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We propose and analyze a hybrid device by integrating a microscale diamond beam with a single built-in
nitrogen-vacancy (NV) center spin to a superconducting coplanar waveguide (CPW) cavity. We find that
under an ac electric field the quantized motion of the diamond beam can strongly couple to the single cavity
photons via a dielectric interaction. Together with the strong spin-motion interaction via a large magnetic-
field gradient, it provides a hybrid quantum device where the diamond resonator can strongly couple both
to the single microwave-cavity photons and to the singleNV center spin. This enables coherent information
transfer and effective coupling between the NV spin and the CPW cavity via mechanically dark polaritons.
This hybrid spin-electromechanical device, with tunable couplings by external fields, offers a realistic
platform for implementing quantum information with single NV spins, diamond mechanical resonators,
and single microwave photons.
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I. INTRODUCTION

Hybrid quantum architectures (for a review, see Ref. [1])
take the advantages and strengths of different components,
involving degrees of freedom of completely different nature,
which are promising for developing quantum technologies
and discovering rich physics. Furthermore, the construction
of hybrid quantum devices can benefit greatly from the
progress achieved so far in the fields of atomic physics,
quantum optics, condensed-matter physics, and nano-
science. A growing interest is emerging for exploring hybrid
quantum architectures that could find applications in imple-
menting quantum technologies. Prominent examples include
superconducting waveguide cavities or mechanical resona-
tors coupled to cold atoms [2–7], polar molecules [8–10],
and quantum dots [11–15], as well as other solid-state spin
systems [16–36].
A key challenge in the field of hybrid quantum systems is

the realization of a controlled interface between a super-
conducting circuit and a single solid-state spin qubit. Itwould
allow the realization of long-lived quantum memories for
superconducting qubits, without the big problem of inho-
mogeneous broadening encountered in spin ensembles [37].
However, the direct magnetic coupling between a single spin
and a single microwave photon is typically only a few hertz
[2], much smaller than the relevant decoherence rates. To
overcome this problem, it has been proposed to enhance this
coupling via an intermediate persistent current loop [21,22],
but the decoherence rates of such small superconducting
loops are still unknown and will to a large extent compensate
the achievable increase in coupling strength.

In this work, we propose and analyze a practical design
for a coherent quantum interface between a single spin
qubit and a microwave resonator, which makes use of
the recent advances in the fabrication of single-crystal
diamond nanoresonators. Over the past years, mechanical
resonators made out of diamond have received considerable
attention for the study of fundamental physics, as well as
for applications in quantum science and technology
[25,38–44]. Diamond, in addition to possessing desirable
mechanical and optical properties, can host defect color
centers [45], whose highly coherent electronic spins are
particularly useful for quantum-information processing at
room temperature. Single-crystal diamond cantilevers with
exceptional quality factors exceeding one million have
been demonstrated in a recent experiment [38]. Moreover,
hybrid quantum systems, consisting of single-crystal dia-
mond cantilevers with embedded NV center spins, have
been realized in recent experiments [39,40]. Such on-chip
devices, enabling direct coupling between mechanical and
spin degrees of freedom, can be used as key components for
hybrid quantum systems.
In the setup investigated in this work, a doubly clamped

diamond microbeam with a single built-in NV center is
placed in the near field of a coplanar waveguide (CPW)
cavity (see Fig. 1). Compared to previously considered
capacitive coupling schemes [46] usually employed in
cavity electromechanics [47–49], we here consider the
case where the coupling between the quantized motion
of the diamond beam and the microwave-cavity photons
results from the dielectric interaction—a fundamental
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mechanism that any polarizable body placed in an inho-
mogeneous electric field will experience a dielectric force.
This dielectric coupling is employed in the classical regime
for the on-chip actuation of thin mechanical beams [50] and
is scalable to large arrays of diamond mechanical reso-
nators. For the present purpose of a quantum interface, it is
important that this dielectric coupling is fully controlled
by a tunable driving field but opposed to the capacitive
coupling [47–49]; it results in large photon-phonon inter-
actions without driving the cavity mode itself. When
combined with a magnetic spin-phonon interaction in the
presence of a strong magnetic-field gradient [51], a tunable
coupling for exchanging a quantum state between the
single spin memory and the superconducting microwave
cavity can be implemented. We show that under realistic
conditions the resulting effective interactions between a
single spin qubit and a single microwave photon can exceed
10 kHz, roughly 3 orders of magnitude stronger than the
direct coupling. The state transfer can further be optimized
by employing a resonant state transfer scheme via mechan-
ically dark polaritons, and we discuss the expected transfer
fidelities for different parameters.

II. DESCRIPTION OF THE DEVICE

A. The setup

As shown in Figs. 1(a) and 1(b), a doubly clamped
microscale diamond beam embedding a single spin-1 NV
center is positioned along the z axis at a distance x0 from
the gap of the CPW cavity surface. The configuration
shown in Figs. 1(c) and 1(d) is somewhat equivalent to that
of Figs. 1(a) and 1(b). Through small tip electrodes [52,53],

a strong ac electric field ~EpðtÞ (with frequency ωp and
amplitude Ep) is applied to the diamond beam, which

induces a large macroscopic electric-dipole moment. The
diamond beam of length l has a circular cross section of
radius r (r ≪ l). As the beam vibrates, x0 changes by the
beam’s effective transverse displacement, and restricted
to the lowest vibrational mode it can be modeled as a
harmonic oscillator with frequency ωm and bosonic mode
operator b̂. For a thin beam, the resonance frequency ωm

can be calculated by the Euler-Bernoulli theory, i.e., ωm ¼
k20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=ρA

p
[54], where k0 ¼ 4.73=l is the wave number of

the fundamental mode, E is the Young’s modulus, I is the
moment of inertia, ρ is the density of diamond, and A is the
cross-section area.
The CPW cavity consisting of a central conductor stripe

plus two ground planes is fabricated on a dielectric
substrate which supports quasi-TEM microwave fields
strongly confined near the gaps between the conductor
and the ground planes (Fig. 2). For a CPW cavity of strip-
line length L and electrode distance d (with effective cavity
volume Vc ∼ πd2L), the single-mode electric-field operator
of the CPW cavity (with frequency ωc) can be written as

[54] ~̂Ecð~r; tÞ ¼ E0~etrðx; yÞðâe−iωct þ â†eiωctÞ cosðπz=LÞ,
where E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=ϵ0Vc

p
is the field amplitude, ~etrðx; yÞ

the dimensionless transverse mode function (see the sim-
ulations in Fig. 2), and â the destruction operator for the
microwave-cavity photons. Then, the free Hamiltonian for
the CPW cavity field reads Ĥc ¼ ℏωcðâ†âþ 1

2
Þ.

