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A B S T R A C T

Neutron coded imaging is an effective tool for diagnosing the shape, size and symmetry of deuterium (D)–
tritium (T) plasma in inertial confinement fusion (ICF). It can provide an important reference for designing
and improving the D–T pellet and confinement configuration. Image reconstruction algorithms play a role
of reconstructing the source images from the blurred coded images and the point spread functions (PSFs)
of imaging systems. Conventionally, the convolution model is used as the mathematical model for neutron
coded imaging reconstruction, but it applies only to the spatially invariant PSF. In this paper, the linear
equations model is regarded as the mathematical model for the reconstruction, and it can also be suitable
for spatially variant PSF. In the reconstruction, the spatially variant PSFs were simulated through Monte Carlo
method. Then an improved genetic algorithm (IGA) for the source image reconstruction was proposed. The
comparison of its performance with other types of deterministic algorithms (like the algorithm with total
variation (TV) minimization) was conducted, and the results showed that the IGA has better performance in
source reconstruction regardless of the utilization of TV sparse prior.
. Introduction

Nuclear fusion, especially D–T reaction, has been regarded as a
owerful method to produce clean energy in recent years. Different
rom nuclear fission, nuclear fusion produces almost no radioactive
aste, but it requires pretty harsh reaction conditions [1]. At present,
agnetic confinement fusion (MCF) and inertial confinement fusion

ICF) are the two methods to achieve fusion that lasts for several
econds [2]. Traditional ICF is driven by laser, which employs laser
o compress and heat the fuel into plasma state. Another way is termed
s ‘‘Z-pinch’’, which utilizes Lorentz force to pinch the metal plasma
nduced by the current, and further compress and heat the fusion
uel [3]. The information from fusion reaction zone can show the shape,
ize and symmetry of high density and high temperature plasma, which
an further indicate driven symmetry, hydrodynamic instability and
adiation ablation in physics. D–T fusion can produce fast neutrons with
verage energy of 14.1 MeV, which have much stronger penetration
bility than X-rays. These neutrons can escape from high density fusion
one. Neutron imaging just makes uses of such information to diagnose
he state of fusion zone. In order to get high signal to noise ratio
SNR) and high spatial resolution source image, coded aperture is
eeded. In neutron coded imaging, coded aperture design and image
econstruction are extremely important. The commonly used coded
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apertures developed for different applications include: pin hole [4],
annular hole [5], penumbra hole [6] and array hole [7].

Image reconstruction algorithms play a role of reconstructing the
source images from the blurred coded images and the PSFs of imaging
systems. High performance algorithms can achieve high reconstruction
accuracy, which can be quantitatively evaluated from some coefficients
or criteria (such as, correlation coefficient (CC), normalized root mean
square (NRMS) error and normalized mean absolute (NMA) error), with
suppressing the system noise. From the view of the based mathematical
models and application range, image reconstruction algorithms for
coded imaging can be divided into two categories. The first type is
based on the convolution model, such as inverse filtering [8], Wiener
filtering [9] and Richardson–Lucy (R–L) filtering [10,11], which is only
suitable for spatially invariant PSF. The other one is based on the linear
equations model, and the reconstruction process can be regarded as
solving the linear inverse problems, thus a large number of iteration
algorithms developed for solving linear inverse problems can be con-
sidered as candidates, which can also be applied to spatially variant
reconstruction. Iteration algorithms employ algebraic iteration to min-
imize the objective function in solving inverse problems, and different
algorithms have different minimization objectives and routes. Accord-
ing to the characteristic of different routes, iteration algorithms can
be categorized as either deterministic or heuristic. The deterministic
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algorithms always reject the new solutions that do not meet the conver-
gence condition (termed as bad solutions) in different iteration steps,
such as simultaneous algebraic reconstruction technique (SART) [12]
and maximum likelihood expectation maximization (MLEM) [13–16].
The MLEM algorithm is popularly used in coded imaging reconstruction
because it considers the feature of the statistical noise and leads to
relatively satisfactory results. With the introduction of compressed
sensing (CS) theory, sparse prior or regularization has been considered
as an important tool to improve the reconstruction accuracy. Many
algorithms with sparse constraint has been developed, such as adap-
tive steepest descent-projection onto convex sets (ASD-POCS) [17],
alternating direction total variation minimization (ADTVM) [18] and
Chambolle–Pock (CP) [19]. It is worth to mention that those algorithms
still belong to the category of deterministic ones. The disadvantage of
deterministic algorithms is that they are easily to be trapped in locally
optimal solution, which means the accuracy of the reconstructed image
still has much space to be raised.

