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Three-Mode Squeezing of Simultaneous and Ordinal
Cascaded Four-Wave Mixing Processes in Rubidium Vapor

Wei Li, Changbiao Li, Mengqi Niu, Binshuo Luo, Irfan Ahmed, Yin Cai,*
and Yanpeng Zhang

Multipartite quantum correlation plays a vital role in potential applications of
quantum technologies. In this paper, using energy-level cascaded four-wave
mixing (EC-FWM) process, a scheme to produce quantum correlated
three-mode light beams within a single device of hot atomic medium of
rubidium is proposed. Two- and three-mode amplitude, phase quadrature
squeezing and intensity difference squeezing using energy-level simultaneous
cascaded FWM (ESC-FWM) method and energy-level ordinal cascaded FWM
(EOC-FWM) method, respectively, is theoretically reported. Via investigating
their covariance matrix properties, the comparison has been made between
the two methods, which shows the ESC-FWM method has a more stable
mode structure than EOC-FWM method. Moreover, versatile gain dependent
squeezing via EC-FWM is studied and analytical expressions are given. These
results show a simplified and efficient experimental scheme producing
multipartite quantum correlation among multiple spatially separated beams.

1. Introduction

Squeezed and entangled optical fields are essential resources
in quantum metrology and quantum information.[1] In the dis-
crete variable regime, spontaneous parametric down-conversion
(SPDC) generates correlated photon.[2–8] In a continuous-variable
regime, four-wave mixing (FWM) process has several strengths
compared with SPDC in practical implementation. For exam-
ple, it does not need a cavity to the system and has strong
nonlinearity, spatially separated correlated beams and so on.
The parametric amplification FWM (PA-FWM) process produces
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narrow-band bright entangled light
beams.[9–14] And the FWM process in the
rubidium (Rb) atomic system is one of
proven candidates for the generation of
correlated twin beams.[15–24]

Multimode quantum states (MQS)
are considered as an essential resource
for a fundamental test of quantum
physics,[25–28] and have attracted consid-
erable attention.[29,30] The reliable meth-
ods based on the FWM process for
generating MQS have been theoretically
proved and experimentally implemented
in the different kinds of systems.[31–37]

For example, cascaded FWM processes
in two Rb cells has been used to gener-
ate triple correlated beams between sig-
nal and idler.[36,37] And using two pump
beams of the same frequency to cascade
FWM processes to generate multimode
quantum correlated beams.[38–43]

Recently, the dressed fields are employed to enhance the de-
gree of squeezing[44,45] and generate the MQS based PA-FWM
process. Inspired by previous work, in this paper, we propose a
different scheme, that is, energy-level cascaded FWM (EC-FWM)
process to produce MQS in a single Rb cell. Two pump beams
with different frequencies and one probe beam are employed to
create two PA-FWM processes. Two generation paths may ex-
ist for these two processes, that is, simultaneous generation and
ordinal generation. Therefore, we consider energy-level simulta-
neous cascaded FWM (ESC-FWM) method model and energy-
level ordinal cascaded FWMmethod (EOC-FWM)methodmodel
to investigate two- and three-mode amplitude, phase quadrature
squeezing and intensity difference squeezing (IDS) of EC-FWM
process. In the ESC-FWM (EOC-FWM) method, PA-FWM1 and
PA-FWM2 processes occur simultaneously (sequentially). In-
stead of cascaded FWM processes in the two Rb cells,[36,37] here
we require only a single Rb cell making setup simple with less
optical loss thus enhancing squeezing limit.[36] Our scheme can
intrinsically generate three colors entangled triple beams with
spatially asymmetric structures.
This paper is constructed as follows. In section 2, EC-FWM

process is briefly introduced. In section 3, we use amplitude,
phase quadrature squeezing to characterize multimode squeez-
ing existing in this system Various combinatorial squeezing
among the output of the triple beams are deduced and a com-
parison between these twomethods (ESC-FWM and EOC-FWM)
has been achieved based on the results. In section 4, IDS is also
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Figure 1. a) Spatial phase matching schematic. b) Energy-level diagram
for the three levels configuration inD1 line of 85Rb of the EC-FWMprocess.
c) The EC-FWMprocess can decompose into two PA-FWMprocesses. (c1)
PA-FWM1 process is one of most popular candidates for the generation
of quantum correlated twin beams. (c2) Based on PA-FWM1 process, an-
other pump beam E3 is blue detuned by ∆3 about 0.7 GHz, converge in
the Rb cell, and PA-FWM2 process will generate.

discussed, we investigate the difference between ESC-FWM and
EOC-FWMwith the influences of G1 and G2. Finally, a brief con-
clusion is given in section 5.

2. EC-FWM Process

We consider the three-level “double-Λ” type atomic system in D1
line of 85Rb to generateMQS.[46] The spatial experimental config-
uration of the scheme is as seen in Figure 1a, three beams, that
is, two pump beams with different frequencies E1, E3, and one
probe beam E2 converge in the Rb cell and generate three spa-
tially separated and quantum correlated beams, that is, ES1, ES2,
and ES3. The three relevant energy levels are 5S1/2, F = 2 (|1>),
5S1/2, F = 3 (|2>), and 5P1/2 (|3>) in

85Rb (see Figure 1b). TheΔ′1
and Δ1 are the frequency detuning of the E1 field from the tran-
sitions |2〉→|3〉 and |1〉→|3〉, respectively. TheΔ3 is frequency de-
tuning of the E3 field from the transitions |1〉→|3〉. In practice,
one could employ a 3 cm long rubidium cell at 130 °C, provid-
ing an appropriate gain and low background noise to generate
quantum correlation and squeezing among the three generated
beams.
In this scheme, the three energy levels system contain two cas-

caded PA-FWMs. First, as seen Figure 1c, a strong pump beam

E1 with more than 100 milliwatts (frequency 𝜔1, wave vector k1,
Rabi frequency G1, vertical polarization) is blue detuned by ∆1
about 1.5 GHz to couple theD1 line transition. And a weak beam
E2 with about tens of microwatts (𝜔2, k2, G2, horizontal polariza-
tion) is blue detuned by∆′1 about 4.5GHz towork as a probe field
which propagates at E1 direction with an angle of 0.5° in the hor-
izontal plane as shown in Figure 1a. When the phase-matching
condition (kS1+kS2 = 2k1) are met, the PA-FWM1 process will
occur in the system. This process is also one of most used can-
didates for the generation of quantum correlated twin beams.[15]