B. Dielectric interaction

We first describe the coupling between the diamond
beam and the localized electric field of the CPW cavity.

FIG. 1. Schematic of a hybrid device for coupling a doubly
clamped diamond microbeam with a single, well-controlled
embedded NV center spin to the CPW cavity field. (a) Top view
of the configuration of the diamond beam positioned near z0 ∼ L
above the gap of the CPW cavity. (b) Side view of the device
shown in (a). (c) Top view of a different device where the beam
couples to the electric field between the central conductor stripe
of the CPW cavity and an external electrode. (d) Side view of the
device shown in (c).
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FIG. 2. (a) Distribution of the transverse electric field (per
photon) above the CPW cavity. (b),(c) The electric field (per
photon) at various positions above the surface of the CPW cavity.
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Generally, the electrostatic interaction between a dielectric
object and electric fields can be described by Ĥpol ¼
− 1

2

R
V
~Pð~rÞ · ~Eð~rÞd~r, where ~Pð~rÞ is the polarization

induced by the electric field ~Eð~rÞ. In the linear response
regime, the polarization field responds linearly to the

electric field, such that ~P ¼ α~E, where α is the polar-
izability tensor, which depends on the symmetry of the
diamond beam and its relative orientation with the cavity.
The diamond beam is assumed to be placed in parallel with
the gap of the cavity, i.e., along the z direction as shown
in Fig. 1(a). The total electric field affected by the
diamond beam is a transverse field, which can be written

as ~E⊥ð~r; tÞ ¼ ~EpðtÞ þ ~̂Ecð~r; tÞ.
Considering the case where the dimension of the

diamond beam is much smaller than the wavelength of
the field, its dielectric response is well approximated by a
point dipole, and the components of the polarizability
tensor can be approximated by those induced by a uniform
electric field. The polarization responds linearly to the
electric field, approximating to ~Pð~rÞ ¼ α⊥ ~E⊥ þ αz ~Ez,
α⊥ ¼ ϵ0ðϵr − 1Þ=½1þ N⊥ðϵr − 1Þ�, αz ¼ ϵ0ðϵr − 1Þ=½1þ
Nzðϵr − 1Þ� for a dielectric microbeam [55], where
ϵ0 is the free space permittivity, ϵr ¼ ϵ=ϵ0, Nz ¼
1−e2
2e3 ðlnð1þ eÞ=ð1 − eÞ − 2eÞ, N⊥ ¼ 1

2
ð1 − NzÞ, and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − r2=l2

p
. Here the transversal and longitudinal

directions are defined by the coordinate axes as shown
in Fig. 1(a).
As the beam vibrates, the cavity electric field affected by

the beam is modulated by the vibration. We first derive the
interaction between the CPW cavity field and the diamond
beam depicted in Figs. 1(a) and 1(b). Expanding the cavity-
field operator around the position of the beam up to first
order in the transverse displacement operator q̂x, we obtain

[54] Ĥpol ¼ −Vα⊥ ~Ep · ∂x
~Ecð~r; tÞq̂x, with V the volume of

the diamond beam. By assuming Δ ¼ ωp − ωc ≪ ωp;ωc

and neglecting all rapidly oscillating terms, we obtain the
linear photon-phonon coupling [54]

Ĥpol ¼ ℏgðâeiΔt þ â†e−iΔtÞðb̂e−iωmt þ b̂†eiωmtÞ: ð1Þ

Here

g ¼ − 1

ℏ
Vα⊥E0

~Ep · ½∂x~etrðx; yÞ�ðx0;y0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s
; ð2Þ

where m is the effective mass of the mechanical resonator.
This coupling strength is proportional to the classic
electric-field amplitude and the cavity-field gradient along
the transverse direction. It can be greatly enhanced, since
the classical electric-field amplitude Ep can be very large
for strong enough fields, and the high concentration of
cavity-field energy near the surface of the CPW cavity

results in a dramatic enhancement of the field per photon E0

and a large field gradient.
Now we consider the coupling between the CPW cavity

and the diamond beam as depicted in Figs. 1(c) and 1(d). In
this device, the beam couples to the electric field between
the central conductor stripe of the CPW cavity and an
external electrode. Therefore, we can use the voltage
distribution of the cavity uðzÞ ¼ u0 cosðπz=LÞðâ† þ âÞ,
with u0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏωc=C

p
and C the total capacitance of the

cavity. The electric field from the electrodes is approxi-
mated as jEcj ∼ u0ζ=h, and j∂Ec=∂xj ∼ u0ζ=h2, where h is
the height of the beam above the substrate and ζ is a
dimensionless constant of order unity set by the electrode
geometry [6]. Then the coupling between the beam and the
cavity in the interaction picture can be approximated as

Ĥpol ¼ −Vα⊥Ep
∂Ec

∂x q̂xðâ†e−iΔt þ âeiΔtÞ
¼ ℏgðâeiΔt þ â†e−iΔtÞðb̂e−iωmt þ b̂†eiωmtÞ ð3Þ

with

g ¼ −Vα⊥Ep
u0ζ
h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2mℏωm

s
: ð4Þ

The linear coupling between the CPW cavity field and
the vibrational mode of the beam is analogous to the effect
of radiation pressure on a moving mirror of an optical
cavity [56,57] or the capacitive coupling between the
motion of a mechanical resonator and an electrical circuit
[47–49]. However, different from the previous studies in
optomechanics with linear optomechanical coupling, here
the coupling is at the single-photon and -phonon level. If
the detuning is chosen as Δ ¼ ωp − ωc ∼ ωm ≫ g, then
under the rotating-wave approximation we can obtain the
beam-splitter Hamiltonian

