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1.  Introduction

Two-phase flow measurement is a significant and difficult task 
in nuclear energy and petroleum industries. The main param
eters of two-phase flow include: flow regime, void fraction and 
density, etc. However, due to the variety of measured param
eters as well as change over time, real-time imaging tech-
nology is needed. As one of the most popular methods, x-ray 
imaging has been widely applied in visualizing two-phase 

flow. Compared with x-ray radiography, computer tomography 
(CT) has the advantage of obtaining 3D information about the 
two-phase flow, therefore, it has attracted many researchers’ 
and professionals’ attention [1–3]. As the neutron has a bigger 
contrast of reaction cross section between water and air than 
that of x-rays, as well as having a strong penetrability for tube 
walls made of metallic material, a better contrast to noise ratio 
(CNR) can be obtained for the reconstructed image [4, 5].

CT reconstruction algorithms can be divided into two 
categories: analytical methods and iterative methods. The 
filter back projection (FBP) algorithm, as a kind of analytical 
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Abstract
Thermal neutron computer tomography (CT) is a useful tool for visualizing two-phase flow 
due to its high imaging contrast and strong penetrability of neutrons for tube walls constructed 
with metallic material. A novel approach for two-phase flow CT reconstruction based on an 
improved adaptive genetic algorithm with sparsity constraint (IAGA-SC) is proposed in this 
paper. In the algorithm, the neighborhood mutation operator is used to ensure the continuity 
of the reconstructed object. The adaptive crossover probability Pc and mutation probability 
Pm are improved to help the adaptive genetic algorithm (AGA) achieve the global optimum. 
The reconstructed results for projection data, obtained from Monte Carlo simulation, indicate 
that the comprehensive performance of the IAGA-SC algorithm exceeds the adaptive steepest 
descent-projection onto convex sets (ASD-POCS) algorithm in restoring typical and complex 
flow regimes. It especially shows great advantages in restoring the simply connected flow 
regimes and the shape of object. In addition, the CT experiment for two-phase flow phantoms 
was conducted on the accelerator-driven neutron source to verify the performance of the 
developed IAGA-SC algorithm.
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method, is the most popular algorithm in the medical CT 
area. It requires much projection data, otherwise a number 
of streak artifacts will appear on the reconstructed image 
[6]. In contrast, iterative methods are especially suitable for 
incomplete view reconstruction with insufficient projection 
data. Incomplete view reconstruction can be subdivided into 
limited view reconstruction and few view reconstruction in 
actual application [7]. As the two-phase flow is dynamic 
and the tube cannot be rotated, the typical imaging configu-
ration is based on combining a limited number of radiation 
sources and detector arrays around the tube. Therefore, only 
limited projection data can be collected, and the recon-
struction is a typical few view reconstruction problem. The 
equation describing incomplete view CT reconstruction is ill-
posed. The effective way to solve an ill-posed equation is to 
employ the iteration method with some kind of constraint con-
ditions. Based on this principle, different algorithms, such as 
the simultaneous algebraic reconstruction technique (SART) 
[8], Landweber (LW) [9], conjugate gradient (CG) [10], max-
imum likelihood expectation maximization (MLEM) [11], 
maximum a posteriori (MAP) and multiplicative algebraic 
reconstruction technique (MART) [12] have been developed. 
The compressed sensing (CS) theory was formally put for-
ward by Candes et al in 2004; according to this theory, the 
image is sparse in various domains [13, 14]. For CT recon-
struction, the sparse prior make it possible to restore the 
image from scant projection data. By means of the sparsity 
in the gradient magnitude domain, Sidky et  al published a 
powerfully adaptive steepest descent-projection onto convex 
sets (ASD-POCS) algorithm for CT reconstruction in 2006 
and 2008 [6, 15]. In the two-phase flow CT reconstruction 
area, most researchers directly implemented reconstruction 
via the algorithms described above developed for medical CT 
[16, 17]. Although desirable results can be achieved, there is 
much space to enhance reconstruction accuracy. The genetic 
algorithm (GA), as a kind of the optimal algorithm, which 
was first put forward by Holland in 1975 [18], has provided a 
new perspective for incomplete view CT reconstruction. The 
evident advantages of the GA applied to CT reconstruction 
exhibit in two aspects: firstly, the continuity feature of the 
reconstructed object can be coupled into it conveniently; sec-
ondly, it searches solution space randomly, which has proved 
to be very effective in solving large and complex space 
cases [18, 19]. However, since the simple genetic algorithm 
(SGA) is easy to be trapped in the local optimum, the adap-
tive genetic algorithm (AGA) comes into being, in which 
crossover probability Pc and mutation probability Pm can be 
adjusted adaptively as fitness value changing to help the algo-
rithm converge to the globally-optimal solution [20].

This paper combines the GA and CS theory to develop 
a novel algorithm for two-phase flow CT reconstruction. 
The contents are presented thus: firstly, a novel improved adap-
tive genetic algorithm with sparsity constraint (IAGA-SC) algo-
rithm is proposed; secondly, the performance of the IAGA-SC 
algorithm is tested by reconstructing the projection data from 
Monte Carlo simulation; lastly, a CT experiment for two-phase 
flow phantoms is carried out on the accelerator-driven neutron 
source to verify the performance of the IAGA-SC algorithm.