Then, another strong pump field E3 with about tens of milliwatts
(𝜔3, k3, G3, vertical polarization) is blue detuned by ∆3 about 0.7
GHz to couple the transition |1> to |3>, which propagates at E1
direction with an angle of 0.25° in the vertical plane, and generate
non-degenerate ES3 of PA-FWM2process as shown in Figure 1c2.
As one of the two pump beams and the signal beam are shared,
these two processes are connected by ES2 signal and are thus cas-
caded together to form EC-FWM process. To cascade PA-FWM1
and PA-FWM2 processes in a single Rb cell, the angle between
the two pump beams and the probe beam are crucial, which need
be adjusted to satisfy the phase matching conditions of the two
PA-FWM processes. In practice, one optimizes the angle via ob-
serving the intensities of the three generated beams. Moreover,
for measurements, the pump light E1 and E3 can be filtered by
a polarizing beam splitter, and newly generated ES1, ES2, and ES3
signals are spatially separated and can thus be detected by three
homodyne detection apparatuses.
However, these two cascaded PA-FWM processes (PA-FWM1:

kS1+kS2 = 2k1 and PA-FWM2: kS2+kS3 = k1+k3) may exist two
generation paths. i) The probe beam E2 is seeded into PA-FWM1
and 2 processes simultaneously, so PA-FWM1 and 2 processes
occur simultaneously; ii) The probe beam (E2) is first seeded into
PA-FWM1 process. After being amplified, it is seeded into PA-
FWM2 process, so PA-FWM1 and 2 processes occur ordinally.
This case is similar with the cascaded FWM process in two Rb
cells. In the next section, we theoretically calculate squeezing
properties using energy-level simultaneous cascaded four-wave
mixing (ESC-FWM) method and energy-level ordinal cascaded
FWM (EOC-FWM) method.
Quantum correlated beams, that is, ES1, ES2, and ES3 sig-

nals, are generated from double cascaded (𝜒 (3)
1 and 𝜒

(3)
2 are

the corresponding third-order nonlinear susceptibilities) PA-
FWM processes, which can be described by their perturba-

tion chains as𝜌(0)22
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𝜔3
←←←←←←←←←→ 𝜌

(3)
32(S3) (ES3), respectively. So, the density matrix of

ES1, ES2, and ES3 signals can be given by

𝜌
(3)
32(S1) = iG2

1GS2∕d32d12d′321 (1a)

𝜌
(3)
31(S2) = iG2

1GS1∕d311d211d′311 + iG1G3GS3∕d312d212d′312 (1b)

𝜌
(3)
32(S3) = iG1G3GS2∕d32d12d′322 (1c)

where d32=Γ32+iΔ′1, d12=Γ12+i(Δ′1−ΔS2), d′321=Γ32+
i(Δ1−ΔS2+Δ′1), d311=Γ31+iΔ1, d211=Γ21+i(Δ1−ΔS1),
d′311=Γ31+i(Δ1−ΔS1+Δ′1), d312=Γ31+iΔ3, d212=Γ21+i(Δ1 −ΔS3),
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d′312=Γ31+i(Δ1−ΔS3+Δ′1), d′322=Γ32+ i(Δ3−ΔS2+ Δ′1) with ΔS1,
ΔS2, and ΔS3 representing the frequency detuning of the ES1,
ES2, and ES3 signals, and Γij = (Γi+Γj)/2 is the de-coherence rate
between |i〉 and |j〉, Gi =mijEij/h̄, mij is the dipole momentum.
EC-FWM process has the advantages of simple experimental
implementation and spatially separated beams. Moreover, as
two pump fields are employed within a single Rb cell, EC-FWM
process can generate multiple quantum correlated beams with
lower loss and more adjustable parameters.

3. Amplitude Quadrature Squeezing and Phase
Quadrature Squeezing

3.1. ESC-FWM Method

First, we consider that a probe beam E2 is seeded into PA-FWM1
and PA-FWM2 processes simultaneously, one can consider this
system configuration as ESC-FWMmethod, whose Hamiltonian
can be written in a good approximate as

HI = iℏ𝜅1â
†
1â

†
2 + iℏ𝜅2â

†
2â

†
3 +H.c. (2)

where â†1, â†2, and â†3 represent the photon creation oper-
ators of the output modes; 𝜅1 = −i𝜛1𝜒

(3)
1 E1

2∕2c and 𝜅2 =
−i𝜛2𝜒

(3)
2 E1E3∕2c are the interaction strengths of the PA-FWM1

and PA-FWM2 processes, respectively, which includes the non-
linear response of themedia and governs the expected conversion
rate of PA-FWMprocess;𝜛i is the central frequency of generated
signals; H.C is Hermitian conjugate.
The boson-creation (-annihilation) operator satisfies the

Heisenberg operator of motion in the dipole approximation.
Therefore, the dynamic equation of the system can be written:

dâ1
dt

= 𝜅1â
†
2,

dâ2
dt

= 𝜅1â
†
1 + 𝜅2â

†
3,

dâ3
dt

= 𝜅2â
†
2 (3)

After the operation of the time evolution equation, the final
input–output relation of ESC-FWMmethod is written by:

â1out =
a2 +

√
G

1 + a2
â1in +

√
g

1 + a2
â†2in +

a
(√

G − 1
)

1 + a2
â3in (4a)

â2out =
√

g
1 + a2

â†1in +
√
Gâ2in + a

√
g

1 + a2
â†3in, (4b)

â3out =
a
(√

G − 1
)

1 + a2
â1in + a

√
g

1 + a2
â†2in +

1 + a2
√
G

1 + a2
â3in, (4c)

where a = 𝜅2∕𝜅1 represents the interaction strength ratio of the
PA-FWM1 and PA-FWM2 processes, the a can be controlled by
the introduction of a dressing field to regulate the 𝜒 (3) or by the
pump power ratio of E1 and E3. G = cosh2(Ωt), g = sinh2(Ωt), G
and g are the total intensity gain of ESC-FWM method, and Ω =√

