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 

Abstract—Accidental falls have always been a serious problem 

for the elderly. There is considerable demand for pre-impact fall 

detection systems with long lead times. According to the zero 

moment point criterion, the zero moment point should be kept 

beneath the supporting foot for stability during humanoid robot 

standing or walking. However, the zero moment point in the 

human walk does not stay fixed under the supporting foot. In this 

paper, we define a dynamic supporting area containing both feet 

and the area between the two feet, and propose a method of fall 

prediction based on a modified zero moment point criterion using 

motion-monitoring data from a Kinect sensor. A fall event is 

predicted if the projection of the zero moment point locates 

outside of the dynamic supporting area. The proposed method is 

compared to a method identifying the imbalance state based on a 

support vector machine classifier. Experimental results show that 

fall events could be detected with an average lead time of 867.9ms 

(SD=199.2), a sensitivity of 100%, a specificity of 81.3%, a positive 

predictive value of 87.0%, a negative predictive value of 100%, 

and an accuracy of 91.7% using the modified zero moment point 

criterion. The lead time was 571.9ms (SD=153.5) and accuracy 

was 100% for the support vector machine classifier. The modified 

zero moment point criterion-based method achieved the longest 

lead time in pre-impact fall detection.   

Index Terms—fall prediction, home care, Kinect, zero moment 

point criterion 

 

 

I. INTRODUCTION 

OPULATION aging is a significant demographic 

characteristic of modern society. Accidental falls are very 

common among elderly people especially in rehabilitation 

hospitals, due to muscle weakness and balance instability [1].  

Accidental falls cause physical injuries to the elderly, lower the 

quality of life for the elderly, reduce the independence of 

elderly people, have dramatic psychological consequences, and 

bring heavy financial burdens to the family and society. Even a 

fall that doesn’t seem very serious may cause a big injury. Thus, 

accidental falls are considered one of the greatest health risks 
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among the elderly and fall prevention has become an important 

issue. 

Falls can be detected via motion monitoring and tracking 

using wearable sensors (such as accelerometers, gyroscopes, or 

tilt sensors)[2], cameras [3], vibration sensors to detect floor 

vibration or sound caused by falls [4], and smartphones [5]. 

They follow a decision-making process of whether a human has 

fallen or not [6]. Fall detection can be classified as wearable 

device-based, camera-based, and ambient device-based [7]. 

Inactivity/change of shape [8], head motion trajectory analysis 

[9], and posture detection analysis [3] are often used for 

camera-based fall detection approaches.  

Kinect sensors (Microsoft Corporation, Albuquerque, New 

Mexico) are much cheaper compared to other camera motion 

tracking systems. Depth information from Kinect sensors have 

been used for fall detection, and the results look promising 

[10]–[13]. For example, the Kinect-based system reported by 

Rougier et al. [13] detected fall events by setting thresholds to 

the velocity of the center of mass and the distance between 

subject’s centroid and the floor. Mastorakis et al. [10] proposed 

a fall detection method by measuring the velocity based on the 

contraction or expansion of the width, height, and depth of the 

3D bounding box using Kinect’s infrared sensor. Stone and 

Skubic [12] proposed a fall detection method using the Kinect 

sensor. Their fall detection method first characterizes a 

person’s vertical state in individual depth image frames, and 

then segments the on-ground events from the vertical state time 

series obtained by motion tracking over time. Then, an 

ensemble of decision trees is used to compute a confidence that 

a fall preceded an on-ground event. Kwolek and Kepski [11] 

used a Kinect sensor together with an accelerometer to detect 

falls and reduce the false alarm ratio. However, these methods 

can only detect fall events after they happen. Although early 

fall alarms can save time before first-aid treatments, injuries 

caused by falls may be inevitable using fall detection methods. 

