 2010; current version
published April 16, 2010. This work was supported by the National Key
Fundamental Research Program (the 973 Program) of China under Grant
2007CB311002. The associate editor coordinating the review of this manu-
script and approving it for publication was Dr. Mark (Hong-Yuan) Liao.

The authors are with the School of Science, Xi’an Jiaotong Univer-
sity, Xi’an, Shaanxi 710049, China (e-mail: zbxu@mail.xjtu.edu.cn;
jiansun@mail.xjtu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/T1P.2010.2042098

Navier—Strokes equation in fluid dynamics into the task of in-
painting [2]. Chan and Shen [3] proposed a variational frame-
work based on total variation (TV) to recover the missing in-
formation. Then a curvature-driven diffusion equation was pro-
posed to realize the connectivity principle which does not hold
in the TV model [4]. A joint interpolation of isophote directions
and gray-levels was also designed to incorporate the principle of
continuity in a variational framework [5]. Recently, image sta-
tistics learned from the natural images are applied to the task of
image inpainting [6]-[8]. The diffusion-based inpainting algo-
rithms have achieved convincingly excellent results for filling
the nontextured or relatively smaller missing region. However,
they tend to introduce smooth effect in the textured region or
larger missing region.

The second category of approaches is the examplar-based
inpainting algorithm. This approach propagates the image
information from the known region into the missing region
at the patch level. This idea stems from the texture synthesis
technique proposed in [9], in which the texture is synthesized
by sampling the best match patch from the known region.
However, natural images are composed of structures and tex-
tures, in which the structures constitute the primal sketches of
an image (e.g., the edges, corners, etc.) and the textures are
image regions with homogenous patterns or feature statistics
(including the flat patterns). Pure texture synthesis technique
cannot handle the missing region with composite textures
and structures. Bertalmio et al. [10] proposed to decompose
the image into structure and texture layers, then inpaint the
structure layer using diffusion-based method and texture layer
using texture synthesis technique [9]. It overcomes the smooth
effect of the diffusion-based inpainting algorithm; however, it
is still hard to recover larger missing structures. Criminisi et al.
[11] designed an examplar-based inpainting algorithm by prop-
agating the known patches (i.e., examplars) into the missing
patches gradually. To handle the missing region with composite
textures and structures, patch priority is defined to encourage
the filling-in of patches on the structure. Wu [12] proposed a
cross-isophotes examplar-based inpainting algorithm, in which
a cross-isophotes patch priority term was designed based on
the analysis of anisotropic diffusion. Wong [13] proposed a
nonlocal means approach for the examplar-based inpainting
algorithm. The image patch is inferred by the nonlocal means
of a set of candidate patches in the known region instead of
a single best match patch. More examplar-based inpainting
algorithms [14]-[16]were also proposed for image completion.
Compared with the diffusion-based inpainting algorithm, the
examplar-based inpainting algorithms have performed plau-
sible results for inpainting the large missing region.
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Recently, image sparse representation is also introduced to
the inpainting problem [17]- [21]. The basic idea of this ap-
proach is to represent image by sparse combination of an over-
complete set of transforms (e.g., wavelet, contourlet, DCT, etc.),
then the missing pixels are inferred by adaptively updating this
sparse representation. Guleryuz et al. [18]-[20] proposed an
image inpainting algorithm using adaptive sparse representation
of image. Elad et al. [17] improved this approach by separating
the image into cartoon and texture layers, and sparsely repre-
sented these two layers by two incoherent over-complete trans-
forms. This approach can effectively fill in the region with com-
posite textures and structures, especially in the application of
missing block completion. However, similar to the diffusion-
based approach, it may fail to recover structure or introduce
smooth effect when filling large missing region.