Heuristic algorithms, such as genetic algorithm (GA) and simulated
annealing (SA) algorithm, can accept the bad solutions with a certain
possibility, which can enhance the ability of algorithms escaping from
the locally optimal solution, thus leads to higher reconstruction accu-
racy theoretically. A few researchers have tried to applied heuristic
algorithms to image reconstruction [20–22], however, from the re-
ported results, their performance has not been revealed clearly or not
satisfactory enough, because none of the literatures reported a compa-
rable performance with recognized high performance algorithms, like
MLEM and the algorithms with TV minimization (they only compared
them with filtering algorithms). Therefore, in this paper, the improve-
ments were made based on their work to raise the performance of
GA applied in coded imaging reconstruction, and its performance was
evaluated by comparing with other types of deterministic algorithms.

2. Method and materials

Z-pinch driven ICF diagnosis is regarded as the research object. We
employ the neutron coded imaging system shown in Fig. 1 to diagnose
the state of fusion reaction zone. It mainly consists of Z-pinch neutron
source, coded aperture and scintillation fiber array. Compared with
laser driven ICF, where the size of fusion reaction zone is several
hundreds of micrometers, the size in Z-pinch ICF can reach to several
millimeters, even centimeter scale. The coded aperture is an inverse
radius of curvature (IRC) hole with 6 cm length, which is made of
tungsten. The IRC aperture shows better spatially invariant feature than
other types of coded apertures, and the design idea is originated from
IRC hole in laser driven ICF [23]. The scintillation fiber array has 199 ×
99 pixels [24]. Each pixel consists of a fiber core, surrounded cladding
nd optical cement between the neighborhood pixels from the inside to
he outside. The shape of the fiber core is cylinder with a diameter of
00 μm and a length of 5 cm, which is made of BCF-10 (C8H8, 1.05

g/cm3). The thickness of the cladding wall is 25 μm, which is made
of acrylic (C5H8O2, 1.2 g/cm3). The material of the optical cement is
esin epoxy (C11H12O3, 1.1 g/cm3). The magnification of the imaging
ystem is 5. The field of view (FOV) is a 1.99 cm × 1.99 cm square.

. Principle of neutron coded imaging and reconstruction

The mathematical model for neutron coded imaging reconstruction
an be expressed as:

= 𝑷𝑺𝑭 ⊗ 𝑺 +𝑵 (1)

here 𝑪 =
(

𝑐ij
)

∈ 𝑪 i × 𝑪 j is the coded image; 𝑷𝑺𝑭 =
(

𝑝𝑠𝑓 ij
)

∈
𝑷𝑺𝑭 i × 𝑷𝑺𝑭 j is the PSF of imaging system; 𝑺 =

(

𝑠ij
)

∈ 𝑺 i × 𝑺 j is the
source image, i.e. the image to be reconstructed; 𝑵 =

(

nij
)

∈ 𝑵 i ×𝑵 j

is the noise; ⊗ refers to two-dimensional convolution.
The above model requires the PSF to meet the spatially invariant

feature. Only one PSF should be calculated in the reconstruction. How-
ever, none of the coded imaging system is strictly spatially invariant
2

even if the IRC coded aperture is used, especially when the FOV is large
in Z-pinch ICF diagnosis.