2.  CT reconstruction principle and proposed  
IAGA-SC algorithm

2.1.  Configuration of thermal neutron CT of two-phase flow

Inspired by the typical two-phase flow gamma ray CT setup 
mentioned in [21], as well as considering the development of 
the miniature neutron tube, a compact two-phase flow thermal 
neutron CT configuration is proposed, as outlined in figure 1. In 
the configuration, five neutron sources and detector arrays are 
combined for real-time imaging. Each detector array is made 
up of 37 pixels, and the pixel size is 4 mm  ×  4 mm  ×  0.05 mm 
(thickness) voxel. The reason for such a big pixel area is to 
reduce the exposure time, which is helpful for improving the 
real-time performance of two-phase flow CT. The material of 
the detector array is 6LiF (ZnS: Ag), which has a relatively 
low sensitivity to gamma rays and fast neutrons. The semi-
conductor optical coupler is coupled on each detector pixel to 
transfer the light signal to the electric one. The purpose of the 
front collimator is to constrain the incident neutron beam to be 
fanned, and the back collimator is for reducing the scattered 
neutrons. The material of the two kind of collimators is B4C 
(10B:11B  =  1:4), which has a highly thermal neutron absorp-
tion cross section. In this paper, the simulation work is based 
on this configuration.

2.2.  CT reconstruction principle

The principle of CT is the law of rays attenuated in the matter; 
when considering noise in the system, CT reconstruction can 
be regarded as:

P = WX + δ� (1)

where P = [p1, p2, ..., pM] is the projection vector; 
W = (wij) ∈ WM × WN×N  is the system matrix, which is deter-
mined by the geometry of the CT system; X = [x1, x2, ..., xN×N ] 
is the image vector to be solved, and δ refers to the noise. The 

Figure 1.  Thermal neutron CT of two-phase flow.
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purpose of the CT reconstruction is to solve equation (1); in 
the few-view reconstruction problem, M � N × N, the equa-
tion  is underdetermined and the solution is easily disturbed 
by the noise.

2.3.  System matrix computation

The previous step before implementing CT reconstruction 
is the computing system matrix W. There are three different 
models for the system matrix computation: point, line and 
area model. The computing system matrix with point model is 
time saving but easily introduces artifacts to the reconstructed 
image, while the area model is accurate but time consuming. In 
contrast, the line model is relatively accurate and time saving 
[22, 23], hence it is employed to compute the system matrix 
in this paper. For the line model, the weight coefficient wij in 
the system matrix is the intersection length between the ith ray 
and the image jth pixel. The ray-driven way is used to compute 
the system matrix with the line model, and an acknowledged 
procedure of this way is raised by Siddon [24]. In reconstruc-
tion, because the number of total projection data is only 185 
(37  ×  5), they are extended to 2255(451  ×  5) by three times 
the Amy’s interpolation method to obtain a reconstructed 
image with high quality [25]. In the interpolation process, the 
inserted points uniformly distribute from the 1st pixel to the 
37th pixel in each direction. Then the corresponding number 
and location of ‘virtual rays’ are employed to compute the 
system matrix. The summation of the system matrix according 
to five directions is shown in figure 2, where the size of recon-
structed area is 70.7 mm  ×  70.7 mm (199 pixel  ×  199 pixel).

2.4.  Prior information of two-phase flow

Generally speaking, when implementing the CT reconstruc-
tion, the more prior information we can dig out, the more 
accuracy we can get for the reconstructed image. The recon-
structed object in this current research is the two-phase flow, 
and the prior information is listed below:

	 •	Binary value: two-phase flow is made up of two phases, 
and we can regard that the water is 1 and gas is 0 on the 
image respectively.

	 •	Continuity and sparsity: spatial distribution of each phase 
in the two-phase flow is continuous physically; in other 
words, the two-phase flow is naturally sparse in some 
kind of domains mathematically.

	 •	The boundary is known: the two-phase flow is located in 
the tube and the size of the tube is known, thus the area 
boundary of the reconstructed image is determined.

In the IAGA-SC algorithm, the upper prior information is 
utilized to improve the reconstructed image quality and speed 
up the convergence of the algorithm.

2.5.  Proposed IAGA-SC algorithm

The GA simulates the process of organisms evolving in nature. 
The main concepts of the GA include population, individual, 

parent, offspring, fitness function, selection, crossover, and 
mutation, etc [18]. In the case of the GA being applied to 
image reconstruction, each individual refers to one image to 
be reconstructed, and all individuals make up one population. 
According to Darwin’s theory of evolution, the individual 
with a higher fitness value has a bigger probability of being 
selected in each generation. The selected individuals continue 
participating in crossover and mutation processes, then off-
spring is produced to form the next generation eventually. In 
essence, the evolution of the individual in the GA is under 
the control of selection, crossover and mutation operators. 
A detailed description of the fitness function and evolution 
strategy used in the developed IAGA-SC algorithm will be 
discussed in sections 2.5.1 and 2.5.2 respectively.