Unlike post-impact fall detection, pre-impact fall detection 

intends to predict the fall events prior to impact. Pre-impact fall 

detection can be integrated with an on-demand fall protection 

system [14]–[17]. The on-demand fall protection system (such 

as inflatable hip protector and wearable airbag) can implement 

appropriate interventions if falls are predicted in their earliest 

stage (with a longer lead time for response) to reduce the 

severity of injury in the elderly [14]–[17]. The imbalance state 
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means more risk of fall than the balance state. The motion of 

human body is monitored to identify the imbalance state of 

human bodies. Kinematic measures such as velocities and 

accelerations of the trunk, head, knee, or upper arm, angular 

rate of sternum, or waist, as well as segment orientation of the 

trunk or thigh are commonly used as fall detection indicators 

[18]. Nyan et al. [19] proposed a system that can predict a fall 

700ms earlier using wearable inertia sensors with a sensitivity 

of 95.2%. Angular movements of thigh and torso segments 

were monitored and a threshold was set to distinguish normal 

and abnormal behaviors. Tong et al. [20] proposed a hidden 

Markov model-based method that can predict a fall event 

200-400ms earlier with 100% accuracy using tri-axial 

accelerometers. Lee et al. [21] reported a vertical 

velocity-based, pre-impact fall detection method using a 

wearable inertial sensor and achieved lead time between 184 

and 231ms. Hu and Qu [22] proposed a pre-impact fall 

detection model based on the statistical process control chart 

with lead time of 200-300ms. Liu and Lockhart  [16] proposed 

an algorithm using trunk angular velocity and trunk angle that 

can predict fall events with 100% sensitivity, 95.65% 

specificity, and 255ms response time. Sabatini et al. [17] 

proposed a pre-impact fall detection with 80% sensitivity, 

100% specificity, and a mean lead time of 157ms (range 

40-300ms). The longer lead time that pre-impact fall detection 

systems can provide, the longer the required respond time is for 

triggering the fall protection system.  How to further increase 

the lead time is still a challenge.  

Zero moment point (ZMP) criterion is commonly used in 

stable walking reference generation in the stability analysis of 

the biped robot walk [23]. ZMP is defined as a point on the 

ground where the net moment of the inertial and gravity forces 

has no component along the axes parallel to the ground [24]. 

According to this criterion, the ZMP should be kept fixed in the 

middle of the supporting foot sole for the stability during 

humanoid robot standing or walking [23]. We can adopt this 

criterion for imbalance state detection of human bodies. 

However, during human walking, the ZMP does not stay fixed 

under the supporting foot. Rather, it moves forward from the 

heel to the toe direction and the ZMP may locate out of either 

the left or right foot when the person switches the supporting 

foot [23] (see Fig. 1). Therefore, to apply the ZMP criterion to 

imbalance detection of human body, the ZMP criterion should 

be modified. 

In this paper, we propose a method of pre-impact fall 

detection based on a modified zero point criterion using motion 

monitoring data from a Kinect sensor. The main advantages of 

this method include long lead time, no training data required, 

and low computational complexity. This method is compared to 

a more conventional method of identifying the imbalance state 

based on a support vector machine (SVM) classifier. Section 2 

shows the details of the pre-impact fall detection method. 

Section 3 presents a preliminary evaluation experiment. 

Section 4 draws the conclusions. 

II. METHODOLOGY 

In this section, we describe our technique for pre-impact fall 

detection. 

A. Concept 

During human walking, ZMP does not stay fixed under the 

supporting foot and the ZMP criterion does not apply. 

Therefore, we define a dynamic supporting area (DSA) 

containing the projection of both feet and the area between the 

two feet on the floor to modify the ZMP criterion (see Fig. 1). 

We hypothesize that the ZMP should be within this dynamic 

supporting area during human walking and the person will lose 

balance if ZMP locates outside of the dynamic supporting area. 

Fig. 2 shows the flow chart for our pre-impact fall detection 

process. Pre-impact fall detection starts with human monitoring 

and finishes with decision making on whether the human is on a 

balance or imbalance state. We establish a dynamic multi-rigid 

body model, calculate the ZMP based on this model, and check 

whether ZMP is within the dynamic supporting area to estimate 

the fall risk. The details are provided in the following 

paragraphs. 