More generally, the mathematical model for neutron coded imaging
reconstruction can be described as linear equations:

𝑪 = 𝑴𝑺 +𝑵 (2)

Where 𝑪 =
[

𝑐1, 𝑐2,… , 𝑐i,… , 𝑐u
]

is the reshaped coded image; 𝑴 =
(

𝑚ij
)

∈ 𝑴u × 𝑴v is termed as the transfer matrix, which consists of
PSFs within FOV; 𝑺 =

[

𝑠1, 𝑠2,… , 𝑠j,… , 𝑠v
]

is the reshaped source image;
𝑵 =

[

𝑛1, 𝑛2,… , 𝑛i,… , 𝑛u
]

is the reshaped noise.
The model shown in Eq. (2) transfers the coded imaging recon-

struction process into solving the commonly linear inverse problem.
The disadvantage of this model is that it requires a large number of
PSFs (9801 in our reconstruction), which is a bit time consumption.
However, it is suitable for spatially variant reconstruction and does
not need the source to be centered in the FOV. PSFs are required to
be calculated only one time once the imaging system is determined.
Therefore, it deserves to pay some time to calculate PSFs.

4. Spatially variant PSFs simulation

The PSFs and coded image are simulated with the configuration
shown in Fig. 1. The materials of each parts are described in Sec-
tion 2. The simulation is conducted with MCNPX code developed by
Los Alamos National Lab, and ENDF/B-VII is used as the cross-section
database [25]. The energy deposition of recoiled protons in the fiber is
recoded by F6 tally as the detector response. In the PSFs simulation,
we first mesh the FOV into 99 × 99 pixels, resulting in the spatial
resolution about 100 μm × 100 μm. Then we set a point source at each
pixel, which emits neutrons uniformly as D–T fusion neutron spectrum
in 4𝜋 sr solid angle. In order to reduce the simulation time, 4.77- degree
bias sampling angle is employed, which can ensure the neutron beam
is blocked by the coded aperture wherever the point source is located
at within the FOV. In addition, since the IRC aperture is rotational
symmetric, we can only simulate 1/4 PSFs, and the total number of
which is 2500 (50 × 50), and 2 × 108 neutrons are emitted in each PSF
simulation. As examples of simulated PSFs, Fig. 2(a), (b) and (c) shows
the PSFs of point sources located at the position of off-center distance
0 cm, 0.24 cm and 0.49 cm along the horizontal axis respectively;
Fig. 2(d) shows the PSF of point source located at off-center distance
0.49 cm along the horizontal axis and 0.49 cm along the vertical axis.
The distortion of their shapes can be observed remarkably as the off-
center distance increasing, especially in diagonal direction, which is the
so-called spatially variant feature. However, the reconstruction based
on the convolution model described in Eq. (1) regards the PSF as
spatially invariant, i.e. the PSF only moves as the position of the point
source changes while keeping the shape unchanged. Therefore, Eq. (1)
cannot describe the coded imaging system accurately, which leads to
the reconstruction error, and thus we employ the linear equations
model for neutron coded imaging reconstruction. It is worth to mention
that the speckling in Fig. 2 is caused by the statistical fluctuation of
MCNP simulation.

5. Improved genetic algorithm

5.1. Genetic algorithm applied to image reconstruction

Genetic algorithm is a kind of global optimization algorithm, which
is constructed based on the law of heredity and evolution of organisms
in nature. In the usual optimization design fields, such as process
control optimization and radiation shielding design, only several pa-
rameters need to be optimized, and simple genetic algorithm (SGA)
can be directly applied [26]. However, in image reconstruction field,
satisfactory images always consist of several thousands of pixels to be
reconstructed, such as CT and coded imaging, and acceptable results are
hard to be achieved by directly applying SGA. The reason is that the
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Fig. 1. Neutron coded imaging system for Z-pinch ICF diagnosis.
Fig. 2. Spatially variant feature of PSFs in neutron coded imaging (colorbar unit: MeV/g/incident neutron).
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lgorithm can be easily trapped in locally optimal solution due to the
arge search space in image reconstruction. Therefore, SGA should be
mproved in terms of its key links: fitness function, selection, crossover
nd mutation operators as well as their corresponding factors.

Similar as the objective function in deterministic algorithms, and
n consideration of the sparse representation of the image according to
ompressed sensing theory [27], the fitness function in IGA is described
s:

= ‖𝑪 −𝑴𝑺‖22 + 𝛼𝛹 (𝑺) (3)

Where ‖𝑪 −𝑴𝑺‖22, 𝛹 (𝑺) and 𝛼 are termed as the fidelity term, the
sparse constraint (or regularization) term, and the sparse constraint (or
regularization) parameter. The image reconstruction of coded imaging
is to minimize the fitness function.

