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Abstract
This paper presents the modeling technique, design method, a new working mechanism and 
influence factors for elastic metamaterials (EMs) with parallel multi-resonators for broadband 
elastic vibration suppression. The general formula of the effective mass is deduced, and the 
effects of the relevant structural parameters on the frequency regions of the negative effective 
mass are illustrated in details. Subsequently, the dispersion relation and transmission spectrum 
of the EMs are studied. Based on the theoretical approach, the EMs plates were proposed, and 
the formation mechanism of the band gaps are analyzed by studying the displacement field of 
the eigenmodes at the band gaps edges. The related results well confirm that the novel EMs 
induces multi-frequency negative effective mass, and the number of the regions is equal to 
the number of the local resonators. The start frequencies of the band gaps are decided by the 
natural frequencies of each resonator, and the width of frequency band with negative effective 
mass can be broadened by enlarging the mass ratio of the local resonator. The EMs plate 
with the thickness of only 2.5 mm designed on the basis of theoretical research exhibits two 
flexural vibration band gaps (FVBGs) with the total width of 78.4 Hz below 200 Hz, which 
has been verified by the transmission testing experiments. For the formation mechanism of the 
FVBGs, the vibration is localized in the according resonator at the lower edge of each band 
gap, while at the upper edges the local resonance mass and the base plate vibrate in a reverse 
phase. Based on the theoretical and numerical analyses, the EMs with multiple parallel local 
resonators would be used in various fields, such as noise and vibration isolation, filters, and 
other renewed devices.
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1. Introduction

Elastic metamaterials (EMs), a novel kind of artificial periodic 
materials or structures, have received significant attention for 
their exceptional physical properties, such as negative effec-
tive mass and moduli, and negative refractive index [1–16]. 
The existence of the band gaps for EMs can prohibit vibration 
propagation in any direction, which can be used to design the 
low-frequency vibration isolators or frequency filters.

There are exactly three different formation mechanisms 
of the band gaps for EMs, namely Bragg scattering, local 
resonance, and hybridization. The Bragg scatting bandgap 
is caused by multiple scatterings of the periodic inclusions, 
the wavelength of the band gap frequencies is as the same 
order of the structural period [1, 2]. The second mechanism 
employs the resonant vibration of the local resonance mass 
working against the excitation of the incident elastic waves 
to attenuate the vibration [3–14]. The frequency range of the 
band gap based on this mechanism is almost two orders of 
magnitude lower than that of the Bragg scattering. The third 
kind of bandgap formation mechanism is attributed to the 
coupling effects of local resonances and Bragg scattering, 
which is why they have been called hybridization gaps [15, 
16]. Also among the above EMs structures, the local reso-
nance EMs have been widely researched and developed for 
their excellent low-frequency vibration/acoustic suppression 
characteristics. By placing the rubber-coated lead spheres in 
an epoxy matrix, the EMs with negative effective mass was 
firstly proposed by Liu et al [3], and the formation mechanism 
of the negative effective mass can be well explained by the 
simple mass-in-mass spring structures. Subsequently, the con-
ception of the EMs was introduced in the design of vibration 
reduction in engineering components, such as bars, beams, 
and plates [17–35]. Previous works are mainly focused on 
the single negativity resonators of the EMs, and the negative 
effective mass only exhibits within a very narrow frequency 
region, which greatly limits its further development. For these 
reasons, the EMs with the multi-degree of freedom resona-
tors are studied to deal with such problems. In fact, the EM 
with the two-degrees-of-freedom local resonator was firstly 
reported by Yu et  al [36], the vertical and rotational vibra-
tions of the local resonance mass were considered to obtain a 
wider low-frequency band gap. On the basis of his research, 
Lu et  al redesigned the EM beam with two separated band 
gaps through the unequal distance between the two supporting 
springs to the center of mass of the local resonance mass [37]. 
Huang et al investigated a two-resonator mass-in-mass lattice 
system theoretically. He found that the major band gaps are 
determined mainly by the outermost mass, and the minor band 
gap can be achieved by changing the microstructure param-
eters [38]. Tan et al optimize the band gaps of the dual-reso-
nator EM, and the advantage of elastic wave attenuation over 
a wider frequency region was demonstrated [39]. Hussein 
et al studied the dispersion relation of a viscous damped two-
resonator metamaterial which exhibits higher dissipation 
throughout the spectrum, and because of the local resonance, a 