B. Dynamic multi-rigid body model 

  

Dynamic supporting 

area 

ZMP 

Fig. 1. Feet support states during walking and the dynamic supporting 

area. 
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The Kinect sensor 2.0 can capture videos with 1920×1080 

resolution at 30 frames per second through an RGB camera, and 

acquire depth information with 512×424 resolution through an 

IR sensor. The Kinect sensor 2.0 provides a skeletal model with 

three-dimensional coordinates of 25 joints on the human body 

(see Fig. 3 (a)). The original data of motion information of 

joints from the Kinect sensor contains high-frequency noise. 

Therefore, we apply a median filtering to the motion 

information to reduce the noise. Fig. 4 shows the difference 

between the position data before and after median filtering to 

demonstrate the necessity to apply median filtering to the 

position information. The data were knee coordinates during a 

10s walk. After filtering, high-frequency noise was reduced and 

the data became smoother for the x and y coordinates. For the 

data of the z coordinate, there was not much difference, since it 

varied monotonically. 

We obtained the three-dimensional position information of 

25 joints of the human body (see Fig. 3(a)) using the Kinect 

sensor 2.0. Those 25 joints divided the human body into 24 

segments. In our multi-rigid body model, the human body is 

divided into 15 segments (see Fig. 3(b) and Table I) according 

to “Body segment division standard” in GB/T17245-2004 of 

China’s “Inertial parameters of adult human body.” The motion 

information of the geometric centers of the 15 body segments, 

including location, speed, and acceleration, are acquired using 

the motion data of the 25 joints acquired by the Kinect sensor. 

In order to determine the kinetic information generated during 

exercise, the mass for each body segment needs to be 

configured. To simplify the calculation process, the motion 

information of the geometric centers of the 15 body segments is 

used to replace the motion information of the mass centers of 

the 15 segments. For example, we use the position information 

of the middle point of the line determined by joint 5 and 6 to 

determine the information of geometric center of segment 10. 

We combine somatosensory information from the Kinect 

sensor and the mass proportions of body parts (see Table II) 

according to GB/T17245-2004 of China. For example, if the 

Fig. 2. Flow chart of fall risk prediction based on a modified ZMP criterion using data from Kinect sensor. 

. 
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Fig. 3. Skeleton model with 25 joints shown in (a) and the dynamic 

multi-rigid body model with 15 segments shown in (b). 
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male human subject weight is 60kg, 16.82% of his body weight 

(10.09kg) is assigned to this upper trunk. The coordinates of the 

body mass center can be calculated by: 

 
15 15

1 1
/c i i ii i

X m X m
 

                       (1) 

 
15 15

1 1
/c i i ii i

Z m Z m
 

                        (2) 

where Xc is the x coordinate of the body's mass center; Zc is the z 

coordinate of the body's mass center; mi is the mass for segment 

i obtained from Table II; Xi is the x coordinate of each segment; 

and Zi is the z coordinate of each segment. 

The ZMP of the human body can be calculated as: 
15 15
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where mi is mass for segment i; Xi, Yi, and Zi are mass centers; 

iX
, iY , iZ

are accelerations; and g is  gravitational 

acceleration. 

 