𝜅21 + 𝜅22 . â2in is the coherent input, and â1in, â3in are the vac-
uum input. â2out is the amplified signal beam and â1out, â3out are

the generated idler beams from ESC-FWMmethod. On the basis
of amplitude quadrature operators X̂ = â + â† and phase quadra-
ture operators P̂ = i(â† − â), Equations (4a–c) can be rewritten:

⎛⎜⎜⎜⎝
X̂1out

X̂2out

X̂3out

⎞⎟⎟⎟⎠ = UX

⎛⎜⎜⎜⎝
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X̂3in

⎞⎟⎟⎟⎠ (5)

⎛⎜⎜⎜⎝
P̂1out
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P̂3out

⎞⎟⎟⎟⎠ = UP

⎛⎜⎜⎜⎝
P̂1in
P̂2in
P̂3in

⎞⎟⎟⎟⎠ (6)

where

UX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 +
√
G

1 + a2

√
g

1 + a2

a
(√

G − 1
)

1 + a2√
g

1 + a2
√
G a

√
g
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a
(√

G − 1
)

1 + a2
a
√

g
1 + a2

1 + a2
√
G

1 + a2
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, (7)

UP =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a2 +
√
G

1 + a2
−
√

g
1 + a2

a
(√

G − 1
)

1 + a2

−
√

g
1 + a2

√
G −a

√
g

1 + a2

a
(√

G − 1
)

1 + a2
−a

√
g

1 + a2
1 + a2

√
G

1 + a2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

Obviously, we can realize from Equations (7) and (8) that the
system does not coupleX̂andP̂quadrature of the fields, which
means that there is no related items between theX̂ and P̂, and
one can treat them independently. Besides, if the input beams
are vacuum or coherent states, we can use the covariance matrix
to fully express the system because the system’s global transfor-
mation is symplectic and it retains Gaussian statistics.[47] So the
covariance matrix of ESC-FWMmethod can be written:

C =

(
CXX 0

0 CPP

)
, (9)

where CXX and CPP respectively represent the amplitude and
phase quadrature parts of the covariance matrix of the ESC-
FWM method. Off-diagonal elements of the covariance ma-
trix are all zero, suggestingX̂andP̂quadrature are not coupled.
We define CXX = ⟨X̂1out, X̂2out, X̂3out⟩T⟨X̂1out, X̂2out, X̂3out⟩ and CPP =⟨P̂1out, P̂2out, P̂3out⟩T⟨P̂1out, P̂2out, P̂3out⟩. Because the variances of co-
herent and vacuum input modes are normalized to one, subse-
quently we can deriveCXX = UX ·UT

X andCPP = UP ·U
T
P . Because

the experimental conditions such as the power and angle of the
input beam are set up, the a usually barely change in ESC-FWM
method, so we set the a to constant 1 in Equations (7) and (8) for
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Figure 2. Eigenmodes of the ESC-FWMmethod, decomposed in the FWM
output mode basis, for three different gain values. For each graph, the
bars represent the relative weight of modes â1out â2out, â3out respectively.
Below are given the noise variances eigenvalue of the corresponding X̂
quadrature and P̂ quadrature.

obtaining equal interaction strength of two PA-FWM processes.
Finally, we can get:

CXX =

⎛⎜⎜⎜⎜⎝
G

√
2Gg g√

2Gg G + g
√
2Gg

g
√
2Gg G

⎞⎟⎟⎟⎟⎠
, (10)

CPP =

⎛⎜⎜⎜⎜⎝
G −

√
2Gg g

−
√
2Gg G + g −

√
2Gg

g −
√
2Gg G

⎞⎟⎟⎟⎟⎠
(11)

The covariance matrix can characterize the relationship be-
tween the amplitude and phase quadrature components of the
three output modes.[48] As the system is pure state, we can get
the eigenmodes of the system by diagonalizing the covariance
matrix, and each eigenmode is a given linear combination of the
output modes of ESC-FWMmethod.
When we set G = 1.44, 4, or 16, respectively in Equations (10)

and (11), we can obtain the corresponding eigenvalues and eigen-
modes of CXX and CPP.
As the results in Figure 2 suggest, for instance when the

gain G = 1.44, the eigenmodes of CXX are (0.5, −0.7071, 0.5),
(−0.7071, 0, 0.7071), (0.5, 0.7071, 0.5), which have been normal-
ized. Corresponding eigenvalues are 0.288, 1.0, 3.47, and the de-
gree of squeezing of these eigenvalues are −5.4, 0, 5.4 dB, re-
spectively, which means that the system is made up of only two
squeezed eigenmodes (Eigenmode 1 and 3) and one vacuum
eigenmode (Eigenmode 2). Interestingly their relative weight of
modes (â1out, â2out, â3out) does not change with gain G as shown
in Figure 2. This shows a stable mode structure in this system,
suggested by simultaneous PA-FWM1 and PA-FWM2 processes.

Table 1. Amplitude and phase quadrature squeezing of ESC-FWMmethod
between two output beams when set G to 1.44.

X(dB) G = 1.44 P(dB) G = 1.44

Var(X2−X1) −2.72 Var(P2−P1) 4.45

Var(X2+X1) 4.45 Var(P2+P1) −2.72

Var(X2−X3) −2.72 Var(P2−P3) 4.45

Var(X2+X3) 4.45 Var(P2+P3) −2.72

Var(X3−X1) 0 Var(P3−P1) 0

Var(X3+X1) 2.74 Var(P3+P1) 2.74

As shown in Figure 2, by comparing this two quadrature, that
is,X̂quadrature andP̂quadrature, we can see that they have the
same eigenmodes but with inverse eigenvalues, because CXX is
merely the inverse of CPP. It should be noted that three eigen-
modes are uncorrelated, so any other output mode can consist
of these three eigenmodes. Subsequently, we can get the ampli-
tude quadrature squeezing between two output modes and three
output modes by combining linearly these three eigenmodes,