This paper focuses on the examplar-based inpainting algo-
rithm through patch propagation. The two basic procedures of
patch propagation are patch selection and patch inpainting. In
the patch selection, a patch on the missing region boundary with
the highest priority is selected for further inpainting. The pri-
ority is defined to encourage the filling-in of patches on structure
such that the structures are more quickly filled than the textures,
then missing region with composite structures and textures can
be better inpainted [11], [22]. Traditionally, the patch priority is
defined based on the inner product between isophote direction
and the normal direction of the missing region boundary [11],
[22]. In the patch inpainting, the selected patch is inpainted by
the candidate patches (i.e., examplars) in the known region. The
approach in[11] and [22] utilizes the best match candidate patch
to inpaint the selected patch. The approach in [13] uses a non-
local means of the candidate patches for robust patch inpainting.

To better address the problems of patch selection and patch
inpainting, two novel concepts of patch sparsity of natural
image, i.e., patch structure sparsity and patch sparse repre-
sentation, are proposed and applied to the examplar-based
inpainting algorithm. First, we define a novel patch priority
based on the sparseness of the patch’s nonzero similarities to
its neighboring patches. This sparseness is called structure
sparsity in this paper. It is based on the observation that a
patch on the structure has sparser nonzero similarities with its
neighboring patches compared with the patch within a textured
region. Compared with the priority defined on isophote, this
definition can better distinguish the texture and structure, and
be more robust to the orientation of the boundary of missing
region.

Second, to inpaint a selected patch on the boundary of missing
region, we use a sparse linear combination of examplars to infer
the patch in a framework of sparse representation. This linear
combination of patches are regularized by the sparseness prior
(¢° regularization) on the combination coefficients. It means that
only very few examplars contribute to the linear combination of
patches with nonzero coefficients. This representation is called
patch sparse representation in this paper. The patch sparse rep-
resentation is also constrained by the local patch consistency
constraint. This model extends the patch diversity by linear com-
bination and preserves texture without introducing smooth ef-
fect by sparseness assumption. More importantly, the inpainted
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patches are more consistent with their surrounding textures or
structures due to the local patch consistency constraint.

In summary, the structure sparsity and patch sparse repre-
sentation at the patch level constitute the patch sparsity in this
paper. The patch structure sparsity is inspired by the recent
progress on the research of sparseness prior of natural image.
The previous sparseness prior generally models the sparseness
of image’s nonzero features, e.g., gradients or filter responses.
This kind of sparseness prior has been successfully applied to
the image denoising [8], [23], super-resolution [24], [25], in-
painting [6]—-[8], deblurring [26], [27], and so on. The structure
sparsity also models the sparsity of natural image. However, it
models the sparseness of nonzero similarities of a patch with its
neighboring patches instead of high-frequency features.

The patch sparse representation is inspired by the recent
progress on sparse representation [28], which assumes that the
image or signal is represented by the sparse linear combina-
tion of an over-complete library of bases or transforms under
(< p < 2 sparseness regularization. This framework has
been widely applied to image denoising [29], [30], edge detec-
tion [31], recognition [32], [33], super-resolution [34], texture
synthesis [35], etc., and achieved state-of-the-art performance.
In this work, the idea of sparse representation is introduced to
the examplar-based inpainting algorithm under the assumption
that the missing patch can be represented by the sparse linear
combination of candidate patches. Then a novel constrained
optimization model is designed for patch inpainting.

The paper is organized as follows. In Section |1, an overview
of the proposed examplar-based inpainting algorithm is pre-
sented. In Section I1l, the details of the inpainting algorithm,
including the patch sparsity and patch sparse representation, are
introduced. The experiments and comparisons with the previous
algorithms are performed in the Section IV. Finally, we con-
clude this work in Section V.

Il. ALGORITHM OVERVIEW

Given an image with the missing region Q and the known
region ©, the task of image inpainting is to fill in the target
region (i.e., the missing region 2) using the image information
in the source region (i.e., the known region Q). The boundary of
the target region is denoted by (2, which is called the fill-front
in the examplar-based inpainting algorithm. We further denote
W, as a patch centered at a pixel p.

The main procedures of the proposed examplar-based in-
painting algorithm are illustrated in Fig. 1. This algorithm is
based on patch propagation by inwardly propagating the image
patches from the source region into the interior of the target re-
gion patch by patch. In each iteration of patch propagation, the
algorithm is decomposed into two procedures: patch selection
and patch inpainting.