H1 ¼ ℏΔâ†âþ ℏωmb̂
†b̂þ ℏgâ†b̂þ ℏgâb̂†: ð5Þ

C. Cooling of the vibration mode

We now discuss ground-state cooling of the vibration
mode of the diamond beam through the cavity-assisted
sideband cooling approach in the resolved sideband regime
[58–60], where ωm > κ, with κ being the cavity decay rate.
For the mechanical mode of frequency ωm=2π ∼ 320 kHz,
assuming an environmental temperature T ∼ 20 mK,
the thermal phonon number is about nth ∼ 103. Thus,
additional cooling of the vibration mode is needed.
Taking the dissipations of mechanical motion and cavity

photons into consideration, the electromechanical system is
governed by the quantum master equation
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dρ̂
dt

¼ − i
ℏ
½H1; ρ̂� þ κD½â�ρ̂

þ nthγmD½b̂†� þ ðnth þ 1ÞγmD½b̂�; ð6Þ

with κ the cavity photon loss rate, γm the mechanical
damping rate of the beam due to clamping, nth ¼
ðeℏωm=kBT − 1Þ−1 the thermal phonon number at the envi-
ronment temperature T, and D½ô�ρ̂ ¼ ô ρ̂ ô† − 1

2
ô†ô ρ̂ −

1
2
ρ̂ô†ô for a given operator ô. We focus on the resolved

sideband regime ωm ≫ κ and set Δ ¼ ωm, in which the
beam-splitter interaction is on resonance. To realize
cooling, the cooperativity 4g2=γκ ≫ 1 and the dynamical
stability condition from the Routh-Hurwitz criterion
2g < ωm should be satisfied.
To calculate the mean phonon number nm ¼ hb̂†b̂i,

we need to determine the mean values of all the second-
order moments hâ†âi;hb̂†b̂i;hâ†b̂i;hâb̂i;hâ2i;hb̂2i. Starting
from the master equation, we obtain a set of differ-
ential equations for the mean values of the second-order
moments as

d
dt

hâ†âi ¼ −ighðâ† − âÞðb̂† þ b̂Þi − κhâ†âi;
d
dt

hb̂†b̂i ¼ −ighðâ† þ âÞðb̂† − b̂Þi − γmhb̂†b̂i þ γmnm;

d
dt

hâ†b̂i ¼ −
γm þ κ

2
hâ†b̂i − ig½hðâ†Þ2i − hðb̂†Þ2i

− hb̂†b̂i þ hâ†âi�;
d
dt

hâ b̂i ¼
�
−iðωm þ ΔÞ − γm þ κ

2

�
hâ b̂i − ig½1þ hb̂2i

þ hâ2i þ hâ†âi þ hb̂†b̂i�;
d
dt

hâ2i ¼ −2ighðb̂† þ b̂Þâi − ½κ þ 2iΔ�hâ2i;
d
dt

hb̂2i ¼ −2ighðâ† þ âÞb̂i − ½γm þ 2iωm�hb̂2i: ð7Þ

The steady-state solution of these equations then yields
an analytical formula for the final occupancy of the
mechanical mode. In the weak coupling regime, i.e.,
g ≪ κ, the final phonon number is

nf ≃ γmnth
Γþ γm

þ κ2

16ω2
m
; Γ ¼ 4g2=κ; ð8Þ

while in the strong coupling regime, i.e., κ ≪ g ≪ ωm, the
final phonon number is

nf ≃ γmnth
κ þ γm

þ g2

2½ω2
m − 4g2� : ð9Þ

In this work, we focus on the strong coupling regime. With
the given experimental parameters in the main text, we

obtain the final phonon number nf ∼ 0.3 for the vibration
mode, which is well in the quantum ground state. This
result is also verified based on numerically solving the
quantum master equation (6) (Fig. 3), from which we find
that the mechanical mode will enter the quantum ground
state at the time t ∼ 100 μs [Fig. 3(a)].
In the experiment, the diamond beam will need to be

sufficiently isolated from other mechanical modes that it
can be cooled to its ground state. We now consider the
influence of other mechanical modes on the cooling
process of the fundamental mode. From the Euler-
Bernoulli theory, we know that the first two vibrating
modes have the resonance frequencies [54]

ωm ¼ 4.732

l2

ffiffiffiffiffiffi
EI
ρA

s
;

ω1 ¼
7.852

l2

ffiffiffiffiffiffi
EI
ρA

s
: ð10Þ

Therefore, if the detuning between these modes is suffi-
ciently large, i.e., δ ¼ ω1 − ωm ≫ g, then we can safely
ignore the coupling between the cavity mode and other
mechanical modes. One can find that ω1 ∼ 3ωm, and
δ ∼ 2ωm ∼ 4 MHz, which is much larger than the vibra-
tion-photon coupling strength. Thus, we need only to
consider the coupling between the fundamental mechanical
mode and the cavity photons. Provided that ω1 − ωm ≫ g,
the diamond resonator will be sufficiently isolated from
other mechanical modes. Cooling of the mechanical res-
onators to the quantum ground state has been realized in a

FIG. 3. (a) Time evolution of the mean phonon number from
numerically solving the master equation (6) under realistic
parameters. (b) The final phonon number in a logarithmic scale
as a function of g=κ. The parameters are chosen as those in (a).
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variety of experiments exploiting the cavity-assisted side-
band cooling approach [61,62]. We believe that cooling the
diamond resonators via the same approach, as described in
this work, could be realized in the near future with the state-
of-the-art technology.