damping emergence phenomena was illustrated [40]. The ideas 
of the multi-degree-of-freedom resonators are subsequently 
introduced in the design of vibration reduction for the beam 
and plate [41–49]. All the previously mentioned mass-spring 
models have the same structure, and there are some difficul-
ties in manufacturing and processing of the EMs. In view of 
this, Pai and Xiao both reported the new EMs bars with many 
tiny spring-mass subsystems attached in parallel, the band gaps 
with the number being equal to the number of the resonators 
can be found, and the formation mechanism of the band gaps 
were explained theoretically [41–46]. However, the aforemen-
tioned analyses were mainly concerned with the specific EMs 
structures and less on the theoretical equivalent mass-spring 
system, which may limit the use of this type of EMs.

In this paper, the negative effective mass of the EMs 
with multiple parallel local resonators is investigated theor-
etically. The general formula of the effective mass is deduced, 
and the effects of the structural parameters on the frequency 
regions of the negative effective mass are illustrated in details. 
Subsequently, the dispersion relation and transmission spec-
trum of this type of EMs are studied, based on the theoretical 
approach. The EMs plates were proposed, and the formation 
mechanism of the band gaps is analyzed by studying the dis-
placement field of the eigenmodes at the band gaps edges.

2. Lattice model of parallel multi-resonators

2.1. Negative effective mass

Consider an infinitely long one-dimensional lattice system 
consisting of parallel multi-resonators, as shown in figure 1. 
The outer masses m0 are connected periodically by the outer 
springs k0 with the spacing of L, and the local resonance  
mass mi is linked to the outer mass m0 by the spring ki in 
parallel. The unit cell of the lattice model, as shown in 
figure 1(b), is used to study the effective mass of the parallel 
 multi-resonators EMs.

The motion equation of the unit cell can be given by

MÜ + KU = F, (1)

with

M =




m0 0 0 · · · 0 0
0 m1 0 · · · 0 0

0 0 m2
. . . 0 0

...
...

. . .
. . .

...
...

0 0 0 · · · mn−1 0
0 0 0 · · · 0 mn




, (2)

K =




k1 + k2 + · · ·+ kn −k1 −k2 · · · −kn−1 −kn

−k1 k1 0 · · · 0 0

−k2 0 k2
. . . 0 0

...
...

. . .
. . .

...
...

−kn−1 0 0 · · · kn−1 0
−kn 0 0 · · · 0 kn




,

 (3)
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U =




u0
u1
...

un


 , (4)

F =




F
0
...
0


 , (5)

where ui  =  Uiexp(j ωt) denotes the displacement of the ith 
lump mass, F  =  F0exp(j ωt) is external force applied on the 
unit cell.

By solving the above equations, we can simplify the rela-
tion as

(
m0 +

n∑
i=1

mi
ω2

i

ω2
i − ω2

)
ω2U0 + F0 = 0, (6)

where ωi =
»

ki
mi

 is the natural frequency of the ith resonator.
Previous work [14, 38, 45, 48, 49] has proved that the effec-

tive mass of the unit cell must satisfied the follow equation

F0 = −m(n)
eff ω

2U0. (7)

According to equations (6) and (7), the effective mass of the 
EMs with n parallel multi-resonators can be expressed as

m(n)
eff = m0 +

n∑
i=1

mi
ω2

i

ω2
i − ω2

. (8)

From equation  (8) it can be found that, the effective mass 
of the composite system is closely related to the natural fre-
quency of each resonator, and there will be n negative mass 
regions for the EMs with n resonators.

For a more intuitive indication, the effective mass of the 
lattice model with n (n  =  1, 2, 3, 4) resonators are illustrated 
in figure 2. In the calculation, the total mass of the local reso-
nance mass is remained constant, and the relevant parameters 
of the distributed masses used are shown in detail, in table 1. 
Meanwhile, the equivalent stiffness of the springs is assumed 
to the same, i.e. k1  =  k2  =  k3  =  k4  =  1 N m−1.

From figure 2, it can be found that the number of the fre-
quency regions having negative masses increases from one to 
four with the number of the resonators increasing from one to 
four, and the number of the negative mass regions are equal 
to the number of the resonators. Table 2 lists the bandwidths 
as well as the start-stop frequencies of the negative effective 
mass regions. It is easy to see that the total bandwidth of the 
negative effective mass region is enlarged from 0.5774 rad s−1 
for the single-resonator model to 1.1316 rad s−1 for the quad-
resonator model.