In the procedure of patch selection, patch priority should be
defined to encourage the filling-in of patches on the structure
with higher priority. We define structure sparsity by measuring
the sparseness of the similarities of a patch with its neighboring
patches. Then patch priority is defined using the structure spar-
sity. In the example shown in Fig. 1(a), the patches ¥, and ¥,/
are centered at pixel p and p’ which lie in the edge structure
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Initialization: Set m =0, S™ ={}, e=5.

Loop: Iterate the following operations:

(5" WUNH{¥qmir}) -

sparse linear combination Y ;- a; ¥y, .

Input: ¥, is the patch to be filled. @ = {\I/q}f;]:l are the top N most similar patches with
U, (measured by SSD over the already filled pixels) collected from the source region €2 .

o For each candidate patch ¥ € Q — S™, compute the coefficients @ for the linear com-
bination of patch set S™U{¥} by Eqn. (15).
o Select the patch ¥, ., € Q—S™ with the minimal £ in Eqn.(8) over the patch set

o If £ decreases, then S™+1 = ™ J{¥,, ..}, m=m+1; When £ < € or £ increases,
jump out of the loop and perform the next procedure.

Filling in patch: Filling in the missing pixels of ¥, by the corresponding pixels in the

Fig. 4. Inpainting algorithm using patch sparse representation for a patch on the fill front.

the statistical literatures. In applications, due to the simplicity
of OMP algorithm, it is widely used in image sparse represen-
tation, and applied to image denoising [29], [30], coding [42],
edge detection [32], audio source separation [43], and so on.
For this optimization problem in (10), we propose a novel
algorithm to derive the sparse linear combination coefficients in
a greedy fashion. Similar to the Matching Pursuit Algorithm,
we gradually select nonzero elements from the candidate set of
patches Q = \I/q}ff: step by step. Suppose we have selected
m nonzero candidate patches in the step m (denotedas S =
U, ,U,, T, }) sothesparse representation in this step is

(12)

\ilp :Z iVq,

Inthe nextstepm , we select a new candidate patch ¥,
from the remaining candidate patches in @ S . The patch
with the best Local Patch Consistency £ in (8) is selected as the
newly selected nonzero element, i.e.,

Uy }= mi EWg Vg, ¥y ¥V}

€EQ-S

co-s { (Z i Ya,

1=

Ur 2}

For each candidate patch ¥ € @ S , the combination
coefficients in (13) are derived by optimizing

(13)

2)
Wr

(Z T + v

)
(14)

This optimization problem (14) is well studied in the literature
of Locally Linear Embedding (LLE) [37] in manifold learning.
We define the Gram matrix = (U717 Twrt ,
where is a matrix with columns ¥, , , ¥, , U}

and 1 is a column vector of ones. Then it has a close form
solution

_ -1
1T -1
We iterate the procedure of selecting a patch in each step until
the Local Patch Consistency Constraint (8) is satisfied or the
value of £ increases.

In summary, the algorithm for filling in the missing pixels in
patch ¥, using patch sparse representation is listed in Fig. 4.
The final inpainting algorithm based on patch sparsity is listed
in Fig. 5. Fig. 6 presents three examples in which the top corner
region of pyramid, the crossing structure of window frame
and the curved missing structures are removed. As shown in
Fig. 6(b)—(d), the missing regions are gradually completed by
the proposed method, and Fig. 6(d) are the inpainting results of
our method, in which the removed structures are successfully
filled in. In Fig. 6(e), we also present the results of the most
related algorithm in [22]. The structures in rectangles are not
perfectly recovered compared with our results. The keys to the
success of our method in completing the complex structures
are that, first, the sparsity-based priority better controls the
filling order of patches. Second, the patch sparse representation
improves the generalization ability of examplars over the single
best match examplar used in [22].

Fig. 7 gives an example to illustrate the number of nonzero
coefficients for 200 patches in the missing region of the second
example in Fig. 8. It is shown that only sparse number of candi-
date patches are selected adaptively due to the sparseness con-
straint on the coefficients. That is the key difference to the pre-
vious work that a single best match patch or the combination
of constant number of patches are used. The quantitative advan-
tage of this sparse representation over the previous methods will
be shown in Section I1V-B.