The selection operator in IGA employs the stochastic tournament
model combined with simulated annealing and best saving strategies,
which has high selection efficiency and is helpful for guaranteeing the
diversity of the population and the survival of the individual [21].
The uniform and random row (R)/column (C) crossover operators are
combined to raise the efficiency of the crossover of SGA [20], where the
crossover is executed between the same or different row or column in
different individuals, rather than the same or different pixels. To ensure
the continuity feature of the reconstructed object, the neighborhood
mutation is usually used [21], where the determination of the pixel
value to be reconstructed considers the pixel value of its neighbor-
hoods. Such strategy can guarantee the individual mutating toward the
convergence direction. Compared with SGA, the combination of the
crossover for the row and column and the neighborhood mutation for
the pixel in IGA can ensure the algorithm a higher evolution efficiency.
In addition, it deserves to emphasize that the selection, crossover, and
mutation are under the control of a group of genetic factors, which
classifies IGA as a kind of heuristic algorithm.

5.2. Adaptive crossover and mutation factors

Among the genetic factors, the crossover and mutation factors are
the most important ones, which determines the crossover and mutation
possibility in GA, and have great impact on the ability of the algorithm
 i

3

in breaking away from the locally optimal solution. Primarily, the
crossover factor 𝑃c and mutation factor 𝑃m are fixed numbers in SGA;
then M. Srinivas et al. proposed a basic adaptive 𝑃c and 𝑃m to improve
the evolution ability of SGA [28], where 𝑃c and 𝑃m can be adaptively
adjusted as the fitness value of the individual changes; later, Z. W. Ren
et al. suggested another improved adaptive 𝑃c and 𝑃m [29]. Based on
their work, our group proposed new ones, and they can show stronger
adaptive ability than the previous ones, which are shown as:

𝑃c =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃c1
(

𝑓avg − 𝑓 ′) + 𝑃c2
(

𝑓 ′ − 𝑓min
)

𝑓avg − 𝑓min
𝑓 ′ < 𝑓avg

𝑃c2
(

𝑓max − 𝑓 ′) + 𝑃c3
(

𝑓 ′ − 𝑓avg
)

𝑓max − 𝑓avg
𝑓 ′ ≥ 𝑓avg

(4)

𝑃m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃m1
(

𝑓avg − 𝑓
)

+ 𝑃m2
(

𝑓 − 𝑓min
)

𝑓avg − 𝑓min
𝑓 < 𝑓avg

𝑃m2
(

𝑓max − 𝑓
)

+ 𝑃m3
(

𝑓 − 𝑓avg
)

𝑓max − 𝑓avg
𝑓 ≥ 𝑓avg

(5)

Where 𝑓min, 𝑓max, and 𝑓avg represent the maximum, minimum and
average fitness value of the individuals in the population; 𝑓 ′ is the
bigger fitness value of the selected two individuals participating in the
crossover; 𝑓 is the fitness value of the individual participating in the
mutation, 𝑃c1, 𝑃c2, 𝑃c3, 𝑃m1, 𝑃m2, 𝑃m3 are constants, and 𝑃c3 < 𝑃c2 <
𝑃c1 ∈ (0, 1), 𝑃m3 < 𝑃m2 < 𝑃m1 ∈ (0, 1).

The new 𝑃c and 𝑃m can change as the relationship of 𝑓 ′ and 𝑓 with
min, 𝑓max, and 𝑓avg of the population: when 𝑓 ′ and 𝑓 are between 𝑓min

nd 𝑓avg, the corresponding 𝑃c and 𝑃m decrease linearly as 𝑓 ′ and 𝑓
ncrease; when𝑓 ′ and 𝑓 are between 𝑓avg and 𝑓max, they also decrease
inearly as 𝑓 ′ and 𝑓 increase, but the decreasing rates (slope) are
ifferent in the two parts. In consideration of GA is easy to be trapped
n locally optimal solution, the improvement of 𝑃c and 𝑃m makes GA
ore robust, which ensures IGA with them show better performance in

mage reconstruction.
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Fig. 3. Flow chart of proposed IGA.
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5.3. Isolated pixel treatment