2.5.1.  Fitness function of the IAGA-SC algorithm.  Since the 
fitness function is used to evaluate the survival ability of the 
individual, which determines the evolution direction of the 
individual, it is crucial to construct it for the two-phase flow 
CT reconstruction. In this paper, apart from the reconstructed 
image meeting the projection data consistency condition, the 
sparsity constraint is utilized. The reconstruction is regarded 
as a multi-objective optimization problem. In order to optim
ize the multi-objective, we convert it to the single one by lin-
ear weighted summation:

g = ‖P − WX‖2
2 + α‖ΨX‖n� (2)

where ‖∆‖n is the ln-norm of vector ∆(n = 0, 1, 2); ‖P − WX‖2
2 

is the fidelity term and ‖ΨX‖n is the sparsity constraint term 
(or regularization term); α ∈ (0, 1).

For the two-phase flow, several expressions can describe 
its sparse feature: the total difference (TD) [26], weighted 
total difference (WTD) [27], L0-norm of the gradient mag-
nitude of the image (GMI-L0) and L1-norm of the gradient 
magnitude of the image (GMI-L1). The L1-GMI is the so-
called total variation (TV) [6]. The detailed expressions of 
each sparse mode are listed in table  1, where s and t are 
the pixel indexes. The TD is actually the anisotropic TV. 

Figure 2.  Summation of system matrix according to five directions.
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Although both the TD and TV share a similar sparsity fea-
ture, the TD shows an advantage in terms of incomplete view 
CT reconstruction [28]. The TV and TD seek the gradient 
sparsity horizontally and vertically. The WTD is an improve-
ment of the TD; it does not only seek the gradient sparsity 
horizontally and vertically, but also diagonally, which can 
improve the performance of the algorithm to restore sharp 
edges of the image. β is the weight between diagonal direc-
tions and horizontal, vertical directions; it is 1.0 in this 
paper. The GMI-L0 is a more accurate expression of gra-
dient sparsity than the GMI-L1 (TV), since it only counts 
the number of non-zero gradients and the gradient magni-
tude will not be counted, thus the large gradient magnitude 
will not be penalized. However, because the L0 problem is 
usually NP hard, it is always transferred to the L1 problem, 
that is why TV is more popular than the GMI-L0. By the 
IAGA-SC algorithm proposed in this paper, the strategy 
to solve L0 and L1 problems is similar. In other words, no 
matter what the sparse expressions are, they can be solved 
by our algorithm.

The fitness function is described as the inverse of the objec-
tive function by multiplying a certain number, thus the optimal 
object is to maximize the fitness function:

f =
b
g� (3)

where b is the scaling parameter of the fitness function.

2.5.2.  Evolution strategy of the IAGA-SC algorithm.  The 
selection operator determines how the individuals are selected, 
which determines the efficiency and convergence of the algo-
rithm. In this paper, a selection operator based on the stochas-
tic tournament with simulated annealing idea is utilized, and 
the elitist model is employed to guarantee the survival of the 
best individual [29]. The selection mechanism and processes 
are as described below.

	 ①	Selecting T individuals from the current generation, and 
then comparing the fitness value of the selected individuals.

	 ②	Producing a random number between 0 and 1; if it is 
less than p0, the individual with maximum fitness value 
obtained in procedure ① is selected, or else an individual 
is selected randomly.

	 ③	Repeating ① and ② P times, P individuals for the parent 
generation are selected.

	 ④	The individual with the minimal fitness value in the 
offspring generation is directly replaced by one with 
maximum fitness value in the parent generation.

The crossover operator is the main method of producing 
the offspring generation from the parent generation. The 
algorithm with a good crossover operator possesses powerful 
global searching ability. The crossover operator in the pro-
posed algorithm is uniform and random R/C crossover [30]. 
As is shown in figure 3(a), the uniform R/C crossover pro-
cesses are as detailed below.

Table 1.  Sparse representation of two-phase flow.

Sparse models Expressions

TD
∑

s,t (|xs,t − xs−1,t|+ |xs,t − xs,t−1|)
WTD

∑
s,t (|xs,t − xs−1,t|+ |xs,t − xs,t−1|+ β (|xs,t − xs−1,t−1|+ |xs−1,t − xs,t−1|))

GMI-L0
∑

p # { p ||xs,t − xs−1,t|+ |xs,t − xs,t−1| �= 0}

GMI-L1(TV)
∑

s,t

√
(xs,t − xs−1,t)

2
+ (xs,t − xs,t−1)

2

Figure 3.  R/C crossover. (a) Uniform crossover. (b) Random crossover.

Meas. Sci. Technol. 29 (2018) 055404



M Yan et al

5

	 ①	Producing a random integer between 0 and 1; if it is equal 
to 0, the crossover operator acts on the row of the indi-
vidual, or else acts on the column.

	 ②	Producing another random number between 0 and 1, if 
it is less than the crossover probability Pc, the mutation 
operator is activated for the selected individuals partici-
pating in the crossover.

	 ③	Producing another random integer between 0 to N (N 
is the number of rows or columns of the image to be 
reconstructed), which is regarded as the location of the 
crossover.

	 ④	Exchanging the row or column with the same location for 
the selected individuals to produce the offspring.

The difference between random and uniform R/C crossover 
lies in the procedure ③ described above. In random crossover, 
two random integers are produced for a pair of selected indi-
viduals, which jointly determine the location of the crossover 
(see figure 3(b)).