Further manipulation of the equation  (8), the effective 
mass of the meta-composite system can be re-represented as 
follows:

Figure 1. (a) The one-dimensional lattice system consisting of parallel multi-resonators, (b) the unit cell of the lattice system and its 
effective mass.
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m(n)
eff = m0 +

(
1 +

n∑
i=1

αi
ω2

i

ω2
i − ω2

)
,

 

(9)

where αi =
mi
m0

 is the ratio of the internal mass mi to the outer 
mass m0. From equation  (9), it is obvious that the effective 

mass m(n)
eff  is dependent of two parameters, namely, αi and ωi, 

and their effects on band of the negative effective mass are 
shown in figures 3 and 4, respectively. In the investigation for 
the effects of αi on the negative effective mass, the natural 
frequencies of the resonators are set as follows: ω1  =  1 rad s−1  
for one single resonator; ω1  =  1 rad s−1 and ω2  =  2 rad s−1 
for two parallel resonators, respectively; ω1  =  1 rad s−1,  
ω2  =  2 rad s−1, and ω3  =  3 rad s−1 for third parallel resonators, 
respectively; and ω1  =  1 rad s−1, ω2  =  2 rad s−1, ω3  =  3 rad s−1,  
and ω4  =  4 rad s−1 for four parallel resonators, respectively. 
While for the investigation for the effects of ωi on the negative 
effective mass, the mass ratios αi are set as follows: α1  =  1 for 
one single resonator; α1  =  α2  =  1 for two parallel resonators, 
respectively; α1  =  α2  =  α3  =  1 for third parallel resonators, 
respectively; and α1  =  α2  =  α3  =  α4  =  1 for four parallel 
resonators, respectively.

As shown in figure 3, the cut-off frequency of each negative 
effective mass band gradually increases with the increasing 

α1, while the start frequency remains the same for the natural 
frequency of each local resonator keeping constant, which 
greatly broadens the regions of the negative effective mass. As 
shown in figure 4, it can be found that both the start frequency 
and the cut-off frequency of each negative effective mass band 
increase linearly with the increase of ωi, but the increasing rate 
of the cut-off frequency is greater that of the start frequency, 
which broadens the regions of the negative effective mass 
slightly. From the previously described analysis we can know 
that the start frequency of the meta-composite system depends 
on the natural frequency of each independent resonator, that is 
to say, the resonators are independent of each other in working 
and no coupling occurred among them, which is different 
from the multi-resonators in the previous works [41–49].

By comparing figures  3 and 4, it can also be found that 
the band gap width is more sensitive to parameter αi rather 
than ωi. This phenomenon can be explained as: when the reso-
nance frequencies of the resonators keep constant, increasing 
the mass ratio αi also means increasing the equivalent spring 
stiffness ki, which greatly enhance the interactions between 
the local resonators and the vibrations of the base matrix, 
and the bandwidth of the negative effective mass is there-
fore broadened; however, the increase of ωi only means the 
increase of equivalent spring stiffness ki, and the interactions 
strength between the resonators and the base matrix is less the 
former case, thus the broadening of band gap is not obvious.

2.2. Wave propagation characteristics

For the wave transmission in the EMs, an infinitely long one-
dimensional (1D) lattice meta-composite system is considered 
as shown in figure 5.

Figure 2. The normalized effective mass of the meta-composite system with (a) one single resonator, (b) two parallel resonators, (c) third 
parallel resonators, and (d) four parallel resonators.

Table 1. The relevant parameters used in the calculation.

n m0 (kg) m1 (kg) m2 (kg) m3 (kg) m4 (kg)

1 1.0 3.0 ※ ※ ※
2 1.0 1.0 2.0 ※ ※
3 1.0 0.5 1.0 1.5 ※
4 1.0 0.3 0.6 0.9 1.2

J. Phys. D: Appl. Phys. 52 (2019) 395301
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For the harmonic wave propagation in the 1D lattice meta-
composite system, the equations of motion for the j th unit cell 
can be expressed as




m0
d2u( j)

0
dt2 + k0

Ä
2u( j)

0 − u( j−1)
0 − u( j+1)

0

ä
+ k1

Ä
u( j)