The construction of neighborhood mutation in IGA described in
Section 5.1 makes the algorithm search the solution toward the direc-
tion of pixel concentration, which can be useful for eliminating the
isolated pixels. Here an eliminating possibility factor is proposed to
further elevate the ability of the algorithm suppressing the isolated
pixel producing:

𝑝e = 1 −
𝑐e

√

gen
(6)

here 𝑐e is a constant between 0 and 1; gen is the current generation
f the population in GA. By means of 𝑝e, the isolated pixel, judged from
he pixel value of its neighborhoods, can be eliminated with a certain
ossibility at every fixed evolution generations, and the possibility
ecreases as the generation increases until the algorithm meets the
onvergence condition, which is the number of iterations reaching
o the maximum generations or the number of stagnancy iterations
eaching to the maximum stagnancy generations (no better results are
roduced).

Based on the above described main parts of IGA, the executing
rocedures of IGA are shown in Fig. 3:

1) Calculating the PSFs of the coded imaging system; Obtaining the
coded image from the experiment or simulation; Initializing the
population and setting the parameters of the algorithm;

2) Calculating the fitness values of the individuals;
3) Evaluating the fitness values and selecting the individuals partic-

ipating in the following crossover and mutation processes;
4) Calculating the adaptive crossover possibility with Eq. (4) and the

fitness values of the individuals;
5) Executing the uniform and random R/C crossover for the selected

individuals;
6) Calculating the adaptive mutation possibility with Eq. (5) and the

fitness values of the individuals;
7) Executing the neighborhood mutation for the individuals after the

crossover;
8) Treating the isolated pixels with the possibility described in

Eq. (6);
9) Preserving the best individual;
10) Looping (2)∼(9) until meets the convergence condition, then the

reconstructed image is obtained.
4

. Reconstructed images

In this section, the performances of IGA is comprehensively in-
estigated: firstly, the effects of the main parts of IGA are revealed;
econdly, the comparison of the reconstruction accuracy of IGA with
ther types of deterministic algorithms are implemented. To quanti-
atively evaluate the reconstruction accuracy, the Pearson product–
oment correlation coefficient c, which describes the similarity of the

econstructed image and the source one, is used:

=
∑v

i=1
(

𝑠i − 𝑠i
) (

𝑟i − 𝑟i
)

√

∑v
i=1

(

𝑠i − 𝑠i
)2
√

∑v
i=1

(

𝑟i − 𝑟i
)2

(7)

where 𝑟i, 𝑠i, 𝑟i, 𝑠i refer to the pixel value and the average value of all
pixels on the reconstructed image and the source image respectively; v
represents the number of pixels on them. 𝑐 ∈ (0, 1), and larger c means
the similarity between the reconstructed image and the source one is
higher.

The feature of heuristic algorithm is its random minimization route,
therefore, the reconstructed results are different for reconstructions at
different time. Fig. 4(a) and (b) show the source image (‘‘E’’ letter
with 7.15 mm × 7.15 mm size) and coded image under 1012 neutron
yield. Fig. 4(c) and (d) show the reconstructed images by IGA through
1 reconstruction and average of multiple reconstructions respectively.
The pixel value on the source image and reconstructed images has been
normalized by the maximum pixel value of the whole image. It can be
observed that the high accuracy image can be achieved through average
of 10 reconstructions. Compared with 1 reconstruction, average of 10
reconstructions can enhance the capability of the algorithm in restoring
the edge of reconstruction objects, and further improve the whole
reconstruction accuracy. Therefore, the reconstructed images by IGA
are the results through average of 10 reconstructions in the following
sections.

6.1. Effect of main parts of IGA

In the proposed IGA, the sparse constraint, the new adaptive
crossover and mutation factors and isolated pixel treatment are the
main parts ensuring the high performance of the algorithm. In order
to show the effect of each parts, we reconstructed the‘‘E’’ letter by
IGA with one part removed per time respectively (Fig. 5). The results
show the above three parts have significant impact on the reconstructed
results; the remarkable results can be achieved by combining those
parts. In other words, without the improvements of the algorithm,

remarkable results cannot be achieved.