-

(15)

IV. EXPERIMENTS AND COMPARISONS

In this section, we test the proposed examplar-based patch
propagation algorithm on a variety of natural images. We apply
our algorithm to the applications of scratch/text removal, object
removal and block completion. In these examples, we compare
ouralgorithmwiththe previousdiffusion-based, examplar-based,
and sparsity-based inpainting algorithms. In the following
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using structure sparsity.

Fig. 4.

priority.
Output: The inpainted image.

Input: Image I with the unknown (or target) region Q.

Step 1: For each pixel p on the fill-front 02, compute the similarities of patch ¥, with its
neighboring patches {V,, }ij N,(p) in the source region. Then compute the patch priority

Step 2: Iterate the following operations until the unknown region is completed:
o Select the patch ¥ with the highest patch priority on the fill-front.
o Inpaint the selected patch ¥ using patch sparse representation by the algorithm in

o Update the fill-front, and the missing region 2. For each newly-apparent pixel on
the fill-front, compute its patch similarities with the neighboring patches and its patch

Fig. 5. Examplar-based inpainting algorithm by patch sparsity.

(@) (b) (c)

(d) (e) (f)

Fig. 6. Examples of inpainting. (a) Input images with unknown regions. (b)—(d) The inpainting process and the final results of our method. (e) The results of

method in [22]. (f) Ground-truth images.
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Fig. 7. Number of nonzero components for 200 patches in the second example
of Fig. 8.

examples, if not specially stated, the size of patch is set to
7 x 7, the size of neighborhood (i.e., N(p around p in (1))
for computing patch similarities is set to 51 x 51, the error
tolerance € in (10) is set to 25 times of the number of pixels

in a patch, and the number of candidate patches N is set
to 25.

A. Experiments and Comparisons for Scratch and Text
Removal

We now compare the proposed inpainting algorithm with the
previous diffusion-based and examplar-based inpainting algo-
rithms for scratch and textremoval. Due to the over-smoothing ef-
fect of diffusion-based approach for texture inpainting, we select
the simultanous texture and structure inpainting algorithm [10] as
animproved version of the diffusion-based approach for compar-
ison. The simultanous texture and structure inpainting algorithm
performs inpainting in the texture layer and structure layer simu-
tanously. In our implementation, the structure/texture decompo-
sition method and the inpainting method in the structure layer are
chosen as the same methods in the original paper [10]. However,
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Fig. 8. Comparison for scratch and text removal. The first row shows five original images. In the remaining five rows, the first to the fifth columns show the
degraded images, results of simultaneous texture and structure inpainting approach [10], the Criminisi’s examplar-based approach [22], Wong’s examplar-based
approach [13], and our proposed approach. PSNR values of the inpainted image and its each color channel (shown in bracket for channels) are presented

for each result.

the texture layer is inpainted by Criminisi’s examplar-based al-  ture systhesis method [9] used by the original paper [10]. We will
gorithm [11], which is better for texture inpainting than the tex-  also compare our algorithm with Criminisi’s examplar-based al-
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EFFECT OF PATCH SPARSITY ON INPAINTING PERFORM-I:;AI\EII;I?\AIEASURED IN PSNR. THE EXAMPLES ARE FROM FIG. 8
Examples | Wong[13] | Crim[21] | Crim_Sparl Crim_Spar2 | Spar_Crim Spar

(a) 20.89 16.47 21.67 23.48 18.22 23.89
(b) 20.48 18.40 19.92 20.31 18.81 20.62
(c) 23.32 21.55 22.63 22.65 21.69 23.83
(d) 24.57 23.40 23.37 26.12 25.64 28.20
(e) 24.80 21.21 23.50 25.07 23.31 25.57

mean 22.81 20.26 22.22 23.53 21.53 24.42

gorithm [11], [22] and Wong’s examplar-based algorithm [13],
which are most related to our work.