The mutation operator is the auxiliary method of pro-
ducing the offspring generation, which determines the local 
searching ability of the algorithm. Another function of the 
mutation operator is to restrain premature phenomena from 
occurring. The mutation operator in the proposed algorithm 
is neighborhood mutation [30], which ensures the continuity 
of the reconstructed object. The mechanism of neighborhood 
mutation is shown in figure 4 (for 5  ×  5 pixels as an example). 
According to the number of neighborhood pixels, the pixels 
can be divided into three kinds: corner pixels (I), boundary 
pixels (II) and other pixels (III). Each corner pixel has three 
neighborhood pixels, each boundary pixel has five neighbor-
hood pixels, and each other pixel has eight neighborhood 
pixels. The mutation processes are detailed below.

	 ①	Producing a random number between 0 and 1, if it is less 
than the mutation probability Pm, the mutation operator is 
activated for the pixel.

	 ②	Calculating the mean value A of this pixel’s neighborhood 
pixels, then producing another random number between 
0 and 1, if the random number is less than A, the value of 
this pixel changes to 1, otherwise, it changes to 0.

Due to the fact that the searching space is large (199  ×  199) 
in our CT reconstruction, the AGA is easy to be trapped in 

the local optimum. To avoid such a disadvantage, the cross 
probability Pc and mutation probability Pm for the IAGA-SC 
algorithm have been improved based on [20]:

Pc =




Pc1(favg−f ′)+Pc2(f ′−fmin)
favg−fmin

f ′ < favg

Pc2(fmax−f ′)+Pc3(f ′−f avg)
fmax−favg

f ′ � favg

� (4)

Pm =





Pm1(favg−f )+Pm2( f−fmin)
favg−fmin

f < favg

Pm2(fmax−f )+Pm3( f−favg)
fmax−favg

f � favg

� (5)

where f ′ is the bigger fitness value of selected individ-
uals participating in the crossover, and f  is the fitness 
value of the selected individual participating in the muta-
tion. fmin, favg and fmax denote the minimum, average and 
maximum fitness values of the population respectively. 
Pc1 > Pc2 > Pc3 ∈ (0, 1), Pm1 > Pm2 > Pm3 ∈ (0, 1).

Figure 5 shows the comparison of the adaptive Pc and Pm 
between our proposed algorithm and [20]. In both formulas, 
Pc and Pm will follow the linear adjustment as individual fit-
ness value f  and f ′ vary from favg to fmax. However, they 
will keep a constant number as f  and f ′ vary from fmin to 
favg in [20], thus easily trapping the algorithm in the local 
optimum. In contrast, in the improved one, they will also 
follow the linear adjustment in this case. If f ′ and f  are close 
to fmin, Pc and Pm will increase to be bigger values; in con-
trast, if f ′ and f  are close to favg, Pc and Pm will decrease to 
be relatively smaller values. Hence the algorithm can escape 
from local optimum with bigger probability. Moreover, when 
f  and f ′ are equal to fmax, Pc and Pm are zero according to 
[20], which means that the optimal individual in the current 
generation will no longer participate in crossover and muta-
tion processes, thus the premature phenomenon easily occurs. 
In contrast, Pc and Pm will keep a non-zero constant in the 
improved one, which means the optimal individual still has a 
certain probability of participating in the evolution.

2.5.3.  Main procedures of the IAGA-SC algorithm.  The main 
procedures of the two-phase flow CT reconstruction by the 
IAGA-SC algorithm are as follows.

Figure 4.  Neighborhood mutation.

Meas. Sci. Technol. 29 (2018) 055404
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	(1)	Initialing the pixel value of the image to be reconstructed 
randomly by zero or one.

	(2)	Computing the fitness value f  by projection vector 
P , system matrix W  and initialed image (1st iteration) or 
evolved image (from 2nd iteration).

	(3)	Evolving by selection, crossover and mutation operators.
	(4)	Preserving the best individual if it was produced in the 

evolution.
	(5)	Looping (2)–(4) until meeting the convergence condition 

(either the maximum generation (G) or maximum stag-
nancy generation (S) in this paper).

The pseudo code of the above procedures is shown in 
the appendix of this paper. The parameters utilized in the 
IAGA-SC algorithm are listed in table 2.

2.5.4.  Evaluation index of reconstructed image quality.  In 
order to evaluate the reconstructed image quality quantita-
tively, and further evaluate the performance of the reconstruc-
tion algorithm, two indexes, the correlation coefficient c and 
normalized mean square distance d, are introduced [31]:

c =

∑N
i=1 (ri − r̄i) (oi − ōi)√∑N

i=1 (ri − r̄i)
∑N

i=1 (oi − ōi)

� (6)

d =

√√√√
∑N

i=1 (ri − oi)
2

∑N
i=1 (ri − ōi)

2� (7)

where ri and oi are the pixel values of the reconstructed and 
original image respectively, and ̄ri and ōi are the average ones.

3.  Performance of the IAGA-SC algorithm

3.1.  Projection data simulation

The MCNP code, developed by the Los Alamos National 
Laboratory, is employed to implement simulation of the pro-
cess of neutrons transportation in matter. In the simulation, 
the energy of incident neutrons is 0.0253 eV, which is sampled 
with a 13.4 degree bias angle. The total number of incident 
neutrons is 120 million (24 million for each source) with the 
biggest statistical deviation of detector pixel below 5%. F4 
and Fm cards are combined to record the energy deposition of 
secondary alpha and tritium particles in the detector. The inner 
diameter of the two-phase flow tube simulated is 70.7 mm. The 
tube wall material is carbon steel with a thickness of 2.8 mm.