TABLE I  

MAPPING BETWEEN THE KINECT SKELETON MODEL AND THE SEGMENTS IN THE 

DYNAMIC MULTI-RIGID BODY MODEL 

Kinect skeleton model Segment no. in the dynamic 
multi-rigid body model 

The section between 4 and 21 S1 

The section between 2 and 3 S2 
The section between 1 and 2 S3 

The section between 13 and 14 S4 

The section between 14 and 15 S5 
The section between 15 and 16 S6 

The section between 17 and 18 S7 

The section between 18 and 19 S8 
The section between 19 and 20 S9 

The section between 5 and 6 S10 

The section between 6 and 7 S11 

The section between 7 and 22 S12 

The section between 9 and 10 S13 

The section between 10 and 11 S14 
The section between 11 and 24 S15 

C. Zero moment point and balance margin 

As described in the concept section (part A), we define a 

dynamic supporting area containing both feet soles and the area 

between the two feet. It is difficult to acquire the exact dynamic 

supporting area. The calculation of the dynamic supporting area 

is simplified as shown in Fig. 5 (a) to provide an approximate 

solution. The Kinect can provide coordinates of ankles and 

coordinates of feet sole centers F1 and F2. Heel centers O1 and 
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Fig. 4. The trajectory of left knee before (shown in (a), (c), and (e)) and after (shown in (b), (d), and (f)) median filtering. 
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O2 can be acquired by projecting the ankle coordinates to the 

foot sole plane. Lee et al. [25] classified Asian feet types into 

six categories: S, MAL, MAH, MBL, MBH, and L, and 

proposed a general scaling relation between foot size and width 

for each category. If the foot size is known, foot width can be 

obtained. Then, the simplified dynamic supporting area (dotted 

line) can be obtained based on the length and width of the shoes. 

It can be further simplified to the area marked in the 

dash-dotted line. 

 
TABLE II  

MASS PROPORTIONS OF BODY PARTS FROM GB/T17245-2004 OF CHINA 

“INERTIAL PARAMETERS OF ADULT HUMAN BODY” 

Body parts Male Female 

Head and neck 8.62% 8.20% 
Upper trunk 16.82% 16.35% 

Lower trunk 27.23% 27.48% 

Upper arm 2.43% 2.66% 
Forearm 1.25% 1.14% 

Hand 0.64% 0.42% 

Thigh 14.19% 14.10% 
Crus 3.67% 4.43% 

Foot 1.48% 1.24% 

 

We define a balance margin k to quantify the balance level of 

the human body (see Fig. 5 (b)).  

,A is withing the supporting area.

1 A is out of the supporting area，     


 



AB OB
k

.
 (5) 

When k is out of the range between 0 and 1, there is a risk of 

falling. 

D. Motion state classification using a SVM classifier 

Our proposed modified zero moment point criterion method 

is compared to a more conventional method of identifying the 

imbalance state based on an SVM classifier.  

In the process of fainting, the supporting strength of the body 

reduces and is not enough to control the balance. Thus, there is 

a rapid drop of the center of gravity. In the case of human trips 

or slips while walking, the lower limbs swing quickly to try to 

avoid falling. Therefore, two characteristic quantities are 

selected to represent the human body's fall process, which are 

the vertical speed of the center of gravity and the difference 

between the horizontal speed of the knees and the horizontal 

velocity of the center of gravity (SDKG). They were calculated 

as: 

 k lk rkV V V                                   (6) 

cos  k ok

k ok

V V

V V
                                   (7) 

cos  ok k okV V V V                         (8) 

where 
lkV  is the left knee horizontal speed in the kth frame; 

rkV   is right knee horizontal speed in the kth frame; 
kV is the 

sum of the horizontal speed of the left and right knee in the kth 

frame; 
okV  is the horizontal velocity of the center of gravity in 

the kth frame;   is the angle between 
kV  and 

okV , and V  is 

SDKG. An SVM can construct an optimal hyperplane as the 

threshold to determine if the imbalance state of the human body 

is established using the two indicators (the minimum values of 

the vertical speed of the center of gravity and SDKG of each 

trial). Then, a good separation between fall events and non-fall 

events is achieved by the hyperplane. 