Var(Xi − Xj) = 𝛽TCXX𝛽, (12)

where 𝛽 is the normalized output mode we want to calculate,
for example, the 𝛽 of Var(X2−X1) is (−1∕

√
2, 1∕

√
2, 0)T . In order

to facilitate understanding, the calculations of the entire paper
are normalized. For the covariance matrix of CXX, we can always
find a unitary transformation 𝜎, makes CXX = 𝜎T𝜆𝜎, so the Equa-
tion (12) can be derived as:

Var(Xi − Xj) = 𝛽T𝜎T𝜆𝜎𝛽, (13)

where 𝜎 is the eigenmode of CXX, 𝜆 is corresponding eigenvalue.
So the amplitude quadrature squeezing of Var(X2−X1) can be
calculated as −2.72 dB. Equivalent definition applies for phase
quadrature squeezing Var(Pi−Pj). we can theoretically measure
the two-mode amplitude and phase quadrature squeezing.
As shown in Table 1, degree of two-mode amplitude quadra-

ture squeezing Var(X2−X1) and Var(X2−X3) is smaller than zero,
and interestingly they have the same squeezing values −2.72
dB, showing a good symmetry system. The degree of squeezing
correspondingX̂quadrature andP̂quadrature between two conju-
gate beams (â1out and â3out) is zero as shown in Table 1, it shows
that there is no squeezing.
Then, we fully consider these eight cases of three-mode ampli-

tude and phase quadrature squeezing. The amplitude quadrature
squeezing of Var(X2−X1−X3) is smaller than zero, showing that
three-mode squeezing exists. From Table 2, the output modes
with opposite sign correspond to same mode, so they must have
the same squeezing value. For example, the amplitude quadra-
ture squeezing of Var(X2−X1−X3) and Var(X1+X3−X2) is both
−4.21 dB. So we can calculate the value of only top four of these
cases in Table 2, and the rest four can be predicted.

3.2. EOC-FWM Method

Now we consider PA-FWM1 (kS1+kS2 = 2k1) process and
PA-FWM2 (kS2+kS3 = k1+k3) process occur sequentially unlike
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Table 2. Amplitude and phase quadrature squeezing of ESC-FWMmethod
between three output beams when set G to 1.44.

X(dB) G = 1.44 P(dB) G = 1.44

Var(X2−X1−X3) −4.21 Var(P2−P1−P3) 5.29

Var(X2+X1+X3) 5.29 Var(P2+P1+P3) −4.21

Var(X2−X1+X3) 1.12 Var(P2−P1+P3) 1.12

Var(X2+X1−X3) 1.12 Var(P2+P1−P3) 1.12

Var(X1+X3−X2) −4.21 Var(P1+P3−P2) 5.29

Var(−X2−X1−X3) 5.29 Var(−P2−P1−P3) −4.21

Var(X1−X2−X3) 1.12 Var(P1−P2−P3) 1.12

Var(X3−X2−X1) 1.12 Var(P3−P2−P1) 1.12

Figure 3. The theory structure diagram for the EOC-FWM method. In the
EOC-FWM method, PA-FWM1 and PA-FWM2 processes occur sequen-
tially. Es1 is the generated idler beam and Ev2 is an amplified signal beam
from the PA-FWM1 process. Es2 is the amplified signal beam and Es3 is
the generated idler beam from the PA-FWM2 process.

ESC-FWMmethod. As shown in Figure 3, a coherent probe beam
(E2) is seeded into PA-FWM1 process and generate correlated
twin beams (Es1 and Ev2). Amplified Ev2 beam is then seeded into
PA-FWM2 process. Finally, we can obtain three-mode correlated
beams (Es1,Es2, andEs3) through two ordinal PA-FWMprocesses.
Since PA-FWM1 and PA-FWM2 processes are not generated
simultaneously, so we can express separate Hamiltonian:

H1 = iℏ𝜅1â
†
1â

†
2 +H.c., (14a)

H2 = iℏ𝜅2â
†
2â

†
3 +H.c., (14b)

where 𝜅1 = −i𝜛1𝜒
(3)
1 E1

2∕2c and 𝜅2 = −i𝜛2𝜒
(3)
2 E1E3∕2c are the

same as the definition of ESC-FWM method, but the Hamilto-
nian of EOC-FWMmethod is different with ESC-FWMmethod.
The input–output relationship of EOC-FWMmethod is given by:

â1out =
√
G1â1in +

√
g1â

†
2in, (15a)

â2out =
√
g1G2â

†
1in +

√
G1G2â2in +

√
g2â

†
3in, (15b)

â3out =
√
g1g2â1in +

√
G1g2â

†
2in +

√
G2â3in, (15c)

where we define G1 = cosh2(𝜅1t), G2 = cosh2(𝜅2t) is the in-
tensity gain of the PA-FWM1 and PA-FWM2 processes, respec-

Figure 4. Eigenmodes of the EOC-FWM method, decomposed in the
FWM output mode basis, for three different gain values. For each graph,
the bars represent the relative weight of modes â1out, â2out, and â3out, re-
spectively. Below are given the noise variances eigenvalue of the corre-
sponding X̂ quadrature.

tively andGi − gi = 1.We can still rewrite the Equation (15a–c) for
theX̂quadrature andP̂quadrature, respectively

⎛⎜⎜⎜⎜⎝
X̂1out

X̂2out

X̂3out

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

√
G1

√
g1 0√

g1G2

√
G1G2

√
g2√

g1g2
√
G1g2

√
G2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
X̂1in

X̂2in

X̂3in

⎞⎟⎟⎟⎟⎠
, (16)

⎛⎜⎜⎜⎜⎝
P̂1out

P̂2out

P̂3out

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝

√
G1 −

√
g1 0

−
√
g1G2

√
G1G2 −

√
g2√

g1g2 −
√
G1g2

√
G2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
P̂1in

P̂2in

P̂3in

⎞⎟⎟⎟⎟⎠
. (17)

Similarly, the covariance matrix of the EOC-FWMmethod can
be obtained by using the same procedure as for Equation (9). It
is also block diagonal, and for coherent or vacuum input states
each block is given by

CXX =
⟨
UX3 mod e

UX3 mod e

T⟩ , (18)