3.2.  Reconstruction for typical and complex flow regimes

In order to demonstrate the performance of the IAGA-SC 
algorithm in the image reconstruction of two-phase flow 
CT, typical flow regimes, stratified, core and ‘bubble’ flow, 
are employed as the reconstruction objects. The ‘bubble’ in 
this paper denotes that the shape of the object is similar to a 
bubble. As the GA is a kind of random searching algorithm, 
many random numbers are used in it; the optimal results may 
be different for repeated computations. For the IAGA-SC 
algorithm, to avoid such a disadvantage, the average image 
of five times reconstruction is regarded as the ultimately 
reconstructed image. In consideration of the binary feature of 
the two-phase flow, the average image through binarization 
is also shown as the comparison. The binarization method is 
the famous Otsu algorithm [32]. Table 3 shows reconstructed 
images of typical flow regimes. The red and blue parts on the 
reference image represent water and air respectively. Because 
the TV is the most popular sparsity mode, if there is no 

Figure 5.  Improvement of adaptive Pc and Pm.

Table 2.  Parameters of the IAGA-SC algorithm.

Parameters Values

Population size (P) 50
Maximum generation (G) 10 000
Size of stochastic tournament (T) 3
Maximum stagnancy generation (S) 1000
α 7  ×  10−9

b 1.0
p0 0.75
Pc1 0.9
Pc2 0.5
Pc3 0.1
Pm1 0.1
Pm2 0.05
Pm3 0.005

Meas. Sci. Technol. 29 (2018) 055404
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specific explanation, the TV is the sparsity constraint term in 
equation (2) in this paper. To show the excellent performance 
of the IAGA-SC algorithm, the robust ASD-POCS algorithm 
is selected as the comparison, which can guarantee a fair com-
parison due to both the two algorithms employing the same 
TV sparsity constraint model. It is important to ensure the 
comparison between the IAGA-SC and ASD-POCS algo-
rithms is fair. A rigorous way to carry out such a comparison is 
to compare the images reconstructed by each algorithm with 
the optimal parameters. Although the reference image can be 
regarded as a known condition in comparing algorithms, the 
selection of optimal parameters is always complex and time 
consuming due to the fact that the number of parameters in 
the algorithm is usually more than one; moreover, the optimal 
parameters are usually different for different reconstructed 
objects. As the ASD-POCS algorithm has eight parameters 
(see table  5), one realistic and feasible parameter selection 
method is to transfer the multi-dimensional search problem 
into a one-dimensional one [33]. Specifically speaking, we 
vary ε while keeping the other seven parameters unchanged. 
The initial values of them are: ng = 20, α = 0.2, αred = 0.95, 
β = 0.005, βred = 0.995, rmax = 0.95, iter = 120. Thus the 
optimal ε can be discovered in a one-dimensional case, in 
which the lowest d is regarded as the selection standard. Then 
seven parameters are left to be optimized, and their optimal 
values can be figured out by the same way. It is worth men-
tioning that the set of parameters selected by such a way may 
not be the really optimal ones, and we term them as ‘relatively 

optimal parameters’. Table 5 shows the selected parameters 
for different reconstructed objects appearing in this paper. 
Additionally, the reference image is always unknown in the 
actual case, so the parameters for the IAGA-SC algorithm just 
employ the uniform numbers (shown in table  2). Although 
such action may not be very fair for the IAGA-SC algorithm, 
it is reasonable if the performance of the IAGA-SC algorithm 
can exceed the ASD-POCS algorithm in this case.

From table  3, it can be observed that the image recon-
structed by the ASD-POCS algorithm is complete grayscale 
and ‘stage block’ artifacts appear on the image (see core flow 
in table 3). The reason for this is that the ASD-POCS algo-
rithm employs the ART (or SART) algorithm to obtain the 
preliminary image and then makes use of the steepest descent 
method to decrease the TV of the image, which results in the 
piecewise smooth feature of the reconstructed image. In addi-
tion, the image reconstructed by the IAGA-SC algorithm is a 
generally binary value with partially non-binary information in 
the border regions. That is because the reconstruction process 
is under the binary model and the non-binary information is 
just introduced by the five times average. For the three kinds 
of flow regimes, the IAGA-SC algorithm exhibits a higher 
reconstruction accuracy than the ASD-POCS algorithm, espe-
cially for stratified flow. This is because it is simply connected 
and the IAGA-SC algorithm is easy to search out the optimal 
result. Compared with the ASD-POCS algorithm with bina-
rization, the IAGA-SC algorithm with binarization can show 
much better results owing to the generally binary feature of the 

Table 3.  Reconstructed results of typical flow regimes.