III. EXPERIMENT AND RESULTS 

A. Experimental protocol 

In order to validate the proposed pre-impact fall detection 

method, experimental trials (including normal stand, squat, and 

rise, from stand to topple and fall, normal walk, from walk to 

stumble over a barrier but does not fall, and from walk to 

stumble over a barrier and fall) were conducted. For the trials of 

from stand to topple and fall, the participant swung back and 

forth until a fall event happens. For the trials of from walk to 

stumble over a barrier and fall, a barrier was added to the 

participant’s walk path to cause a fall event. For the trials of 

from walk to stumble over a barrier and fall, a barrier was 

added to the participant’s walk path, but the participant avoided 

the fall event by adjusting the posture. A healthy 25 year-old 

male participated in the experiment. During the experiment, the 

motion data were acquired by a Kinect sensor and sent to a 

laptop computer (Intel ® Core ™ i7-6700 CPU @3.4GHz 

3.41GHz 8GB RAM, x64-based processer) for data recording, 

data processing, and output of fall prediction results. The height 

of the Kinect sensor was 1.0m. The distance between the Kinect 

sensor and the human body was within the range of 1.5-4.5m. 

100 trials were used as the training set for the SVM classifier. 

36 trials were used as the test set. 

B. Results 

Table II shows the test set trials of different activities and the 

recognition results of those trials using the modified zero 

moment point criterion-based method. As shown, 36 trials were 

used as the test set, including 20 trials of falls and 16 trials of 

non-fall activities. The details are analyzed below. 

Twenty trials of fall events included 10 trials of from stand to 

(a) (b) 

Fig. 5. The simplified dynamic supporting area shown in (a) and the 

relationship between the ZMP and the supporting area shown in (b): O is 

the supporting area center; A is the ZMP; B is the intersection of the line 

AB and the supporting area outline. 
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topple and 10 trials of from walk to stumble over a barrier. Fig. 

6 shows the hip joint trajectory along the vertical direction 

(upper subfigures) and balance margin k (lower subfigures) 

during four trials. Results of other trials were similar to these 

ones. These fall events were predicted before the actual falls 

happened because there was a transition stage between the 

sudden drop of balance margin k and the actual falls happened. 

There were large fluctuations of balance margin k in the trials of 

stand to topple before k became less than 0.  
TABLE II 

 RESULTS OF PRE-IMPACT FALL DETECTION USING THE PROPOSED MODIFIED 

ZERO MOMENT POINT CRITERION 

Activities Results Trials Correctly 

predicted 

From stand to topple  fall 10 10 

Walk and stumble over a barrier fall 10 10 
Normal stand not fall 2 2 

Normal squat and rise not fall 2 2 

Normal walk not fall 2 2 
Walk and stumble over a barrier  not fall 10 7 

 

Sixteen trials of non-fall events included two trials of normal 

stand, two trials of squat and rise, two trials of normal walk, and 

10 trials of from walk to stumble over a barrier. In Fig. 8, we 

demonstrate the results of those trials. The upper subfigures in 

Fig. 7 show the hip joint trajectory along the vertical direction. 

The lower subfigures in Fig. 7 show the balance margin k. 

During the stand trials, the ZMPs were all within the dynamic 

supporting areas. One can see that the balance margin k was 

around 0.8 during the experiment, which means the participant 

was in a good balance state. During the squat and rise trials, 

there were fluctuations in balance margin k but the value was 

always larger than 0, which means that the participant was in a 

balance state. During the trials of normal walk, there were small 

fluctuations in balance margin k but the value was always larger 

than 0.5. Therefore, the participant was in a balance state. For 

the trials of from walk to stumble over a barrier, drastic 

fluctuations existed but stabilized after the participant adjusted 

his gesture. Fall events were avoided. However, three trials of 

non-fall events were not correctly recognized. As shown in Fig. 

8, balance margin k of these three trials became less than 0. 

Even the participant managed to adjust his gesture to avoid a 

fall event. Therefore, those three trials were mistakenly 

predicted as fall events using our proposed pre-impact fall 

detection method. 

True positives TP (successfully predicted a fall event), false 

positives FP (predicted there was a fall when there was no fall), 

true negatives TN (successfully recognized as a non-fall event), 

and false negatives FN (recognized as a non-fall event when 

there was a fall event) were 20, 3, 13, and 0, respectively. 