CPP =
⟨
UP3 mod e

UP3 mod e

T⟩ , (19)

we set G1 = G2 to 1.2, 2, or 4 to obtain the corresponding eigen-
values and eigenmodes of CXX and CPP as follows
As Figure 4 suggests, we can see the degree of squeezing of

these three eigenvalues is (−5.4, 0, and 5.4 dB) forX̂quadrature
when G1 = G2 set to 1.2, which is same as ESC-FWM (see Fig-
ure 2) when G set to 1.44. This shows that their eigenvalues are
same when the two methods have the same pump power. Inter-
estingly, this system also consists of two independent squeezed
eigenmodes and a vacuum eigenmode, yet with different relative
weight of the modes â1out, â2out, â3out compared with the ESC-
FWMmethod. And the relative weight of modes â1out, â2out, â3out
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Table 3. Amplitude and phase quadrature squeezing of EOC-FWMmethod
between two and three output beams when set G1 = G2 to 1.2.

X(dB) G1 = G2 = 1.2 P(dB) G1 = G2 = 1.2

two-mode

Var(X2−X1) −2.47 Var(P2−P1) 4.34

Var(X2+X1) 4.34 Var(P2+P1) −2.47

Var(X2−X3) −2.97 Var(P2−P3) 4.56

Var(X2+X3) 4.56 Var(P2+P3) −2.97

Var(X3−X1) 0 Var(P3−P1) 0

Var(X3+X1) 2.74 Var(P3+P1) 2.74

three-mode

Var(X2−X1−X3) −4.21 Var(P2−P1−P3) 5.29

Var(X2+X1+X3) 5.29 Var(P2+P1+P3) −4.21

Var(X2−X1+X3) 1.35 Var(P2−P1+P3) 0.89

Var(X2+X1−X3) 0.89 Var(P2+P1−P3) 1.35

Var(X1+X3−X2) −4.21 Var(P1+P3−P2) 5.29

Var(−X2−X1−X3) 5.29 Var(−P2−P1−P3) −4.21

Var(X1−X2−X3) 1.35 Var(P1−P2−P3) 0.89

Var(X3−X2−X1) 0.89 Var(P3−P2−P1) 1.35

changes with gain G1 and G2 as shown in Figure 4, which is
different with the ESC-FWM method as shown in Figure 2.
This is mainly because PA-FWM1 and PA-FWM2 processes in
the ESC-FWM method occur simultaneously, so the whole sys-
tem has more stable mode structure compared with the non-
simultaneous cascaded system.
As the same procedure we did in the Equation (13), we can

get the two- and three-mode amplitude and phase quadrature
squeezing by combining linearly these eigenmodes.
By comparing Tables 1, 2, and 3, two-mode amplitude quadra-

ture squeezing Var(X2−X1) of EOC-FWM is −2.47 dB, smaller
than −2.97 dB of Var(X2−X3). But in ESC-FWM, Var(X2−X1)
has same value −2.72 dB with Var(X2−X3). This is mainly be-
cause in the ESC-FWM method, the distribution among the
modes â1out and â3outare same as shown in Figure 2. This re-
sults in Var(X2−X1) and Var(X2−X3) having the same value in the
ESC-FWM method. Three-mode amplitude quadrature squeez-
ing Var(X2−X1−X3) of EOC-FWM is −4.21 dB, same as that in
ESC-FWM.
More generally, the ESC-FWM and EOC-FWMmethods mod-

els have different Hamiltonians, which determine their quan-
tum characters. The Hamiltonian of the ESC-FWM method can
be written as HI = iℏ𝜅1â

†
1â

†
2 + iℏ𝜅2â

†
2â

†
3 +H.c. in Equation (2),

which means that these two PA-FWM processes occur simul-
taneously. Therefore, one can easily get the dynamic equations
as: dâ1∕dt = 𝜅1â

†
2, dâ2∕dt = 𝜅1â

†
1 + 𝜅2â

†
3, dâ3∕dt = 𝜅2â

†
2 given in

Equation (3). For the other case, two PA-FWM processes gen-
erate sequentially in the EOC-FWM method, which is analo-
gous to cascading two FWM processes in two separate cells.
The Hamiltonian of EOC-FWM method can be written in
a good approximate as H1 = iℏ𝜅1â

†
1â

†
2 +H.c., H2 = iℏ𝜅2â

†
2â

†
3 +

H.c. in Equation (14a,b), and the corresponding dynamic equa-
tions are: dâ1∕dt = 𝜅1â

†
2, dâ2∕dt = 𝜅1â

†
1, dâ2∕dt = 𝜅2â

†
3, dâ3∕dt =

𝜅2â
†
2. These Hamiltonians in the methods models fully deter-

mine the quantum states and quantum correlations among the

modes. For instance, via the two methods, although the squeez-
ing levels are close when the total gain is the same, the distribu-
tion of the quantum correlations among the modes are different.
Also, due to the unique Hamiltonians in these two methods, the
eigenmodes exhibit different modes combinations and squeez-
ing levels.

4. Intensity Difference Squeezing

4.1. ESC-FWM Method

Next, compared with the above amplitude and phase quadrature
squeezing, IDS can also be used to characterize the multimode
correlation existed in the EC-FWM process.
The input–output relationship of energy-level simultaneous

ESC-FWMmethod is given in Equation (4a,c). Subsequently, the
two-mode IDS could be written:

Sqi−j = 10 lg
Var

(
Ii − Ij

)
Var(Ii − Ij)SNL

, (20)

where photocurrents Ii = â†ioutâiout and Ij = â†joutâjout is the inten-
sity of output beams. Var(Ii − Ij) is the mean square deviation of
the intensity difference between Ii and Ij. Var(Ii − Ij)SNLis the cor-
responding shot noise limit (SNL), and it is equal to the sum of
the mean value of the output photon number. First, we consider
the degree of two-mode IDS.