M. Yan, H. Hu, G. Hu et al. Nuclear Inst. and Methods in Physics Research, A 985 (2021) 164704

W
t
S
f
p
g

‖

W
a
S
f
s
r

p
c
‖

a
i

Fig. 4. Random feature of IGA: (a) source image; (b) coded image (colorbar unit: MeV/g/incident neutron); (c) 1 reconstruction, 𝑐 = 0.9273; (d) average of 10 reconstructions,
𝑐 = 0.9563.
Fig. 5. Effect of the main parts of IGA: (a) without sparse constraint, 𝑐 = 0.9138; (b) without adaptive crossover and mutation factors, 𝑐 = 0.9382; (c) without isolated pixel
treatment, 𝑐 = 0.9417; (d) combination of all parts, 𝑐 = 0.9563.
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6.2. Introduction to deterministic algorithms

SART algorithm is a typical algorithm to solve linear inverse prob-
lem, which has been proved to converge to a weighted least square
solution of the linear equations [30]. Based on the SART algorithm,
SART with TV minimization algorithm was developed. In order to keep
the comparison of the reconstruction accuracy of different algorithms
under a fair environment, it is better to select the algorithms which
share the same sparse constraint terms and only keep the minimization
solving methods different. Based on this principle, we have selected
SART to compare with IGA without sparse constraint term and SART
with TV to compare with IGA with TV constraint. The iteration formula
of SART is:

𝑠(𝑘+1)j = 𝑠(𝑘)j + 𝜆

∑u
i=1

[

𝑚ij
𝑐i−

∑v
j=1 𝑚ij𝑠j

∑v
j=1 𝑚ij

]

∑u
i=1 𝑚ij

(8)

here 𝑠j, 𝑐j and 𝑚ij are the element in the reshaped source image vector,
he reshaped coded image vector and the transfer matrix described in
ection 3, j = 1, 2,… , v; k is the number of iterations; 𝜆 is the relaxing
actor. TV minimization is a famous sparse representation in the image
rocess and reconstruction fields. It considers the image is sparse in
radient domain, which can be described as:

𝑆‖𝑇𝑉 =
∑

p, q

√

(

𝑠p, q − 𝑠p−1,q
)2 +

(

𝑠p, q − 𝑠p, q−1
)2 (9)

here 𝑠p, q is the element in the source image matrix; 𝑠p−1, q and 𝑠p, q−1
re its neighborhoods in vertical and horizontal directions respectively.
ART with TV algorithm employs SART algorithm to minimize the
idelity term and steepest descent method to minimize TV sparse con-
traint term in Eq. (3), which has been proved to be a reliable and
obust algorithm in the image reconstruction field.

In addition, the selection of convergence condition and algorithm
arameters are important in algorithm comparison. In this paper, the
onvergence condition of the above two algorithms is ‖

‖

‖

𝑪 −𝑴�̂�‖‖
‖

2

2
∕

𝑺‖22 ≤ 𝜂, where 𝜂 are 9 × 10−4 and 2.5 × 10−4 for SART and SART+TV
lgorithms; the optimal parameter is selected based on achieving max-
mum c in formula (7), and 𝜆 = 5×10−17. The selected parameters
5

or the proposed IGA are: population size = 50, 𝑃c1 = 0.9, 𝑃c2 = 0.5,
c3 = 0.1, 𝑃m1 = 0.1, 𝑃m2 = 0.05, 𝑃m3 = 0.005, 𝑐e = 0.5, maximum
enerations = 10000, maximum stagnancy generations = 1000, and
varies for different coded images based on achieving maximum c.

hose parameters are selected by plenty of attempts, and they are
ecommended for IGA.