D. Spin-motion couplings

We now turn to considering the coupling between theNV
center spin and the mechanical motion. Quantum interface
between the spin and the CPW cavity can be achieved
through a Jaynes-Cummings (JC) spin-motion interaction
under a large magnetic-field gradient [51,63–65].
NV centers have a S ¼ 1 ground state, with zero-field

splitting D ¼ 2π × 2.87 GHz between the jms ¼ �1i and
jms ¼ 0i states. We consider a single NV center embedded
in the thin diamond beam, with its NV axis along the
z axis. An external magnetic field composed of a homo-
geneous bias field and a local linear gradient is applied to
the system, i.e., ~BNV ¼ B0~ez þ ð∂B=∂xÞx~ex. The homo-
geneous bias field is used to lift the degeneracy of states
jms ¼ þ1i and jms ¼ −1i, while the local magnetic-field
gradient is used to couple the mechanical motion of
the beam to the S ¼ 1 spin of the NV center. The
magnetic-field gradient can be achieved by a single-domain
ferromagnet such as Co nanobars near the NV center
[51,63–65]. In a realistic setup, an objective lens and a laser
are needed for optically pumping the spin state of the NV
center.
The Hamiltonian for the spin-motion coupling system

then is ĤNV ¼ ℏDS2z þ ℏωmb̂
†b̂þ gNVμB~S · ~BNV , with

gNV ¼ 2 the Landé factor of the NV center, μB the Bohr

magneton, and ~S the spin operator for the NV center. When
D − gNVμBB0=ℏ − ωm ¼ δ ≪ gNVμBB0=ℏ, we can make
the rotating-wave approximation to describe the near-
resonance interaction between the NV spin and the vibra-
tion mode and neglect the far-out-of-resonance state
jms ¼ þ1i. In this case, the JC Hamiltonian describing
the spin-motion dynamics reads [54]

H2 ¼
1

2
ℏωþσ̂z þ ℏωmb̂

†b̂þ ℏλb̂σ̂þ þ ℏλb̂†σ̂−; ð11Þ

where ωþ ¼ D − gNVμBB0=ℏ, σ̂z ¼ j − 1ih−1j − j0ih0j,
σ̂þ ¼ j − 1ih0j, σ̂− ¼ j0ih−1j, and λ ¼ ðgNVμB=

ffiffiffi
2

p
ℏÞ×

ð∂B=∂xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
. Using dressed state qubits [51] would

be an equivalent alternative approach for implementing this
model, which however would need microwave driving of
the NV spin states.

III. REALISTIC CONSIDERATIONS
AND EXPERIMENTAL PARAMETERS

Putting everything together, the total Hamiltonian
describing the spin-mechanics-cavity hybrid tripartite
system is

H ¼ 1

2
ℏωþσ̂z þ ℏωmb̂

†b̂þ ℏΔâ†â

þ ℏgâ†b̂þ ℏgâb̂† þ ℏλb̂σ̂þ þ ℏλb̂†σ̂−: ð12Þ

The first three terms describe the free Hamiltonian for the
spin, the phonons, and the photons, while the last four
terms describe the coherent coupling of the phonons to
both the spin and the photons. In a realistic experimental
situation, we need to consider cavity photon loss, mechani-
cal dissipation, and spin dephasing. The full dynamics of
our system that takes these incoherent processes into
account is described by the master equation

dρ̂ðtÞ
dt

¼ − i
ℏ
½H; ρ̂� þ κD½â�ρ̂þ γsD½σ̂z�ρ̂

þ nthγmD½b̂†� þ ðnth þ 1ÞγmD½b̂� ð13Þ

with γs the single spin dephasing rate of the NV center.
To enter the strong coupling regime requires that
fg; λg > fnthγm; κ; γsg.
Let us consider the experimental feasibility in the

configuration as shown in Fig. 1 and the appropriate
parameters to achieve strong coupling. (i) For a CPW
cavity with strip-line length L ∼ 1 cm, electrode distance
d ∼ 5 μm, and effective dielectric constant ϵeff ∼ 6,
the mode frequency for the CPW cavity is ωc ¼
πc=L

ffiffiffiffiffiffiffi
ϵeff

p ∼ 2π × 6 GHz. With the above parameters for
the CPW cavity, the electric-field amplitude of a single
photon is E0 ∼ 0.76 V=m. If the beam is positioned at a
distance of about 1 μm above the CPW surface gap,
then we can estimate the mode function as j~etrðx0; y0Þj
∼e−0.2 and ½∂x~etrðx; yÞ�ðx0;y0Þ ∼ ð2 μmÞ−1, respectively [see
Fig. 2(c)]. (ii) We consider a diamond microbeam of cross-
sectional radius r ∼ 100 nm under a strong ac electric field
with Ep ∼ 10 V=μm and a gradient magnetic field with
∂xB ∼ 107 T=m [54]. Figure 4 shows the calculated cou-
pling strengths as a function of the length of the diamond
beam with the given parameters. We find that the optimal
length of the beam under the given parameters is about

FIG. 4. Photon-motion coupling strength g and spin-motion
coupling strength λ as a function of the length of the diamond
beam. The relevant parameters are r ∼ 100 nm, E0 ∼ 0.76 V=m,
½∂x~etrðx;yÞ�ðx0;y0Þ∼ð2μmÞ−1, Ep∼10V=μm, and ∂xB∼107 T=m.
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l ∼ 80 μm. The vibration frequency for the fundamental
mode is ωm=2π ∼ 320 kHz. Then, the photon-motion and
spin-motion coupling strengths can reach g=2π ∼ 16 kHz
and λ=2π ∼ 16 kHz, respectively.
We next turn to damping of the mechanical motion. For

a diamond beam with frequency ωm and quality factor Q,
the mechanical damping rate is γm ¼ ωm=Q. The recent
demonstration of high-quality single-crystal diamond
beams or cantilevers with embedded NV centers leads to
a mechanical quality factor exceeding 105 [38–44]. For our
doubly clamped diamond beam with vibration frequency
ωm=2π ∼ 320 kHz, the damping rate is about γm=2π ∼
3.2 Hz and to ensure the strong coupling condition thus
requires that nth < 5000. For the mechanical mode of
frequency ωm=2π ∼ 320 kHz, assuming an environmental
temperature T ∼ 20 mK in a dilution refrigerator, the
thermal phonon number is about nth ∼ 103. To keep the
mechanical motion in the quantum ground state thus needs
additional cooling.
Finally, we consider the cavity photon loss and the

dephasing of the NV spin. For a realistic value of the
quality factor for the CPW cavity Q ∼ 106, the photon
decay rate is about κ=2π ∼ 6 kHz. In the experiment,
superconducting cavities are able to maintain high Q even
at applied in-plane magnetic fields > 200 mT [18–20].
Therefore, we can safely ignore the effect of ultrastrong
nanomagnets in close proximity to superconducting CPW
cavities. When it comes to the NV center, the dephasing
time T2 induced by the fluctuations in the nuclear spin bath
can be increased to several milliseconds in ultrapure
diamond [66]. We can ignore single spin relaxation as

T1 can be several minutes at low temperatures. The effect of
other centers coupled to the mechanical motion of the beam
can be neglected [54].
Figure 5 shows the numerical simulations of quantum

dynamics of the spin-mechanics-cavity system through
solving the master equation (6). We find that, with the
given parameters, the coherent interactions can dominate
the decoherence processes in the hybrid setup, which
enables the strong coupling regime to be entered. In this
regime, the mechanical motion becomes strongly coupled
to the spin and the cavity photons in direct analogy to
strong coupling of cavity QED.