Fig. 8 presents five examples for scratch and text removal.
The first row are the original nondegraded images. In the re-
maining rows, from the first to the fifth columns are the de-
graded images, results of simultanous texture and structure in-
painting algorithm [10], examplar-based inpainting algorithm
[11], [22], Wong’s examplar-based inpainting algorithm [13],
and the proposed algorithm. Peak signal-to-noise ratio (PSNR)
between the inpainted images and the original images are mea-
sured for qualitative comparison. Furthermore, PSNR values in
each color channel (R, , B are also presented in the brackets.

As shown in Fig. 8, the Criminisi’s algorithm produces sharp
inpainting results shown in the third column. However, due to
the fact that only a single best match patch is used, some un-
pleasant artifacts are introduced in the results. For example, the
unwanted structure appears within the red rectangle of Crim-
inisi’s result in the second row of Fig. 8. The Wong’s algorithm
produces more pleasant results because more candidate patches
are combined. For example, the unwanted structure shown in the
red rectangle is alleviated in the result of Wong’s algorithm. The
simultaneous texture and structure inpainting algorithm well re-
covers the texture and structure of the images, and achieves high
PSNR values. However, it introduces blurring effect along struc-
ture caused by diffusion, which was also observed in [11]. For
our proposed algorithm, the patch priority is defined more ro-
bustly, and the candidate patches are adaptively combined in the
framework of sparse representation, it achieves sharp and con-
sistently better inpainting results with the best PSNR values.

B. Effect of Patch Sparsity on Inpainting Performance

In this section, we quantitatively justify the improvement of
inpainting performance caused by structure sparsity and patch
sparse representation. To this end, we take the traditional Cri-
minisi’s examplar-based inpainting algorithm [22] as the base-
line, then measure the performance improvement after replacing
isophote-based priority [22] by structure sparsity based priority
or(and) replacing the texture synthesis based patch inpainting
[22] by the sparse representation based patch inpainting.

Table | presents the performances of six inpainting algo-
rithms: Wong’s examplar-based algorithm [13] (Wong), Crim-
imisi’s examplar-based algorithm [22] (Crim), the approach
using isophote-based priority and sparse representation based
patch inpainting model in [44] (Crim_Sparl), the approach
using isophote-based priority and sparse representation based
patch inpainting model in (10) (Crim_Spar2), the approach
using structure sparsity based priority and texture synthesis

based patch inpainting (Spar_Crim), and the proposed in-
painting algorithm using patch sparsity (Spar). It is shown that,
the mean performances of Spar_Crim and Crim_Spar2 gain
1.27 and 3.27 dB over the baseline respectively. This implies
that the patch inpainting using sparse representation model in
(10) contributes more to the performance improvement than
the structure sparsity based priority. If updating both of patch
priority and patch inpaining by the proposed patch sparsity,
the performance of Spar gains 4.16 dB over the baseline. The
results of Wong’s algorithm [13] gain 2.55 dB in mean perfor-
mance over the baseline which is lower than (Crim_Spar2). The
inpainting model in [44] utilizes the isophote-based priority and
the sparse representation model without local patch consistency
constraint, so the performances of Crim_Sparl are significantly
worse than the performance of Crim_Spar2 and Spar.

C. Experiments and Comparisons for Object Removal

We now apply the proposed algorithm to inpaint the missing
region after object removal. We also compare the proposed al-
gorithm with the related examplar-based inpainting algorithms.
See Fig. 9 for examples. The first and second columns are the
original images and the degraded images. The third to the fifth
columns are the results of Criminisi’s algorithm [22], Wong’s
algorithm [13] and our proposed algorithm. In the results of Cri-
minisi’s algorithm, the inpainted patches are not always consis-
tent with the surrounding textures, for example the texture of
trees occurs in the texture of water in the first example, and tex-
ture of grass appears in the texture of rock in the third example.
The Wong’s algorithm uses several top best examplars to infer
the unknown patch, so the results have less effect of patch incon-
sistency. However, it introduces smooth effect as shown in the
results. As for the proposed algorithm, local patch consistency
is constrained, so the inpainted patches are more consistent with
the surrounding textures. In addition, the patch is inferred by the
sparse combination of candidate patches, so the results have rare
smooth effect in appearance.