Reference ASD-POCS Binarization IAGA-SC Binarization

Stratified c  =  0.9396, d  =  0.3683 c  =  0.9197, d  =  0.3947 c  =  0.9802, d  =  0.1986 c  =  0.9747, d  =  0.2241

Core c  =  0.982, d  =  0.1935 c  =  0.9754, d  =  0.2217 c  =  0.9864, d  =  0.1641 c  =  0.9816, d  =  0.1921

Three ‘bubbles’ c  =  0.9364, d  =  0.358 c  =  0.908, d  =  0.427 c  =  0.9354, d  =  0.3537 c  =  0.912, d  =  0.4167
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image reconstructed by the IAGA-SC algorithm. Moreover, 
the ability of the IAGA-SC algorithm to restore the shape of 
the ‘bubble’ is much better (see core flow in table 3), and it 
will be further proved in complex flow regimes reconstruction.

Table 4 shows the reconstructed images of complex flow 
regimes, in which the number of ‘bubbles’ ranges from two to 
five, and the smallest and biggest size of the ‘bubbles’ is 5 mm 
and 15 mm respectively. From the reconstructed images, it can 
be observed that the IAGA-SC algorithm also shows better 
performance than the ASD-POCS algorithm in complex flow 
regimes reconstruction, especially the results through the bina-
rization process. Moreover, the advantage of the IAGA-SC 
algorithm is inclined to be more obvious as the number of 
‘bubbles’ increases. In addition, the IAGA-SC algorithm has 
also shown better ability to restore the shape of the ‘bubble’ 
than the ASD-POCS algorithm.

3.3.  Comparison of reconstructed images with different 
sparsity constraints

Table 6 shows the comparison of reconstructed images of five 
‘bubbles’ flow with different sparsity constraints: TD, WTD, 
GMI-L0 and TV. To ensure a fair comparison, we select the 
optimal sparsity constraint parameter α for each sparsity con-
straint model and keep other parameters the same, in which 
the selection standard is also lowest d. As expected, the per-
formance of the WTD is better than the TD, the GMI_L0 
is better than the TV and the TD is better than the TV, the 
reasons for which have been explained in section 2.5.1. The 
results in this paper also demonstrate that the performance of 
the WTD is better than the GMI_L0, which means the effect 
of improving the reconstruction accuracy by adding seeking 
the gradient sparsity diagonally is greater than penalizing the 
number of non-zero gradients.

Table 4.  Reconstructed results of complex flow regimes.

Reference ASD-POCS Binarization IAGA-SC Binarization

Two ‘bubbles’ c  =  0.9271, d  =  0.3754 c  =  0.8902, d  =  0.4721 c  =  0.93, d  =  0.3696 c  =  0.8958, d  =  0.4508

Three ‘bubbles’ c  =  0.9364, d  =  0.358 c  =  0.908, d  =  0.427 c  =  0.9354, d  =  0.3537 c  =  0.912, d  =  0.4167

Four ‘bubbles’ c  =  0.9164, d  =  0.4066 c  =  0.8906, d  =  0.4616 c  =  0.9235, d  =  0.3838 c  =  0.9004, d  =  0.4436

Five ‘bubbles’ c  =  0.9106, d  =  0.4345 c  =  0.8852, d  =  0.4723 c  =  0.9308, d  =  0.3657 c  =  0.9052, d  =  0.4325
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3.4.  Effect of statistical noise on images reconstructed by the 
IAGA-SC algorithm

Statistical noise is the main noise when employing practical 
projection data to implement CT reconstruction. It is subject 
to Poisson distribution, and it is big when the number of neu-
trons received by the detector pixels is insufficient. Table 7 
shows a comparison of reconstructed images under different 
incident intensities; here the incident intensity refers to the 
number of neutrons emitted from each source, as shown in 
figure  1. The biggest deviation of detector pixels for 0.24 
million, 2.4 million and 24 million are about 50%, 16% and 
5% respectively. From table 7, it can be seen that the recon-
structed image quality increases as the noise level decreases. 
However, when the biggest deviation of detector pixels varies 

from 5% to 50%, the correlation coefficient of non-binary 
results just decreases from 0.9308 to 0.9016. The variation is 
not as evident as we expected. In other words, the IAGA-SC 
has a good property in resisting statistical noise. In addition, 
it can be observed that the results through the binarization 
process may become much worse, although the non-binary 
results are better (see the 2.4 million and 24 million case in 
table  7), in contrast to the comparison between the ASD-
POCS and IAGA-SC algorithms shown in tables 3 and 4. The 
reason for this is that the binarization process is complex and 
the binary results depend on the details of the corresponding 
non-binary images. Therefore, in this paper, making a com-
parison between the ASD-POCS and IAGA-SC algorithms 
is based on non-binary and binary results, while making a 

Table 5.  Selected relatively optimal parameters for the ASD-POCS algorithm.