IV. APPLICATIONS

A. Quantum state transfer via dark polaritons

In general, the spin-electromechanical hybrid tripartite
system modeled by the Hamiltonian (12) can find use in
many aspects of quantum science and technology. In the
following, we propose to realize coherent information
transfer between the single spin and the microwave cavity,
using mechanically dark polaritons. This method is very
efficient and robust against mechanical noise compared to
the direct-transfer process, since, during the state conver-
sion process, the mechanical mode is decoupled from the
dark polaritons composed of the spin and the cavity modes.
We proceed by assuming that ωþ ∼ Δ ∼ ωm ¼ Ω. Then,

it can readily be verified that the Hamiltonian (12) can
take a compact form in terms of spin-photon polariton and
spin-photon-phonon polaron operators

H ¼ ℏΩP†
dPd þ ℏΩþP

†
þPþ þ ℏΩ−P†−P−; ð14Þ

with Pd ¼ cos θσ̂− − sin θâ; tan θ ¼ λ=g being the
polariton operator, describing quasiparticles formed by
combinations of spin and photon excitations, and
P� ¼ ð1= ffiffiffi

2
p ÞðPb � b̂Þ, Pb ¼ cos θâþ sin θσ̂−, describ-

ing polarons formed by combinations of polariton and
phonon excitations. The frequencies of the polarons are
Ω� ¼ Ω�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ λ2

p
. We refer to Pd as the mechanically

dark polariton operator, due to the fact that it is decoupled
from the mechanical mode, independently of the couplings.
The mechanically dark polaritons can find use in quantum
state conversion between the spin and cavity photons. This
task can be accomplished through using an adiabatic
passage approach, similar to the well-known STIRAP
scheme [67–70]. By simply making gðtÞ initially bigger
than λ, but keeping λ finite, one can modulate the coupling
strengths gðtÞ slowly to ensure that the system adiabatically
follows the dark polaritons. This will adiabatically rotate
the mixing angle θ from 0 to π=2, leading to a complete
and reversible transfer of the spin state to the photonic state;
i.e., the dark polariton operator adiabatically evolves from
being σ̂− at t ¼ 0 to −â at the end of the protocol at a
time t ¼ tf.

(a)

(c) (d)

(b)

FIG. 5. (a) Vacuum Rabi oscillations of the hybrid system
where the mechanical resonator couples to the spin and the cavity
without dissipations. The initial state of the beam is a thermal
state with nm ∼ 0.3, while the spin is initially in the spin-up state
and the cavity in the ground state. (b) Photon distribution in the
cavity after a half period of Rabi oscillations. (c),(d) The same as
(a),(b) but with dissipations for the spin, the mechanical reso-
nator, and the cavity. The relevant parameters are g=2π ∼ 16 kHz,
λ=2π ∼ 16 kHz, κ=2π ∼ 6 kHz, nth ∼ 1000, γm=2π ∼ 3.2 Hz, and
γs=2π ∼ 2 kHz.
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In Fig. 6, we display the numerical results for the state
conversion process using dark polaritons through solving
the master equation (6). The initial spin state is chosen as
ð1= ffiffiffi

2
p Þðj0i þ j − 1iÞ, while the cavity state is initially in

the ground state and the mechanical mode is initially in the
thermal state with nm ¼ 0.1. At the end of the transfer
process, the cavity state is steered into ð1= ffiffiffi

2
p Þðj0i þ j1iÞ

with a fidelity above 90%. This fidelity could further be
improved with optimized pulses for gðtÞ and detunings. In
the simulations, we choose the time dependence for the
coupling g as exponential, but this pulse form is not
necessarily required. The polarization coupling strength

g is proportional to the classical electric field ~EpðtÞ, which
can be tailored to give the desired time-dependent form.
The spin state thus can be transferred from theNV center to
the photonic state in the CPW cavity using the mechanical
motion but without actually populating it. Therefore, this
approach offers a distinct feature that the state transfer
process exploiting dark polaritons is highly immune to
mechanical noises.

B. Effective strong coupling between the spin
and the CPW cavity

Alternatively, one can detune the mechanical mode and
couple the spin to the microwave field via virtual motional
excitations. In general, the direct coupling between a single
NV spin and the microwave-cavity field is inherently rather
weak. Here we propose to reach the effective strong
coupling regime with this hybrid spin-electromechanical
system. The induced effective strong coupling offers great
potential for single-photon manipulation in the microwave
frequency domain with this hybrid architecture.