In Fig. 10, we compare our algorithm with the semi-automatic
inpainting algorithm [45] and the Criminisi’s algorithm in [22]
on the examples from [45]. The semi-automatic inpainting al-
gorithm [45] resolves the structure ambiguity in the missing re-
gion by utilizing the human-labeled structures as the guidance,
and achieves state-of-the-art results for completing the highly
complex structures. In the first example, our method automati-
cally completes the large missing region after removing the car,
and the result is comparable to the result in [45], which uses
human-labeled structures as guidance. In the second example,
the structures hidden by the horse are reasonably recovered by
the algorithm in [45] guided by the labeled structures. However,
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Fig. 9. Comparison for object removal (please refer to the color images in the electronic version for better comparison). (a) The original image. (b) The degraded
image. (c)—(e) The results of Criminisi’s examplar-based algorithm [22], Wong’s examplar-based algorithm [13], and our examplar-based algorithm. Our algorithm
achieves sharp inpainting results more consistent with the surrounding textures or structures.

(@ )

Fig. 10. Comparison on the examples in [45] (please refer to the color images in the electronic version for better comparison). (b), (c) Human labeled structures
and the completion results from [45]. (a) Original images. (b) Unknown regions and human provided structures. (c) Results of structure propagation. (d) Our results.

(e) Results of algorithm in [22].

our algorithm only recovers the horizontal structures and fails
to recover the vertical fence structures which are totally hidden
by the object. This shows a limitation of our algorithm, i.e., it
cannot recover the missing structures without any structure cue
in the known region. In both examples, our results are signifi-
cantly better than the results of algorithm in [22], in which the
completion results are not visually pleasant.

We also compare our method with the fragment-based
method [16] on two challenging examples presented in [16],

and the results are shown in Fig. 11. Both of the fragment-based
method [16] and our proposed method achieve visually pleasant
results in the first example. In the second example, the contour
of apple in the result of [16] is blurry and not visually pleasant.
However, our method recovers sharp and reasonable contour
of apple compared with the original image before removal.
The reason is that the sparse combination of patch examplars
extends the representation ability of examplars and preserves
the sharpness of structure at the same time.
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Fig. 13. Effect of the number of candidate patches () on inpainting quality. The left figure shows the PSNR values of inpainting results for the five examples in

Fig. 8 with different
when

on the fill-front in each iteration, and the similarities are also
used for the computation of local patch consistency constraint in
(7). On the other hand, only a small subset of candidate patches
are used for the optimization of sparse representation model,
which deceases its computational overhead. It takes 103 s to
fill in the missing region with 5310 missing pixels in the first
example of Fig. 6 using C++ programming language on Intel
2.0GHz CPU.

V. CONCLUSION

This paper proposed a novel patch propagation based in-
painting algorithm for scratch or text removal, object removal
and missing block completion. The major novelty of this work
is that two types of patch sparsity were proposed and intro-
duced into the examplar-based inpainting algorithm. This was
inspired from the recent progress of the research in the fields of
image sparse representation and natural image statistics.

Structure sparsity was designed by measuring the sparseness
of the patch similarities in the local neighborhood. The patch
with larger structure sparsity, which is generally located at the
structure, tends to be selected for further inpainting with higher
priority. On the other hand, the patch sparse representation was
proposed to synthesize the selected patch by the sparsest linear
combination of candidate patches under the local consistency
constraint. Experiments and comparisons showed that the pro-
posed examplar-based patch propagation algorithm can better
infer the structures and textures of the missing region, and pro-
duce sharp inpainting results consistent with the surrounding
textures.

In the future, we will further investigate the sparsity of nat-
ural images at multiple scales and orientations, and apply it to
the image inpainting, super-resolution and texture synthesis. We
are also interested in incorporating the human-labeled struc-
tures into our framework in order to recover the totally removed
structures.

. The right figure shows the mean PSNR values with different

. The inpainting algorithm is stable to , and achieves the highest quality
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