0 − u( j)
1

ä
+ · · ·

+kn−1

Ä
u( j)

0 − u( j)
n−1

ä
+ kn

Ä
u( j)

0 − u( j)
n

ä
= 0

m1
d2u( j)

1
dt2 + k1

Ä
u( j)

1 − u( j)
0

ä
= 0

...

mn−1
d2u( j)

n−1
dt2 + kn−1

Ä
u( j)

n−1 − u( j)
0

ä
= 0

mn
d2u( j)

n
dt2 + kn

Ä
u( j)

n − u( j)
0

ä
= 0

,

 (10)

where u( j)
γ  represents the displacement of the mass ‘γ’ in the 

j th cell.
The harmonic wave solution for the j th element can be 

expressed as

u( j)
γ = Uγei(qx−ωt), (11)

where Uγ is the complex wave amplitude, q is the wave 
number, and ω is the angular frequency. Similarly, the har-
monic wave solution for the (j   +  n)th unit cell can be then 
expressed as

u( j)
γ = Uγei(qx+qnL−ωt). (12)

Table 2. Frequency regions with negative effective mass.

MDOF model
Number of bands with 
negative effective mass Frequency region (rad s−1) Band width (rad s−1)

Total band-
width (rad s−1)

Single-resonator 1 [0.5774,1.1548] 0.5774 0.5774

Dual-resonator 2 [0.7072,0.8480] 0.1408 0.8083
[1.0000,1.6675] 0.6675

Tri-resonator 3 [0.8165,0.8990] 0.0825 0.9840
[1.0000,1.2333] 0.2333
[1.4143,2.0825] 0.6682

Quad-resonator 4 [0.9129,0.9726] 0.0597 1.1316
[1.0541,1.1826] 0.1285
[1.2910,1.6079] 0.3169
[1.8258,2.4523] 0.6265

Figure 3. The effects of the parameter αi on the band of the negative effective mass.

J. Phys. D: Appl. Phys. 52 (2019) 395301
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By substituting the equations (11) and (12) into (10), we can 
get the control equation of the meta-composite system as




−m0ω
2U0 + 2k0U0 (1 − cos qL) + k1 (U0 − U1)+

· · ·+ kn−1 (U0 − Un−1) + kn (U0 − Un) = 0
−m1ω

2U1 + k1 (U1 − U0) = 0
...

−mn−1ω
2Un−1 + kn−1 (Un−1 − U0) = 0

−mnω
2Un + kn (Un − U0) = 0

.

 (13)
The dispersion equation can be obtained as

m0ω
2 − 2k0 (1 − cos qL) +

n∑
i=1

miω
2 ω2

i

ω2
i − ω2

= 0. (14)

Considering equation (8), the (14) can be rewritten as

m(n)
eff ω

2 − 2k0 (1 − cos qL) = 0. (15)

The dispersion relations of the meta-composite system with 
one to four resonators are calculated, and the corresponding 
results are shown in figure 6. The relevant parameters used in 
the calculation are the same as those used in the investigation 
for the effective mass shown in figure 2.

As shown in figure 6, there are two, three, four, and five 
band branches for the meta-composite system with one single 
resonator, two parallel resonators, three parallel resonators, 
and four parallel resonators, respectively. The number of the 
band gaps is equal to that of the frequency regions of the nega-
tive mass, and their locations between them corresponds to 
each other very well by combining figures 2 and 6. This means 
that the negative effective mass of the meta-composite system 
has a significant attenuation in wave amplitude.

Figure 4. The effects of the parameter ωi on the band of the negative effective mass.

Figure 5. Wave propagation model of the 1D lattice meta-composite system.

J. Phys. D: Appl. Phys. 52 (2019) 395301
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In the calculation of the transmission spectrum of the meta-
composite system, the one-dimension complex system can be 
simplified as a mass-spring system with the effective mass 
shown in figure  7. The equivalent effective masses are also 
connected by the equal springs with stiffness k0.

According to the structure shown in the figure 7, the motion 
equation of the n-period simplified system can be expressed as
(
2k0 − meffω

2)Uj − k0 (Uj−1 + Uj+1) = 0, j = 1, 2, · · · , n − 1
 (16)

(
k0 − meffω

2)Un − k0Un−1 = 0, (17)

where Uj  represents the amplitude of the displacement for the 
j th equivalent unit cell.