Var
(
I2 − I1

)
= Var

(
â†2outâ2out − â†1outâ1out

)
=

[
ga4(

√
G−1)

2
+ga2(a2

√
G+1)

2
+(1+a2)

(
1+

√
Ga2

)2]
(1+a2)3

⟨
â†2inâ2in

⟩
,

(21)

Var
(
I2 − I1

)
SNL

=
[

g
(1 + a2)

+G
] ⟨

â†2inâ2in
⟩
. (22)

So the degree of IDS between â1out and â2out is given by

Sq2−1

= 10 lg
ga4(

√
G − 1)

2
+ ga2(a2

√
G+1)

2
+ (1 + a2)

(
1 +

√
Ga2

)2
g(1 + a2)2 +G(1 + a2)3

,

(23)

Equation (23) can evolve to Sq2−1 = −10 lg(2G − 1) as 𝜅2 = 0. The
result has been experimentally certified.[36,44]

Similarly, the other degrees of IDS between â2out and â3out, â1out
and â3out are given by

Sq2−3 = 10 lg

⎡⎢⎢⎢⎢⎢⎢⎣

ga2
(
1 −

√
G
)2

+ g
(√

G + a2
)2

G(1 + a2)3 + ga2(1 + a2)2

+
(
1 + a2

) (
G + a2

)2
G(1 + a2)3 + ga2(1 + a2)2

⎤⎥⎥⎥⎥⎥⎥⎦
, (24)
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Figure 5. The dependence of two-mode IDS a) Sq2−1 b) Sq2−3 b) Sq3−1 on gain G and a of the ESC-FWM method.

Sq3−1 = 10 lg

⎡⎢⎢⎢⎢⎢⎣

(1 − a2)2(1 + a2)g + (2a2+
√
G − a2

√
G)

2

(1 + a2)3

+
(a
√
G − a3

√
G − 2a)

2

(1 + a2)3

⎤⎥⎥⎥⎥⎥⎦
. (25)

When 𝜅2 = 0 as field E3 is off, Equations (24) and (25) degen-
erate toSq2−3 = 10 lg(2G − 1)and Sq3−1 = 10 lg(2G − 1), respec-
tively. Normally, the above results are always greater than 0 due
toG> 1. So, there is no IDS between â2out and â3out, â1out and â3out
When 𝜅2 = 0.
Based on Equations (23–25), Figure 5 shows the theo-

retical curves of two-mode IDS versus total gain G (G =
cosh2(

√
𝜅21 + 𝜅22 t)) and pump beam power ratio a (a = 𝜅2∕𝜅1) in

the ESC-FWM. Figure 5a shows the variation of two-mode Sq2−1
of PA-FWM2process withG and a. The degree of two-mode Sq2−1
increases with the G, but decreases with a. This is mainly be-
cause of the definitions of gain G and a. When a increases, 𝜅1
decreases, and theG1 = cosh2(𝜅1t) decreases correspondingly, so
the degree of two-mode Sq2−1 decreases, as shown in Figure 5a.
However, when gain G increases and a decreases, so the G1 in-
creases correspondingly and the degree of Sq2−1 increases, which
has been experimentally verified.[44] Figure 5b shows the varia-
tion of two-mode Sq2−3 of PA-FWM2 process with G and a. Ob-
viously, the degree of Sq2−3 increases with a. This is mainly be-
cause of the increase of a leads to the increase of G2 = cosh2(𝜅2t)
of PA-FWM2, increasing the degree of IDS of PA-FWM2. Fig-
ure 5c shows the variation of two-mode Sq3−1 between two idle
beams versus G and a. When a is equal to 1 which mean that
PA-FWM1 and PA-FWM2 processes have the same interaction
strength, the value of Sq3−1 is always 0, indicate that Var(I3 − I1)
is equal to Var(I3 − I1)SNL. But we cannot find that Sq3−1 is below
zero, this is because that â1outand â3out do not interact with each
other directly.
To verify the effect of G1 and G2 on IDS of ESC-FWMmethod

and comprehensively compare with the EOC-FWM method, the
total gain G and a in Equations (23–25) are divided into two in-
dependent gains G1 = cosh2(𝜅1t) and G2 = cosh2(𝜅2t), then we
set G1 or G2 to a certain value 1.2 respectively, and get depen-
dence of Sq2−1, Sq2−3, and Sq1−3 on the G1 (Figure 6a) and G2
(Figure 6b). The curve (a1) in Figure 6a shows that the degree
of Sq2−1 changes from anti-squeezing to squeezing as the G1 in-
creases. This ismainly because a increases withG1, therefore, the
degree of Sq2−1 increase with G1. But, the degree of Sq2−1 has an
opposite tendency as G2 increases as shown in curve (b1). Sim-
ilarly, the degree of Sq2−3 decreases with G1 but increases with
G2, as shown in curve (a2) and (b2). Also, whenG2 increases, the

Figure 6. a,b) The dependence of IDS (a1/b1) Sq2−1, (a2/b2) Sq2−3,
(a3/b3) Sq3−1 and intensity sum squeezing (a4/b4) Sq2+1, (a5/b5) Sq2+3,
(a6/b6) Sq3+1 on G1 (G2 = 1.2) and G2 (G1 = 1.2), respectively, for the
ESC-FWM method.

values of the gain G and a in Equation (25) increase, which will
cause an increase of the degree of Sq3−1, as shown in curve (b3).
And degree of Sq3−1 also has an opposite tendency asG1 increases
as shown in curve (a3). Especially, the degrees of intensity sum
squeezing Sq2+1, Sq2+3, Sq3+1 are all above the zero, and decreases
with the G1 and G2, showing there is no IDS at all.
Next, we further study the detailed relation in three-mode IDS,

we not only consider the IDS Sq2−1−3, but also we calculate other
squeezing cases, that is, intensity sum squeezing Sq2+1+3, and
combinatorial squeezing Sq2−1+3 and Sq2+1−3. First, we calculate
the degree of Sq2−1−3, the mean square deviation of the intensity
difference between the three outputs is:

Var
(
I2 − I1 − I3

)
= Var

(
â†2outâ2out − â†1outâ1out − â†3outâ3out

)
=
⟨
â†2inâ2in

⟩
,

(26)

and corresponding SNL is the sum of photon numbers of three
coherent laser beams.