In the frame rotating at the spin’s resonance frequency
ωþ, the Hamiltonian of the hybrid system is given by

H ¼ ℏΔ1b̂
†b̂þ ℏΔ2â†âþ ℏgâ†b̂þ ℏgâb̂†

þ ℏλb̂σ̂þ þ ℏλb̂†σ̂−; ð15Þ

where Δ1 ¼ ωm − ωþ and Δ2 ¼ Δ − ωþ. Taking the dis-
sipations into consideration, the system is described by the
quantum master equation

dρ̂ðtÞ
dt

¼ − i
ℏ
½H; ρ̂� þ κD½â�ρ̂þ γsD½σ̂z�ρ̂þ nthγmD½b̂†�

þ ðnth þ 1ÞγmD½b̂�: ð16Þ

By adiabatically eliminating the mechanical mode b̂ for
large detunings, Δ1;Δ2 ≫ g; λ, virtual excitations of the
mechanical mode result in an effective interaction between
the NV spin and the CPW cavity mode â, with the effective
Hamiltonian

Heff ¼ ℏðΔ2 − β2Δ1Þâ†â − 1

2
α2Δ1σ̂z þ ℏgeff â†σ̂−

þ ℏgeff âσ̂þ; ð17Þ

where the parameters α ¼ λ=Δ1, β ¼ g=Δ1, and the effec-
tive spin-photon coupling strength geff ¼ αg. Then the
reduced density matrix for the spin-cavity system will
satisfy the effective master equation

dϱ̂ðtÞ
dt

¼ − i
ℏ
½Heff ; ϱ̂� þ κ1effD½â�ϱ̂þ γsD½σ̂z�ρ̂þ γ1effD½σ̂−�ϱ̂

þ κ2effD½â†�ϱ̂þ γ2effD½σ̂þ�ϱ̂: ð18Þ

The effective decay rates of the cavity mode and the NV
spin are described by κ1eff ¼ κ þ β2ðnth þ 1Þγm, κ2eff ¼
β2nthγm and γ1eff ¼ α2ðnth þ 1Þγm, γ2eff ¼ α2nthγm, respec-
tively. It can be easily found that the effective coupling
strength geff depends linearly on α, while the effective
decay rates κieff and γieff are quadratic functions of the
parameters α and β. Therefore, the spin-cavity coupled
system can be steered into the strong coupling regime if
fα; βg ≪ 1 and fκ; γsg < geff ; i.e., the effective coupling
strength can exceed the decay rates geff > γs; κieff ; γ

i
eff ,

i ¼ 1; 2.
We now consider the relevant parameters to reach the

effective strong coupling. Taking Δ1 ≃ Δ2 ¼ Δ; g≃ λ;
Δ ¼ 10g, one can get geff ¼ 0.1g, κ1eff ≃ κ, κ2eff ≃ 0,
γ1eff ≃ γ2eff ≃ 0. Then the effective master equation describ-
ing the spin-cavity system reads

dϱ̂ðtÞ
dt

¼ − i
ℏ
½Heff ; ϱ̂� þ κD½â�ϱ̂þ γsD½σ̂z�ρ̂: ð19Þ

FIG. 6. (a) Adiabatic population transfer without dissipations.
(b) The same as (a) but with dissipations for the spin, the
mechanical resonator, and the cavity. Relevant parameters are
g ¼ g0e−t

2=4, g0 ¼ 1.8λ, κ ¼ 0.1λ; γm ¼ 0.0001λ, nth ¼ 1000,
and γs ¼ 0.1λ.
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So the effective strong coupling regime requires geff >
κ; γs, which means g; λ ≥ 10κ; 10γs.
We now estimate the coupling strengths in the configu-

ration shown in Figs. 1(c) and 1(d). For the CPW cavity
considered in this work, u0 ∼ 5 μV.We consider a diamond
microbeam of cross-sectional radius r ∼ 50 nm and length
approximately 1 μm. Taking ζ ∼ 0.4 and h ∼ 100 nm, then
we have g=2π ∼ 60 kHz and λ=2π ∼ 40 kHz. Then if we
take Δ=2π ∼ 300 kHz, we can obtain geff=2π ∼ 10 kHz.
This effective coupling strength can exceed the decay rates
of a CPW cavity with a quality factor Q > 106. Magnetic
coupling between a spin ensemble and a superconducting
cavity has been reported recently [18–20], but the coupling
between a single NV spin and the microwave-cavity field is
inherently rather weak. Here we have proposed an efficient
method to reach the effective strong coupling regime with
this hybrid spin-electromechanical system. The resulting
effective coupling strength can be significantly enhanced
by approximately 3 orders of magnitude.
Related schemes have been investigated before for

interfacing a single spin to a transmission line cavity
[22,46]. Different fundamentally from these proposals,
here we specifically exploit the dielectric interaction
through an ac electric field and state transfer schemes
via mechanically dark polaritons. Both techniques are, in
particular, useful to realize such interactions with NV
centers in diamond beams, a system which is currently
very actively explored in this context [38–44].
Furthermore, our proposed device just requires placing
the diamond beam above the CPW surface, with no need to
integrate the diamond resonator into the tiny coupling
capacitor. This design is thus much easier to implement
in practice and possesses the advantage of scalability,
particularly for much bigger diamond microbeams.

V. CONCLUSIONS

We present a spin-mechanics-cavity hybrid device where
a vibrating diamond beam with implanted single NV spins
is coupled to a superconducting CPW cavity. We show that,
under an ac electric field, the diamond beam can strongly
couple to the CPW cavity through dielectric interaction.
Together with the strong spin-motion interaction via a large
magnetic-field gradient, it provides a hybrid quantum
device where the diamond resonator can strongly couple
both to the single microwave-cavity photons and to the
single NV center spin. The distinct feature of this device is
that it is on chip and scalable to large arrays of mechanical
resonators coupled to the same CPW cavity. As for
applications, we propose to use this hybrid setup to
implement quantum-information transfer between the
NV spin and the CPW cavity via mechanically dark
polaritons. This hybrid spin-electromechanical device
can offer a realistic platform for implementing quantum
information with single NV spins, mechanical resonators,
and single microwave photons.
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APPENDIX A: DIELECTRIC COUPLINGS

1. Fundamental vibration mode of the diamond beam

For a thin beam, the Euler-Bernoulli elastic theory is
valid [72,73]. We consider a doubly clamped diamond
beam with dimensions l ≫ r. The equation for the lateral
vibration of a thin beam is

ρA
∂2

∂t2 ϕðz; tÞ þ EI
∂4

∂z4 ϕðz; tÞ ¼ 0; ðA1Þ

where ϕðz; tÞ is the lateral displacement in the x direction,
A is the beam cross section, and I is the moment of inertia,
I ¼ πr4=8 for a cylindrical beam. The solutions to this
equation are ϕðz; tÞ ¼ uðzÞe−iωt, with the mode function

uðzÞ¼C1ðcoskz− coshkzÞþC2ðsinkz− sinhkzÞ; ðA2Þ

which satisfies the boundary conditions uð0Þ ¼ uðlÞ ¼ 0;
u0ð0Þ ¼ u0ðlÞ ¼ 0 for a doubly clamped beam. The fre-
quency equation is given by

cos kl cosh kl ¼ 0: ðA3Þ

The first five nontrivial consecutive roots of this equation
are given below:

k0l k1l k2l k3l k4l

4.730 7.853 10.996 14.137 17.279

and the corresponding eigenfrequencies are

ωn ¼ k2n

ffiffiffiffiffiffi
EI
ρA

s
: ðA4Þ

Therefore, the fundamental mode has the vibration fre-
quency ωm ¼ ð4.732=l2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EI=ρA
p

.