Combining equations (16) and (17), we can obtain that

Tj =
k0

k0 (2 − Tj+1)− meffω2 , j = 1, 2, · · · , n − 1 (18)

Tn =
k0

k0 − meffω2 , (19)

where Tn  =  Uj /Uj −1. Thus the transmission spectrum of the 
1D lattice system can be obtained as

TR = 20 lg (|Un/U0|) = 20 lg

Ñ∣∣∣∣∣∣
n∏

j=1

Tj

∣∣∣∣∣∣

é
. (20)

Figures 8(a)–(d) show the transmission spectrum of the lat-
tice system with six periods for the meta-composite struc-
ture with one to four resonators, respectively. The relevant 
parameters used in the calculation are the same as those in 
the invest igation for the band structures described in figure 6. 
The obvious attenuation regions can be found in the transmis-
sion spectrum and their locations as well as the bandwidth are 
very close to those of the dispersion relation curves calculated 
above.

Through above analysis, we can see that this novel EMs is 
actually a multi-degree-of-freedom system, which is formed 
by arranging the single-degree-of-freedom resonator with 
different resonance frequency in parallel. Each resonator can 
open the bandgap independently, which is the most obvious 
feature of the EMs presented in this work. The desired loca-
tions of each bandgap can be adjusted more conveniently by 
adjusting the resonance frequency of the corresponding reso-
nator. Moreover, compared with the traditional EMs in our 
pervious works, the interactions between the base plate and 

Figure 6. Dispersion relation curve of the meta-composite system with (a) one single resonator, (b) two parallel resonators, (c) three 
parallel resonators, and (d) four parallel resonators.

Figure 7. n-period one-dimension lattice meta-composite system with effective mass.

J. Phys. D: Appl. Phys. 52 (2019) 395301
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the resonance system are enhanced by the parallel arrange-
ment of resonators, not by increasing the mass ratio, so that 
the vibration band gap can be broadened without increasing 
the overall resonance mass. In summary, the proposed EMs 
in this paper shows great advantages in the bandwidth and the 
adjustment of the locations of the band gaps, which would fur-
ther enrich the forms of EMs and the formation mechanisms 
of band gaps.

3. Continuum model

3.1. Model

The EMs plate, mimicking the lattice systems with two reso-
nators, is proposed, and the unit cell is shown in figure 9. In 
the model, the size of the base plate is L  ×  L  ×  t1, and the 
basic shapes of the two resonators are carved directly on the 
base plate, and two additional plates with size a3  ×  b3  ×  t2 are 

attached on the second resonator for obtaining low-frequency 
vibration. The material of this EMs plate is all steel (Young’s 
modulus: 2.1  ×  1011 Pa, mass density: 7780 kg m−3, and 
Poisson’s ratio: 0.3), and its full size is as follows: L  =  40 mm, 
t  =  0.5 mm, w  =  2 mm, a1  =  31 mm, b1  =  13 mm, c1  =  1 mm, 
w1  =  1 mm, w2  =  0.5 mm, a2  =  32 mm, b2  =  12 mm, 
c2  =  0.5 mm, w3  =  0.5 mm, w4  =  0.5 mm, a3  =  32 mm, 
b3  =  12 mm, and t2  =  1 mm. As can be seen from the figure 9, 
this EMs plate adopts hollow design for two main purposes: 
one is that the hollow-out design does not introduce excessive 
thickness and mass compared with the traditional structures 
of our previous works [21, 25, 29, 49] (the overall thickness 
of the EMs plate is only 2.5 mm, and the extra weight added 
is also very small compared with other types of EMs plates), 
which is conducive to the realization of lightweight struc-
ture; the other is that the rubber (i.e. the springs in the lattice 
system model) in the traditional metamaterials is replaced by 
the matrix material (usually metal), which would alleviate the 

Figure 8. Transmission spectrum of the six-periods lattice system with (a) one single resonator, (b) two parallel resonators, (c) three 
parallel resonators, and (d) four parallel resonators.

Figure 9. The continuum model of the elastic metamaterial plates with two resonators.

J. Phys. D: Appl. Phys. 52 (2019) 395301
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aging problem of rubber to some extent, and the service life of 
the EMs plate is improved.