Var
(
I2 − I1 − I3

)
SNL

=(2G − 1)
⟨
â†2inâ2in

⟩
, (27)

so, the degree of Sq2−1−3 is given by

Sq2−1−3 = 10 lg 1
(2G − 1)

, (28)

Similarly, the other degrees of three-mode IDS are given by

Sq2+1+3 = lg
(2G − 1)2+4G(G − 1)

(2G − 1)
, (29)
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Figure 7. The dependence of three-mode IDS a) Sq2−1−3, b) Sq2+1+3, c) Sq2−1+3, and d) Sq2+1−3 on G and a of ESC-FWM method.

Figure 8. a,b) The dependence of IDS (a1/b1) Sq2−1−3, (a2/b2)
Sq2+1+3, (a3/b3) Sq2−1+3 and (a4/b4) Sq2+1−3 on G1 (G2 = 1.2) and G2
(G1 = 1.2), respectively, for the ESC-FWM method.

Sq2−1+3 = 10 lg

⎡⎢⎢⎢⎢⎢⎣
4a2(G − 1)[a2(

√
G − 1)

2
+ (a2

√
G + 1)

2
]

(2G − 1)(1 + a2)3

+
(2a2G − a2 + 1)2(1 + a2)

(2G − 1)(1 + a2)3

⎤⎥⎥⎥⎥⎥⎦
, (30)

Sq2+1−3 = 10 lg

⎡⎢⎢⎢⎢⎢⎣
4(G − 1)[(a2 +

√
G)

2
+ a2(

√
G − 1)

2
]

(2G − 1)(1 + a2)3

+
(2G + a2 − 1)2(1 + a2)

(2G − 1)(1 + a2)3

⎤⎥⎥⎥⎥⎥⎦
. (31)

Subsequently, we can plot the squeezing level from Equa-
tions (28–31) in decibels as a function of G and a in
Figure 7. The result of Sq2−1−3 is shown in Figure 7a suggest-
ing that there is always three-mode IDS, and the squeezing de-
gree increases with the G, but not change with a, which means
that the degree of Sq2−1−3 depends only on the total pump power
and is independent of the proportional distribution between E1
and E3. As the Figure 7b shows, the squeezing degree of inten-
sity sum is always larger than zero, suggesting that there is al-
ways no squeezing. Figure 7c shows the variation of combina-
torial squeezing Sq2−1+3 with G and a. The degree of Sq2−1+3 in-
creases with G, but decreases with a, this is because when G in-
creases and a decreases, the 𝜅1 increases faster than 𝜅2, and the
gain G1 increases faster than G2 correspondingly, so the degree
of Sq2−1+3 increases. Figure 7d shows that the degree of Sq2+1−3
increases with a, but decrease withG, which is the opposite com-
pared with Sq2−1+3, this is mainly because G1 and G2 play differ-
ent effect to Sq2−1+3 and Sq2+1−3, respectively. The effects of G1
and G2 in more detail are given below.
Similar with Figure 6, we plot the squeezing level as a function

of the gain G1 (Figure 8a) and G2 (Figure 8b) by setting G2 and
G1 to a certain value of 1.2, respectively. As curves (a1) and (b1) in
Figure 8 show, when G1 and G2 increase (curves (a2) and (b2) in
Figure 8), theG in Equation (28) increases, leading to an increase

Table 4. The values of IDS corresponding to Sq2−1−3, Sq2+1+3, Sq2+1−3,
Sq2−1+3, respectively when G1 = G2 = 1.2 for ESC-FWM method.

Sq(dB) G1 = G2 = 1.2 Sq(dB) G1 = G2 = 1.2

I2−I1−I3 −2.67 I1+I3−I2 −2.67

I2+I1+I3 4.99 −I2−I1−I3 4.99

I2−I1+I3 2.18 I1−I2−I3 2.18

I2+I1−I3 2.19 I3−I1−I2 2.19

Figure 9. a,b) The dependence of IDS (a1/b1) Sq2−1, (a2/b2) Sq2−3,
(a3/b3) Sq3−1 and intensity sum squeezing (a4/b4) Sq2+1, (a5/b5) Sq2+3,
(a6/b6) Sq3+1 on G1 (G2 = 1.2) and G2 (G1 = 1.2), respectively, for the
EOC-FWM method.

of the degree of Sq2−1−3. Sq2+1+3 has opposite trend change as G1
and G2 increase (curves (a2) and (b2) in Figure 8). From curves
(a3) and (b3) in Figure 8, the degree of Sq2−1+3 increases with G1
but decreases with G2. In fact, PA-FWM1 process promotes the
degree of Sq2−1+3 but PA-FWM2 process suppresses. As shown
in curves (a4) and (b4), Sq2+1−3 has opposite trend change as G1
andG2 increases compared with Sq2−1+3. Sq2−1+3 and Sq2+1−3 can
never have IDS at the same time, this can be applied potentially
to quantum information encryption.
Then we consider the relationship between IDS and ampli-

tude, phase quadrature squeezing of the ESC-FWMmethod. We
can see from Table 4 that the output mode with opposite sign
has the same IDS value. This is same with amplitude and phase
quadrature squeezing from Table 2. From the left column in
Table 4, the values of Sq2−1−3, Sq2+1+3, Sq2−1+3, and Sq2+1−3 are
−2.67, 4.99, 2.18, and 2.19 dB, respectively, and they are differ-
ent with −4.21, 5.29, 1.12, and 1.12 dB in amplitude and phase
quadrature squeezing as shown in Table 2 under the same gain
condition. Because IDS is considered as intensity difference be-
tween outputs, and the relative weight of different outputs cor-
respond to their normalized power ratio. But in amplitude and
phase quadrature squeezing, the relative weight of outputs is all
normalized to equal to 1, which makes the difference between
IDS and amplitude and phase quadrature squeezing. In fact, both
of IDS and amplitude and phase quadrature squeezing can rep-
resent the squeezing properties of the system, and IDS is more
convenient to be measured on the experiment.
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Figure 10. The dependence of three-mode IDS (a) Sq2−1−3, (b) Sq2+1+3, (c) Sq2−1+3, c) Sq2+1−3, and (d) Sq2+1−3, on G1 and G2 of EOC-FWM method.