2. CPW cavity-field operator

For a CPW cavity as shown in Fig. 1 of the main text, the
coplanar waveguide problem can be reduced to a rectan-
gular waveguide problem by inserting magnetic walls at
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y ¼ 0 and y ¼ b and electric walls at z ¼ 0 and z ¼ L
[74,75]. If the central conductor is interrupted by two
capacitors or gaps with a strip-line distance L, the cavity
modes will be standing waves in the axial direction. Then,
the classical electric-field components are given by [74,75]

Ex ¼ −X
n

�
E0

1

Fn

�
sin nπδ

2
nπ
2
δ

sin
nπδ̄
2

�
cos

nπy
b

e−γnx
�

× cos
mπz
L

; ðA5Þ

Ey ¼
X
n

�
E0

�
sin nπδ

2
nπ
2
δ

sin
nπδ̄
2

�
sin

nπy
b

e−γnx
�

× cos
mπz
L

; ðA6Þ

Ez ¼ 0; ðA7Þ

where δ ¼ d=b, δ̄∼δ, Fn¼ðbγn=nπÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð2bv=nλ0Þ2

p
,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ0=λcÞ2 − 1

p
, and λ0 is the free space wavelength for

the mode frequency ωc. The cavity wavelength λc is related
to the free space wavelength λ0 with the expression
λc ¼ λ0=

ffiffiffiffiffiffiffi
ϵeff

p
, where ϵeff is the effective relative dielectric

constant.
The diamond beam positioned a few micrometers above

the gap will experience the very strong localized electric
field of the CPW cavity. In this work, we take the half-
wavelength mode with m ¼ 1, in which case the cavity
wavelength is λc ¼ 2L. Following the standard procedure
for quantizing the electromagnetic fields, we obtain the
quantized form of the single-mode electric-field operator
for the CPW cavity:

~̂Eð~r; tÞ ¼ E0~etrðx; yÞðâe−iωct þ â†eiωctÞ cos πz
L
; ðA8Þ

where the transverse mode function is

~etrðx;yÞ¼−X
n

�
1

Fn

�
sinnπδ

2
nπ
2
δ

sin
nπδ̄
2

�
cos

nπy
b

e−γnx
�
~ex

þ
X
n

��
sinnπδ

2
nπ
2
δ

sin
nπδ̄
2

�
sin

nπy
b

e−γnx
�
~ey ðA9Þ

and ~ex and ~ey are the unit vectors for the x and y axes,
respectively. Then the electric-field operator in the position
of the diamond beam is

~̂Eð~rdm; tÞ ¼ E0~etrðx0; y0Þðâe−iωct þ â†eiωctÞ; ðA10Þ

where we assume that the beam is positioned at the
maximum slope of the standing wave mode, i.e.,
cosðπz0=LÞ ¼ 1. For the case that the beam is positioned
at a distance of several micrometers above the cavity gap,

from numerical simulations we find that the mode
function can be approximated as j~etrðx0; y0Þj ∼ e−1,
and ½∂x~etrðx; yÞ�ðx0;y0Þ ∼ γ ∼ ð5 μmÞ−1.

3. Cavity-resonator couplings

For a thin beam with a circular cross section, it lacks a
closed-form expression for the polarizability tenser.
However, it has been shown that the analytical expression
for the polarizability of a spheroid can be very close to that
of a cylinder of the same permittivity ϵ and aspect ratio
[55]. In the following, we employ the polarizability tenser
of a thin prolate spheroid instead. Considering the case
where the dimension of the diamond beam is much smaller
than the wavelength of the electric field, its dielectric
response is well approximated by a point dipole:

~pð~r0Þ ¼ Vα⊥ ~E⊥ð~rÞδð~r − ~r0Þ: ðA11Þ

In this case, the Hamiltonian describing the electrostatic
interaction between the microbeam and the electric field is

Ĥpol ¼ − 1

2
Vα⊥j~E⊥ð~rdm; tÞj2: ðA12Þ

As the beam vibrates, the cavity electric field affected by
the beam will be modulated by the vibration. Expanding the
cavity-field operator around the position of the beam up to
first order in the transverse displacement operator q̂x and
neglecting rapidly oscillating and other higher-order terms,
the Hamiltonian describing the coupled system reads

Ĥpol ¼ −Vα⊥ ~Ep · ~Ecð~r0; tÞ
− Vα⊥ ~Ep · ∂x

~Ecð~r; tÞq̂x: ðA13Þ

The first term corresponds to the driving of the cavity mode
by the electric dipole, while the second term describes the
optomechanical coupling between the vibration and the
cavity mode. In order to eliminate the first term, we can
simply drive the cavity with a second field with an
appropriately chosen amplitude and which is π out of

phase with respect to ~Ep. Then, the coupling between this
dipole and the cavity can cancel the first term in Eq. (A13)
as a result of destructive interference between these two
coupling terms. In this case, the pure electromechanical
coupling of the vibration to the cavity mode can be derived
as

Ĥpol ¼ −Vα⊥E0
~Ep · ½∂x~etrðx; yÞ�ðx0;y0Þðeiωpt þ e−iωptÞ

× ðâe−iωct þ â†eiωctÞq̂x
¼ −Vα⊥E0

~Ep · ½∂x~etrðx; yÞ�ðx0;y0ÞðâeiΔt þ â†e−iΔtÞq̂x:
ðA14Þ
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After quantizing the vibration mode of the diamond beam,
i.e., q̂x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p ðb̂† þ b̂Þ, we have