3.2. Method

As the flexural wave is more prone to interact with air media, 
thus the out-of-plane vibration has been focused on in the 
investigation. In order to study the vibration characteristics of 
the EMs plates, the dispersion relations of the zero-order anti-
symmetric Lamb wave (A0) mode are calculated by using the 
finite element method (FEM) which has been proved to be an 
efficient method in previous works [16, 21, 22, 25–29, 31, 32, 
49]. The unit cell with periodic boundary conditions applied 
on the interfaces according to the Bloch–Floquet theory is 
considered, and by varying the value of the Bloch wave vector 
k in the irreducible first Brillouin zone, the band structures 
and the eigenmodes can be obtained. The transmission spec-
trum through the EMs plates with six unit cells is calculated. 
The harmonic displacement excitation is applied on the left 
side of the plate, while the average displacement response is 
picked up on the opposite side, then the transmission spec-
trum of the EMs plate can be obtained by equation (20). For 
the computational details can be referred to [16, 18, 39]. The 
calculation results of the band structures and the transmission 
spectrum for the EMs plates are shown in figure 10.

3.3. Band structures of the EMs plate

For the band structure shown in figure 10(a), it can be seen 
that seven bands exist in the frequency range from 0 Hz to 
200 Hz, where two flexural vibration band gaps (FVBGs, the 
gray region and the yellow region) are involved. The lowest 

FVBG is from 20.2 Hz to 37.8 Hz with a width of 17.6 Hz, 
which is between the first and fifth band. The second FVBG 
is from 78.6 Hz to 139.4 Hz with a width of 60.8 Hz, which is 
between the eighth and tenth band. The total width of the band 
gaps is 78.4 Hz. The effective mass density and the transmis-
sion spectrum of the EMs plate are also shown in figure 10(b) 
and (c), the detailed calculation method can be referred to the 
[27]. It can be found that there two frequency regions of nega-
tive effective mass density and obviously vibration attenua-
tion can be found, and their locations both correspond well 
with the band gaps in figure 10(a).

3.4. Formation mechanism of the FVBGs

In order to further reveal the formation mechanism of the 
FVBGs, the eigenmode shapes and displacement vector fields 
of the modes labelled in figure 10(a) are shown in figure 11.
The color map of figure  11 demonstrated the magnitude 
of the displacement vector fields which are calculated by »

u2
x + u2

y + u2
z . As mentioned in the previous works [1, 12, 

19], when the frequency of incident elastic waves is closed to 
one of the nature frequency of the local resonator, the corre-
sponding local resonance will be activated, and the two masses 
(the local resonance mass and the base mass) moved in reversed 
phase with a reaction force on the base mass against the elastic 
wave excitation. For the modes O1, O2, the start of the band 
gaps have the same form of vibration. When the incident fre-
quency of the flexural wave is equal to the lower natural fre-
quency of the first resonator, which activates the corresponding 
local resonance vibration (mode O1), and the reaction force 
provided by the local resonator would suppress the vibration 
of the base plate, thus the flexural wave cannot spread, which 

Figure 10. The calculation results for (a) band structures, (b) effective mass density, and (c) transmission spectrum of flexural vibration of 
the elastic metamaterial plate.
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opens the band gaps at this frequency. This is also true for mode 
O3. While for the cut-off of the band gaps, a dynamic balance 
occurred between the local resonance mass and the base plate, 
such the modes C1, and C2. The elastic wave can spread freely 
in these modes of vibration, and the band gaps closed at these 
frequencies. For modes R1, T1, T2, and T3, the vibrations of 
the local resonance mass are mainly concentrated in the x-y  
plane, which are coupled with symmetric Lamb mode and 
shear-horizontal waves of the base plate, respectively. While 
for mode R2, R3, R4 and R5, the local resonance mass rotates 
along the center of the local resonance mass in x- or y -axis with 
the base plate keeping still. Compared with the excitation from 
the flexural wave mode, the resonances-induced out-of-plane 
force components applied on the plate are very small. Thus 
there exists no FVBG around this band.

Through the above analyses of theory and continuum 
models, we can see that the local resonators work indepen-
dently of each other to open the band gaps and vibrate coupled 
to close the band gaps, which is the most obvious feature of 
the EMs proposed in this paper.