4.2. EOC-FWM Method

Further, we compare IDS between the case of EOC-FWMmethod
and ESC-FWMmethod. As PA-FWM1 and PA-FWM2 processes
occur ordinally, the Hamiltonian is approximately equivalent to
cascaded FWM processed in two separate cells. The expression
forms of the degree of two-mode IDS (Sq′2−1, Sq

′
3−1, and Sq

′
2−3) are

consistent with Ref. [37]. In practice, the intensity gainG2(∝ 𝜅2 ∝
𝜌
(3)
S2∕S3) depends on the two pumpfieldsE1 andE3. The reasonwhy
there is a slight difference between the ESC-FWM method and
the EOC-FWM method is that the cascading paths are different,
whose Hamiltonians are given by Equations (2) and (14).
To compare with the case of the ESC-FWMmethod and EOC-

FWMmethod, we also fix the gain of one of them respectively to
a certain value, and obtain the dependence of the degree of IDS
with G1 (Figure 9a) and G2 (Figure 9b). The results are similar
with that in ESC-FWMmethod as shown in Figure 6.
Then we investigate three-mode IDS. Using the same calcu-

lation procedure as in Equations (28–31), the following equation
can be obtained

Sq′2−1−3 = 10 lg 1
2G1G2 − 1

, (32)

Sq′2+1+3 = 10 lg
(2G1G2 − 1)2 + 4G1g1G2

2 + 4G1G2g2
2G1G2 − 1

, (33)

Sq′2−1+3 = 10 lg
(G1G2 +G1g2 − g1)

2 + 4G1g1g2
2 + 4G1G2g2

2G1G2 − 1
, (34)

Sq′2+1−3 = 10 lg
(G1 + g1)

2 + 4G1g1
2G1G2 − 1

, (35)

We plot the squeezing level from Equations (32–35) in deci-
bels as a function of the G1, G2 as shown in Figure 10. As shown
in Figure 10a,b,d, the degrees of Sq′2−1−3, Sq

′
2+1+3, and Sq

′
2+1−3 are

similar with that in ESC-FWMmethod as shown in Figure 7a,b,d.
It can be seen in Figure 10c, Sq′2−1+3 of EOC-FWM method has
smaller degree of IDS compared with the ESC-FWM method
(Figure 7c).
Under the same pump power condition as the ESC-FWM

method (see Figure 8), we can clearly see that Sq′2−1−3, Sq
′
2+1+3,

and Sq′2+1−3 have the similar results in Figure 11. Sq′2−1+3 has no
IDS when G2 set 1.2 as shown in the curve (a3) in Figure 11a3.
This further confirms, through EOC-FWM method, the squeez-
ing level of Sq′2−1+3 is less than that the ESC-FWMmethod. This
is mainly because compared with the EOC-FWM method, the
power ratio between different outputs in Sq2−1+3 in the ESC-FWM

Figure 11. a,b) The dependence of IDS (a1/b1) Sq2−1−3, (a2/b2)
Sq2+1+3, (a3/b3) Sq2−1+3 and (a4/b4) Sq2+1−3 on G1 (G2 = 1.2) and G2
(G1 = 1.2), respectively, for the EOC-FWM method.

Table 5. The values of IDS corresponding to Sq2−1−3, Sq2+1+3, Sq2−1+3, and
Sq2+1−3 respectively when G1 = G2 = 1.2 for EOC-FWM method.

Sq(dB) G1 = G2 = 1.2 Sq(dB) G1 = G2 = 1.2

I2−I1−I3 −2.74 I1+I3−I2 −2.74

I2+I1+I3 5.09 −I2−I1−I3 5.09

I2−I1+I3 2.55 I1−I2−I3 2.55

I2+I1−I3 1.91 I3−I1−I2 1.91

method is closer to the corresponding optimal squeezing eigen-
mode (see Eigenmode1 in Figures 2 and 4, respectively).
Then we also consider the relationship between IDS and am-

plitude, phase quadrature squeezing of the EOC-FWM method.
Similar with ESC-FWM method in Table 4, we can see that the
output mode with opposite sign have the same IDS value from
the left and right column in Table 5, this is also same with the
case of amplitude, phase quadrature squeezing from Table 3.
From the left column in Table 5, the values of Sq′2−1−3, Sq

′
2+1+3,

Sq′2−1+3 and Sq′2+1−3 are −2.74, 5.09, 2.55, and 1.91 dB respec-
tively, which are similar with amplitude quadrature squeezing,
−4.21, 5.29, 1.35, and 0.89 dB, under the same gain condition
from Table 3. In fact, both of IDS and amplitude and phase
quadrature squeezing can represent the squeezing properties of
the system.

5. Conclusion and Discussion

In conclusion, EC-FWM process is proposed to generate three-
mode squeezing in a single Rb cell, and we use two different
methods (ESC-FWMmethod and EOC-FWMmethod) to theoret-
ically investigate their squeezing and quantum correlations. The
three-mode squeezing can be efficiently produced andmodulated
via both methods. The eigenvalues and eigenmodes of the co-
variance matrix of the two methods are studied. We find, in both
methods, it always consists of two independent squeezed eigen-
modes and a vacuum eigenmode, and also the squeezing levels
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are close when employing same pump powers. Interestingly, the
eigenmodes structures of ESC-FWMmethod do not change with
modulating total gain G. This indicates the ratio of the interac-
tion strength in the two PA-FWM processes is constant, and thus
ESC-FWMmethod has a more stable mode structure than EOC-
FWM method. Besides, analytical expressions and detailed re-
sults of versatile squeezing are given and analyzed. As theHamil-
tonians determine the quantum states, the two methods exhibit
different squeezing results and quantum properties. Our work,
tightly connected to experiments, proposes a new asymmetric
scheme to produce three-mode squeezing based on EC-FWM
process in a single Rb cell. This scheme could achieve further
spatial expansion to realize four or more modes squeezing and
entanglement in a single device, and we could use the asymmet-
ric mechanism to actively control the number of mode outputs
and the quantum correlations among the modes without using
any beam splitters. And by considering its own dressed effect or
introducing additional dressed field, it is possible to further pre-
cisely control squeezing and entanglement in this scheme.[44–45]
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