Sensitivity Se [26], which shows the proportion of positives 

that are correctly identified as such and is related to the 

predictor's ability to identify positive results measures, was 

defined as the sum over all n trials of TP divided by the actual 

number of fall events (the sum of FN and TP), namely: 

1 1
/ ( )

 
  

n n

e j j jj j
S TP TP FN .                       (9) 

The specificity Sp [26], which shows the proportion of 

negatives that are correctly identified as such and is related to 

the test’s ability to identify negative results, was defined as the 

sum of all n trials of TN divided by the actual number of 

non-fall events (the sum of TN and FP), namely: 

1 1
/ ( )

 
  

n n

p j j jj j
S TN TN FP .                     (10) 

Positive predictive value PPV [27], or precision rate, a 

measure of the performance of the diagnostic method, was 

defined as the sum of TP over all n trials divided by the test 

outcome positives (fall events) or sum of TP and FP, namely: 

(a) (b) 

(c) (d) 

Fig. 6 Hip joint trajectory (upper subfigures) and balance margin k (lower subfigures) of four trials of fall events: two trials of from stand to topple are 

shown in (a) and (b); two trials of from walk to stumble over a barrier shown in (c) and (d).  
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1 1
/ ( )

 
  

n n

j j jj j
PPV TP TP FP                      (11) 

Negative predictive value NPV [27], which is the proportion 

of negative results in the test that are TN, a measure of the 

performance of the diagnostic method, was defined as the sum 

of TN over all n trials divided by the test outcome negatives 

(non-fall events) or the sum of TN and FN, namely: 

1 1
/ ( )

 
  

n n

j j jj j
NPV TN TN FN                     (12) 

The accuracy ACC [27] was calculated as:  

 
1

1

( )

( )








  





n

j jj

n

j j j jj

TP TN
ACC

TN TP FP FN
.            (13) 

Se, Sp, PPV,  NPV, and ACC values alone may be highly 

misleading. Therefore, a common way to avoid reliance on 

experiments with few results is to calculate confidence 

intervals for each of these that give the range of values within 

which the correct value lies at a given confidence level. Wilson 

score intervals [28], which have good properties even for a 

small number of trials (less than 30), were calculated at a 95% 

confidence level. 
2 2

2

1

1 1 1

4 (1 ) / 1+
2 2

  


   
       
   

Z Z Z
S p n p p Z

n n n
  , 

(14)  

where p is the proportion of successes estimated from the 

statistical sample; z is the 1–α/2 percentile of a standard normal 

distribution; α is the error percentile; and n1 is the sample size. 

Since the confidence level was 95%, the error α was 5%. 

Notice the estimators demonstrated that the modified 

ZMP-based, pre-impact fall detection method obtained very 

good results. The pre-impact fall detection Se, Sp, PPV, NPV, 

and ACC were 100% (95% confidential interval: 97.4–100.0%), 

81.3% (95% confidential interval: 74.1–86.8%), 87.0% (95% 

confidential interval: 80.3%–91.4%), 100% (95% confidential 

interval: 97.4–100.0%), and 91.7% (95% confidential interval: 

93.8%–99.2%), respectively.  

As shown in Fig. 9, pre-impact fall detection using the 

SVM-based method achieved Se, Sp, p PPV, NPV, and ACC of 

all 100% (95% confidential interval: 97.4–100.0%). 

Fig. 10 shows the time between pre-impact fall detections 

and the actual falls. The time was calculated from the moment 

that balance margin k became -1 to the moment that the hip 

joint reached the lowest position along the vertical direction. 

For the modified ZMP-based method, the average time was 

867.9ms (SD=199.2). The maximum lead time was 1221ms, 

and the minimum lead time was 528ms. For the SVM-based 

method, the average time was 571.9ms (SD=153.5). The 

maximum lead time was 896ms and the minimum lead time 

was 358ms. The lead time difference between the two methods 

was significant (p=6.66×10-6) 

C. Discussion 

During the experiment, a set of 36 events of falls or non-falls 

was studied. The set includes 20 true falls and 16 non-falls. 