Flow regimes Relatively optimal parameters

Stratified
ε = 0.001, ng = 10, α = 0.2, αred = 0.95,
β = 0.005, βred = 0.995, rmax = 0.95, iter = 120

Core
ε = 0.001, ng = 40, α = 0.2, αred = 0.95,
β = 0.1, βred = 0.995, rmax = 0.95, iter = 120

Two ‘bubbles’
ε = 0.001, ng = 140, α = 0.02,αred = 0.95,
β = 0.005, βred = 0.99, rmax = 0.8, iter = 150

Three ‘bubbles’
ε = 0.001, ng = 90, α = 0.3, αred = 0.95,
β = 0.007, βred = 0.995, rmax = 0.95, iter = 160

Four ‘bubbles’
ε = 0.001, ng = 80, α = 0.2, αred = 0.95,
β = 0.005, βred = 0.995, rmax = 0.95, iter = 120

Five ‘bubbles’
ε = 0.001, ng = 70, α = 0.2, αred = 0.95,
β = 0.005, βred = 0.995, rmax = 0.95, iter = 120

Core (experiment)
ε = 0.001, ng = 90, α = 10, αred = 0.95,
β = 0.003, βred = 0.99, rmax = 0.9, iter = 130

Three ‘bubbles’ (experiment)
ε = 0.001, ng = 100, α = 15, αred = 0.95,
β = 0.004, βred = 0.995, rmax = 0.95, iter = 120

Table 6.  Reconstructed results with different sparsity constraints.

Reference
TD  
(α = 1.3 × 10−8)

WTD  
(α = 1.1 × 10−8)

GMI-L0 
(α = 2.1 × 10−8)

TV  
(α = 1.3 × 10−8)

IAGA-SC

c  =  0.9343, d  =  0.3565 c  =  0.9408, d  =  0.339 c  =  0.9363, d  =  0.3512 c  =  0.933, d  =  0.3598

Binarization

c  =  0.9159, d  =  0.4088 c  =  0.9228, d  =  0.3923 c  =  0.9126, d  =  0.4172 c  =  0.9134, d  =  0.4142
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comparison for other cases (like different sparsity constraints 
and statistical noise level) with the same IAGA-SC algorithm 
is only based on the non-binary results; the binary results are 
just shown as references in this case.

4.  Experimental verification

The CT experiment for the two-phase flow was conducted on 
the RIKEN accelerator-driven neutron source (RANS). The 
configuration of the RANS is shown in figure  6, in which 
neutrons are produced by the Be (p, n) reaction with 7MeV 
protons bombarding the beryllium target. The advantages of 
the RANS are its compactness and flexibility. Its eventual goal 
is to be equipped onto trucks and employ neutrons to inspect 

the safety condition of bridges and buildings by radiography 
and tomography.

Figure 7 shows the energy spectrum at 5 m away from the 
moderator (camera box location, which is on the left side of 
the neutron beam line). There are two peaks—the thermal 
neutron (25 meV) and the fast neutron (1MeV) peaks on the 
spectrum—and both of the intensities are near 104 cm−2 · s−1. 
Therefore, it can be used for thermal and fast neutron imaging 
with different kinds of neuron detectors.

In the present experiment, two-phase flow phantoms have 
been manufactured to represent real two-phase flow, in which 
polymethyl methacrylate (PMMA) material with 1.18 g · cm−3 
density is the substitute for real water. Core and ‘bubble’ flow 
phantoms are used as imaging objects in this experiment. The 

Figure 6.  Configuration of the RANS.

Table 7.  Reconstructed results of the ‘bubble’ flow under different incident intensities.

Reference 0.24 million (50%) 2.4 million (16%) 24 million (5%)

IAGA-SC

c  =  0.9016, d  =  0.433 c  =  0.9262, d  =  0.3773 c  =  0.9308, d  =  0.3657

Binarization

c  =  0.8783, d  =  0.49 c  =  0.9061, d  =  0.4306 c  =  0.9052, d  =  0.4325
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neutron radiography setup is shown in figure  8, and all the 
components are equipped in the camera box of the RANS. 
The size of the 6LiF (ZnS: Ag) flat detector is 17 cm  ×  17 cm. 
The pixel size of the CCD camera is 41 µm  ×  41 µm. The 
purpose of the shielding material is to prevent the motor from 
directly exposing under high intensity neutrons. The rotating 
and moving stage is controlled by a computer, which can 
move or rotate the phantom at a certain distance or angle. We 
have implemented 35 times rotation for each phantom to take 
radiography images, in which the rotation step is 10°. The 
exposure time in each direction is 60 s.

Table 8 shows the reconstructed results of experimental 
data. Radiography images taken in the initial angle are also 
listed in the table. In the reconstruction, to check the perfor-
mance of the IAGA-SC algorithm in few view reconstruc-
tion, the radiography images taken in five view angles (initial 
angle, initial angle  +  60°, initial  +  90°, initial  +  120°, ini-
tial  +  150°) are used to produce the projection data, in which 
the slice thickness is 4 mm. The results reconstructed by 
the ASD-POCS algorithm are also shown as a comparison. 
Relatively optimal parameters are also selected for the ASD-
POCS algorithm, which are listed in table  5 of section 3.2. 

Figure 7.  Neutron energy spectrum of the RANS.

Figure 8.  Neutron radiography setup.
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The parameters for the IAGA-SC algorithm are the same as 
are shown in table 2 of section 2.5.3.

The results show that the IAGA-SC algorithm has better 
performance than the ASD-POCS algorithm in experimental 
data reconstruction. For core flow, the shape of the object 
reconstructed by the ASD-POCS algorithm is a bit distorted, 
because the distribution of the projection direction used for 
reconstruction is not uniform. In this case, the shape of the 
object reconstructed by the IAGA-SC algorithm is much 
better, which just proves the powerful ability of the IAGA-SC 
algorithm in restoring the shape of the object. For three ‘bub-
bles’ flow, to achieve the lowest d in reconstruction with 
the ASD-POCS algorithm, the information of the smallest 
‘bubble’ suffers certain loss especially for results through 
the binarization process, where the smallest ‘bubble’ almost 
disappears. Meanwhile the IAGA-SC algorithm with binari-
zation can restore such a ‘bubble’ clearly due to the gener-
ally binary feature of results reconstructed by the IAGA-SC 
algorithm.