.3. Comparison of IGA with SART and IGA with TV with SART with TV

Here we compare the performance of IGA with selected deter-
inistic algorithms (shown in Fig. 6). It can be observed that the

econstruction accuracy of IGA without and with TV sparse constrain
erm is much higher than that of SART and SART with TV: c increases
rom 0.8218 to 0.9138 for SART to IGA without TV; c increases from
.9266 to 0.9563 for SART with TV to IGA with TV. Specifically, the
ize of ‘‘E’’ letter is changed a little on the image reconstructed by
ART, such as, the width of the middle ‘‘transverse line’’ of ‘‘E’’ letter
s changed from 0.195 cm to 0.125 cm at X = 0.396 cm. It seems like
he algorithm is excessively iterated. But the reduction of number of
terations will cause a large number of streak artifacts appear, which
urther lowers c. The shape of ‘‘E’’ letter is deformed a bit, such as,
he changing extent of the middle ‘‘transverse line’’ of ‘‘E’’ letter at X =
.396 cm, 0.515 cm and 0.762 cm is 0.07 cm, 0.075 cm and 0.04 cm re-
pectively. The reason is that the noise can be amplified as the iteration
roceeding due to the ill-posed feature of Eq. (2). However, only some
ot artifacts appear on the edge of the image reconstructed by IGA, and
he size and shape of‘‘E’’ letter can be basically restored. Therefore,
GA shows stronger noise suppression ability than SART without TV
onstraint. With TV constraint term added into IGA and SART, the
esults have been improved significantly: c increases from 0.8218 to
.9266 for SART to SART with TV; c increases from 0.9138 to 0.9563
or IGA without TV to IGA with TV. For the SART with TV, the streak
rtifacts have been suppressed by the TV constraint successfully. The
hape restoration ability can be enhanced by balancing SART fidelity
nd TV constraint terms. However, the piecewise artifacts appear on the
mage. For the IGA with TV, the dot artifacts have also been suppressed
y the TV constraint. In general, the reconstruction accuracy of IGA
ith TV is much higher than that of SART with TV. The reason is

he random minimization route which ensures the algorithm with high
ossibility to escape from the locally optimal solution.
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Fig. 6. Comparison of images reconstructed by deterministic and heuristic algorithms: (a) SART, 𝑐 = 0.8218; (b) IGA without TV, 𝑐 = 0.9138; (c) SART with TV, 𝑐 = 0.9266; (d) IGA
with TV, 𝑐 = 0.9563.
Fig. 7. Reconstruction under low neutron yields: (a) yield = 1010, 𝑐 = 0.9130; (b) yield=1011, 𝑐 = 0.9395; (c) yield = 1012, 𝑐 = 0.9563; (d) yield = 1013, 𝑐 = 0.9600.
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.4. Reconstruction under different neutron yields

For Z-pinch driven ICF diagnosis, the neutron yields of different
acilities can range from 1010∼1013, or even lower, which is much
ower than that of laser driven ICF facilities, like the National Igni-
ion Facility (NIF) [31] with a neutron yield reaching up to 1017.
ow neutron yields mean the high noise level, which requires strong
oise suppression ability of the algorithm. Therefore, we also have
hecked the reconstruction performance of IGA under low neutron
ields (Fig. 7). Both of the PSFs and coded images for reconstruction
ere obtained from MCNP simulations. The results demonstrate that

GA is robust and exhibits good performance in low neutron yields
econstruction.

. Discussion and conclusion

A heuristic algorithm for neutron coded imaging reconstruction
ased on simple genetic algorithm has been proposed. The correspond-
ng performance when applied to spatially variant PSFs (obtained from
onte Carlo simulation) reconstruction was checked. The reconstructed

esults show higher reconstruction accuracy of the algorithm than that
f SART algorithm without and with TV constraint. The fundamental
eason is the heuristic algorithm always accepts the bad solutions with
certain possibility. Thus the algorithm can escape from the locally

ptimal solution with higher possibility when compared with determin-
stic algorithms, and further shows stronger noise suppression ability.
he proposed algorithm also shows good performance in low neutron
ields reconstruction. TV has been used as the sparse representation in
GA, the performance of IGA with other sparse representations, such as
osine transformation and wavelet transformation, will be investigated
n the future. It is worth to mention that the Z-pinch source is treated
s a 2-dimensional (D) source in this paper. The 3D image can be
econstructed with simulated PSFs for the point sources on each slice
long the axis of imaging system, and the proposed algorithm is also
uitable for 3D reconstruction. Although the algorithm is proposed
ased on the spatially variant PSF reconstruction, it can also be applied
o spatially invariant PSF reconstruction in neutron coded imaging.

urthermore, it can be extended to radioactive source localization.
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