There are some false positives using the proposed modified 

ZMP criterion-based, pre-impact fall detection method. 

Sensitivity quantifies the avoiding of false negatives. There is a 

tradeoff between increasing sensitivity and reducing false 

alarms. To reduce false negatives and improve safety, 

sensitivity should be as high as possible, even at the cost of 

slightly reducing the specificity to increase the probability of 

identifying falling risks. From this perspective, the proposed 

Fig. 7. Hip joint trajectory (upper subfigures) and balance margin k (lower subfigures) of four trials of non-fall events: normal stand shown in (a), squat and 
rise shown in (b), stand to topple shown in (c), and from walk to stumble over a barrier shown in (d).  

 

(a) (b) 

(c) (d) 
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pre-impact fall detection method fulfills the requirement with a 

high sensitivity (100% with 95% confidential interval: 

97.4–100.0%) and a slightly lower specificity (81.3% with 95% 

confidential interval: 74.1–86.8%). 

In terms of timing performance, the proposed modified ZMP 

criterion-based method can complete pre-impact fall detection 

prior to the actual fall with an average lead time of 867.9ms 

(SD=199.2). To the best of our knowledge, this is the longest 

lead time achieved in fall risk prediction to date. This makes it 

possible to take certain actions, for example, using protection 

devices such as airbags to prevent fall injuries.  

Although the SVM classifier achieved good classification 

accuracy, the lead time was shorter than the modified ZMP 

criterion-based method. Moreover, training is required when 

using the SVM classifier, while training is not required for the 

modified ZMP criterion-based method.  

 
Fig. 9 Vertical speed of the center of gravity and SDKG. 

 
Fig. 10. Time between fall predictions and the actual falls. 

 

The Kinect sensor can be set up in a household. In this study, 

the distance between the human body and the Kinect sensor 

was within the range of 1.5-4.5m and the fall prediction results 

were satisfactory. Most households can fulfill this distance 

requirement. However, the information of joints on the human 

body acquired from the Kinect sensor will be more accurate if 

there is a fixed distance between the sensor and human body. 

Attaching the Kinect sensor to a wheelchair with an 

omnidirectional moving chassis that can follow the user’s 

movement within a fixed distance may solve this. 

Only one male human subject participated in this experiment. 

In the future, more human subjects with different ages, heights, 

and genders should be involved to evaluate the robustness of 

the proposed fall prediction method. 

IV. CONCLUSION 

Reliable pre-impact fall detection and prevention is critical 

to independent living facilities for seniors. In this paper, we 

proposed a pre-impact fall detection method based on a 

modified zero moment point criterion using motion-monitoring 

data from a Kinect sensor. We define a dynamic supporting 

area, monitor the relationship between the zero moment point 

and the dynamic supporting area, and predict fall risk if the zero 

moment point is located outside of the dynamic supporting area. 

Experimental results show that fall events could be predicted 

with an average lead time of 867.9ms with Se of 100%, Sp of 

81.3%, PPV of 87.0%, NPV of 100%, and ACC of 91.7% using 

the modified ZMP-based method. Using the SVM-based 

method, the average lead time was 571.9ms, and Se, Sp, PPV, 

NPV, and ACC were all 100%. The modified ZMP-based 

(a) 

(b) 

(c) 
Fig. 8. Hip joint trajectory (upper subfigures) and balance margin k (lower 

subfigures) of three trials of non-fall events mistakenly predicted as fall 

events. 
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method achieved the longest lead time achieved in pre-impact 

fall detection. The main advantages of the modified ZMP-based 

method include no training data required and long lead time. In 

future studies, more human subjects with different ages, heights, 

and genders should be involved to evaluate the robustness of 

the proposed pre-impact fall detection method. 
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