3.5. Experimental verification

To further verify the low-frequency FVBGs of the proposed 
structure, the transmission-measuring experiments of a EMs 
plate with six periodic local resonators is conducted. The 
boundary conditions in the y -direction do not make a significant  
impact on the transmission properties which have been veri-
fied in the previous work [26], so the EMs plate sample with 
only one layer in y -direction is considered in the experiment 

Figure 11. Eigenmode shapes and displacement vector field of the modes labelled in figure 10.

Figure 12. The test sample and the experimental measurement setup. (a) The test sample; (b) setup of the sample and the vibration exciter; 
and (c) the whole experimental setup.
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(as shown in figure 12(a)). The corresponding EMs plate is 
made by 3D printing for realizing the desired high dimen-
sional accuracy. The LMS test system with a vibration exciter 
(MB MODAL 2), a power amplifier, and two acceleration 
transducers (Dytran 3145AG) is employed in this experiment. 
A harmonic force is applied perpendicularly on the one side 
of the EMs plate, and two acceleration transducers are placed 
on the two opposite sides of the plate in x-direction, as shown 
in figure 12(b). A white-noise signal with bandwidth from 0 to 
200 Hz is amplified to drive the vibration exciter, which trans-
mits vibrations to the left side of the PC plate, and the signal 
of the acceleration of the flexural waves on the other side can 
be measured by the transducer. The photo of the whole exper-
imental setup can be found in figure 12(c).

The transmission spectrum can be obtained by the LMS test.
LAB software and shown as the blue solid curve in figure 13. 
It can be seen that there are two obvious attenuation regions in 
the experimental results (the black solid curve) whose locations 
are in good agreement with those of the FEM calcul ation results 
(the red solid curve). One can also see that the peak values of 
the experiment results are lower than those of the FEM results, 
for the reason that the effect of the material damping in the EMs 
plate is consider in the FEM calculation, and similar results can 
also been found in previous studies [17, 24, 26].

In summary, the relevant experimental results are able to 
fully prove that the broad FVBGs in the low-frequency range 
can be obtained in the proposed EMs plate with parallel multi-
resonators in this research, which would provide a new way 
to deal with the challenging problems of the low-frequency 
vibration blow 200 Hz.

4. Conclusion

In this paper, the negative effective mass of the EMs with 
multiple parallel local resonators is investigated theor etically. 

The general formula of the effective mass is deduced, and 
the effects of the structural parameters on the frequency 
regions of the negative effective mass are illustrated in details. 
Subsequently, the dispersion relation and transmission spec-
trum of this type of EMs are studied. Finally, the EMs plates 
were proposed based on the above analyses, and the forma-
tion mechanisms of the band gaps are analyzed by studying 
the displacement field of the eigenmodes at the band gaps 
edges. Through the above analyses, we can draw the following 
conclusion:

 (1)  The EMs with parallel multi-resonators induces multi-
frequency negative effective mass, and the number of the 
regions is equal to the number of the local resonators. 
The start frequencies of the band gaps are decided by the 
natural frequencies of each resonator, and the width of 
frequency band for negative effective mass can be broad-
ened by enlarging the mass ratio of the local resonator. 
Meanwhile, the multiple band gaps can be found with 
the locations corresponding to regions of negative effec-
tive mass, and the obvious vibration attenuation can be 
obtained within the stopping band.

 (2)  For the EMs plates, the flexural wave band gaps with the 
number being equal to the number of the resonators can 
be found, and the locations of the calculated transmission 
spectrum are in good agreement with the corresponding 
frequency regions of the band gaps. At the lower edge of 
each band gap, the vibration is localized in the according 
resonator, while at the upper edges the local resonance 
mass and the base plate vibrate in a reverse phase or the 
base plate vibrates with large amplitude with the local 
resonance mass keeping still.

 (3)  The sample of the EMs plates with two local resonators 
are made, and the transmission-measuring experiments 
of the sample with six periodic local resonators is con-
ducted. By comparing the FEM results and experimental 

Figure 13. The experimental results for the transmission spectrum of the sample: experimental results (the black solid line), and FEM 
results (the red solid line).
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measurements, the proposed EMs plate is demonstrated to 
possess the broad FVBGs in low-frequency range below 
200 Hz, and the numerical calculation results are in good 
agreement with those of the experimental measurement, 
except for some differences due to the material damping 
of the EMs plate.

Based on the theoretical and numerical analyses, the EMs 
with multiple parallel local resonators would be used in var-
ious field, such as noise and vibration isolation, filters and 
other renewed devices.
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