Ĥpol ¼ −Vα⊥E0
~Ep · ½∂x~etrðx; yÞ�ðx0;y0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2mωm

s

× ðâeiΔt þ â†e−iΔtÞðb̂e−iωmt þ b̂†eiωmtÞ
¼ ℏgðâeiΔt þ â†e−iΔtÞðb̂e−iωmt þ b̂†eiωmtÞ: ðA15Þ

APPENDIX B: SPIN-MOTION COUPLINGS

1. Detailed derivation of the spin-motion
interaction Hamiltonian

We consider a single NV center embedded in the
microscale diamond beam, with its NV axis along the z
direction. NV centers have a S ¼ 1 ground state, with zero-
field splitting D ¼ 2π × 2.87 GHz between the jms ¼ �1i
and jms ¼ 0i states. The Hamiltonian describing the NV

center in an external magnetic field ~BNV has the form

ĤNV ¼ ℏDS2z þ gNVμB~S · ~BNV: ðB1Þ

We assume that the external magnetic field is composed
of a homogeneous bias field and a linear gradient,

i.e., ~BNV ¼ B0~ez þ ∂xBx~ex. Then, the Hamiltonian (B1)
becomes

ĤNV ¼ ℏDS2z þ gNVμBB0Sz þ ΛSxðb̂þ b̂†Þ
þ ℏωmb̂

†b̂; ðB2Þ

with the spin-motion coupling strength Λ ¼
gNVμBð∂B=∂xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
. In the basis defined by the

eigenstates of Sz, i.e., fjmsi; ms ¼ 0;�1g, with Szjmsi ¼
msjmsi, we have

ĤNV ¼ ðℏDþ gNVμBB0Þj þ 1ihþ1j
þ ðℏD − gNVμBB0Þj − 1ih−1j þ ℏωmb̂

†b̂

þ Λðb̂þ b̂†Þ½hþ1jSxj0ij þ 1ih0j
þ h−1jSxj0ij − 1ih0j þ H:c:�: ðB3Þ

When D − gNVμBB0=ℏ − ωm ¼ δ ≪ gNVμBB0=ℏ, we can
make the rotating-wave approximation to describe the
near-resonance interaction between the NV spin and the
mechanical motion and neglect the far-out-of-resonance
state jms ¼ þ1i. Then we can obtain the Hamiltonian
describing the spin-motion dynamics

H2 ¼
1

2
ℏωþσ̂z þ ℏωmb̂

†b̂þ ℏλb̂σ̂þ þ ℏλb̂†σ̂−; ðB4Þ

where ωþ ¼ D − gNVμBB0=ℏ, σ̂z ¼ j − 1ih−1j − j0ih0j,
σ̂þ ¼ j − 1ih0j, σ̂− ¼ j0ih−1j, and λ ¼ ðgNVμB=

ffiffiffi
2

p
ℏÞ×

ð∂B=∂xÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2mωm

p
.

2. Large magnetic-field gradient induced
by a micromagnet

In the main text, the spin-motion coupling between the
NV center and the vibration mode needs a large magnetic-
field gradient along the x direction. This can be generated

by a micromagnet of magnetization ~M oriented along the x
axis near the NV center. The micromagnet can be created
via lithographic processes, which is a single magnetic
domain whose magnetic moment is spontaneously oriented
along its long axis due to the shape anisotropy. We consider
Co nanobars with dimensions ðl; w; tÞ ¼ ð200; 50; 50Þ nm.
Approximating the bar by a magnetic dipole, we have
ð∂B=∂xÞ ¼ 3μ0j ~mj=4πd40, where ~m ¼ lwt ~M and d0 is the
distance between the tip and the NV spin. Taking
M ¼ 1.5 × 106 A=m, d0 ¼ 60 nm, we obtain ð∂B=∂xÞ∼
107 T=m. A large field gradient of such a value is reported
in magnetic resonance force microscopy experiments [76].

APPENDIX C: EFFECTS OF OTHER
DECOHERENCE PROCESSES

In this Appendix, we consider some other decoherence
processes that are less important and have been ignored in
the main text. These decoherence processes include scat-
tered photon-recoil heating by dipole radiation and spin
relaxation due to strain-induced coupling to the nearby NV
centers.

1. Scattered photon-recoil heating
by dipole radiation

We now consider the scattered photon-recoil heating
of the vibration mode due to dipole radiation. Since the
electric dipole moment induced by the strong ac electric
field in the diamond beam is oscillating in time, it will
radiate photons from the beam in the form of dipole
radiation, which in turn causes decoherence to the mechani-
cal motion due to momentum recoil kicks. We assume that
each scattered photon contributes the maximum possible
momentum kick of ℏk along the x axis, giving rise to a
momentum diffusion process dhp2

xi=dt ¼ ΓscðℏkÞ2, where
Γsc is the photon scattering rate. The decay rate γsc
associated with scattered photon-recoil heating can be
approximated as γsc ≃ ðωr=ωmÞΓsc, with ωr ¼ ℏk2=ð2mÞ
the recoil frequency. For dipole radiation, the photon
scattering rate Γsc can be calculated by taking the power
radiated by the dipole strength ~p and dividing by the energy
per photon, i.e., Γsc ¼ ðc2Z0k4=12πℏωÞj~pj2. For the given
parameters, the photon-recoil heating rate is about
γsc ∼ 10−5 Hz, which thus can be neglected.
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2. Spin decoherence due to strain-induced coupling
between nearby NV centers

Let us consider the effect of nearby NV centers on this
NV center spin via strain-induced couplings. When the
beam vibrates, it strains the diamond lattice, which in turn
couples directly to the spin-triplet states in the NV
electronic ground state. It has been shown that [25] this
strain-induced spin-phonon coupling can lead to effective
spin-spin interactions mediated by virtual phonons. This
phonon-mediated spin-spin coupling strength is about
2g2=Δ, where g is the coupling strength between a single
NV spin and a single phonon via strains and Δ is frequency
detuning. For the diamond beam considered in this work,
the single phonon coupling is very weak, g ∼ 1 Hz. Thus,
the phonon-mediated spin-spin couplings can be com-
pletely ignored.
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