5.  Discussion and conclusion

The IAGA-SC algorithm proposed in this paper is a powerful 
tool to implement CT reconstruction for two-phase flow. Its 
advantages can be summarized as four aspects: firstly, the 
image obtained by single time reconstruction is of binary 
value, which is in accordance with the natural feature of the 
two-phase flow, although the five times average may introduce 
some non-binary information to border regions; secondly, for 
simply connected flow regimes, especially for stratified flow, 
its reconstruction accuracy is much higher than that of the 
ASD-POCS algorithm; thirdly, for complex ‘bubble’ flow, 
it shows a greater advantage than the ASD-POCS algorithm, 
moreover, the advantage is inclined to be more obvious as the 
number of ‘bubbles’ increases; lastly, its ability to restore the 
shape of the object is much better than the ASD-POCS algo-
rithm. In addition, the proposed algorithm has a good property 
in resisting statistical noise. The fundamental reason for its 
excellent performance lies in the fact that the algorithm has 
made full use of the prior information of the two-phase flow 

as well as employing an advanced evolution strategy so that it 
can evolve towards a convergence direction.

It is effective to convert the multi-objective optimization 
problem to the single one by linear weighted summation. 
However, since the weight coefficient α determines the bal-
ance between the fidelity term and sparsity constraint term, an 
inappropriate α may result in unideal results. While the selec-
tion of α is empirical, this is one disadvantage of the IAGA-SC 
algorithm. Another disadvantage of the IAGA-SC algorithm is 
that it is relatively highly time consuming; for three ‘bubbles’ 
flow in an experiment as an example, a single time reconstruc-
tion takes 11 533 s with the IAGA-SC algorithm, compared to 
308 s with the ASD-POCS algorithm under the computation 
condition: CPU: i7-4790, 3.6 GHz; RAM: 8 G (single-threaded 
model). In consideration of the acquisition time (60 s per pro-
jection) and five times average, the total time to obtain one 
image is 57 965 s with the IAGA-SC algorithm in the current 
experiment. Although it is a long way from real time imaging, 
the acquisition time can be reduced by employing a neutron 
source with much higher intensity, and the problem of recon-
struction time will hopefully be solved by the development of 
parallel computation technology, such as GPU, etc. Our fol-
lowing research interest will be focused on promoting the com-
putation efficiency of the proposed IAGA-SC algorithm.

As a powerful reconstruction algorithm, the IAGA-SC algo-
rithm can also be applied to other types of two-phase flow CT, 
like electrical capacitance tomography (ECT) and electrical 
impedance tomography (EIT), etc. It is worth mentioning that 
the pixel size of the reconstructed images described in this 
paper is about 355 µm  ×  355 µm, and it can satisfy the acc
uracy of actual two-phase flow CT. Therefore, the proposed 
reconstruction algorithm has a potentially practical value.
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Table 8.  Reconstructed results of experimental data.

Reference Radiography ASD-POCS Binarization IAGA-SC Binarization
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Appendix

Pseudo codes of the IAGA-SC algorithm:
Begin
Initial parameters: P, G, T, S, α, b, p0, Pc1, Pc2, Pc3, Pm1, Pm2, Pm3

Initial population by 0 or 1 randomly
gen  =  1, i  =  0, j  =  0, m  =  1, n  =  1, Pr  =  2255, N  =  199
While gen  <  G and gen  <  S Do
      While i  <  P-2 Do
            // selection
            While j  <  2 Do
                  Selecting T individuals randomly
                  Comparing fitness value f of selected individuals
                  If random (0, 1)  <  p0 Do
                    The individual with maximum f is selected
                  Else Do
                    Selecting an individual from the population randomly
                  End
                  j  =  j  +  1
            End
            // crossover
            Calculating crossover probability Pc

            If random (0, 1)  <  Pc Do
              num1  =  randomN
              If random01  ==0 Do
                Exchanging the num1 row of selected two individuals
              Else Do
                Exchanging the num1 column of selected two individuals
              End
            End
            If random (0, 1)  <  Pc Do
              num1  =  randomN
              num2  =  randomN
              If random01  ==0 Do
                Exchanging the num1 row of the first selected individual with num2 row of the second selected individual
              Else Do
                Exchanging the num1 column of the first selected individual and num2 column of the second selected individual
              End
          End
          // mutation
          Calculating mutation probability Pm

          k  =  i
          While k  <  i  +  2 Do
                Selecting the kth individual
                While m  <  N  +  1 Do
                      While n  <  N  +  1 Do
                            Calculating the average value A of neighborhood pixels for pixel (m, n)
                            If random (0, 1)  <  Pm Do
                              If random (0, 1)  >  A Do
                                The value of current pixel (m, n)  =0
                              Else Do
                                The value of current pixel (m, n)  =1
                              End
                            End
                            n  =  n  +  1
                        End
                        m  =  m  +  1
                    End
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