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Over the last decade, sparse representation has become a powerful paradigm in mechanical
fault diagnosis due to its excellent capability and the high flexibility for complex signal
description. The structured sparsity time-frequency analysis (SSTFA) is a novel signal pro-
cessing method, which utilizes mixed-norm priors on time-frequency coefficients to obtain
a fine match for the structure of signals. In order to extract the transient feature from gear
vibration signals, a gear fault diagnosis method based on SSTFA is proposed in this work.
The steady modulation components and impulsive components of the defective gear vibra-
tion signals can be extracted simultaneously by choosing different time-frequency neigh-
borhood and generalized thresholding operators. Besides, the time-frequency distribution
with high resolution is obtained by piling different components in the same diagram. The
diagnostic conclusion can be made according to the envelope spectrum of the impulsive
components or by the periodicity of impulses. The effectiveness of the method is verified
by numerical simulations, and the vibration signals registered from a gearbox fault simu-
lator and a wind turbine. To validate the efficiency of the presented methodology, compar-
isons are made among some state-of-the-art vibration separation methods and the
traditional time-frequency analysis methods. The comparisons show that the proposed
method possesses advantages in separating feature signals under strong noise and
accounting for the inner time-frequency structure of the gear vibration signals.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Gears are one of the most important components in mechanical transmission systems. It is widely used in machining,
transportation, aerospace, wind generation and other fields [1–4]. Gears, however, usually cause mechanical shutdown even
casualties due to its rugged working environment. Therefore, the condition monitoring and fault diagnosis for gears are of
great significance in ensuring the operational safety of systems. Vibration signal analysis is a common and effective tech-
nique for gear damage detection. The vibration signals contain rich sources of information from the various mechanical com-
ponents. By extracting fault characteristics of the gears embedded in these signals, the health condition and fault type can be
confirmed. However, gear transmission systems are elastic mechanical systems which generate dynamic response under
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dynamic excitation. The coupling between mechanical components and inevitable noise interference further compounds the
vibration signals.

In order to extract gear damage information from vibration signals effectively, a large amount of intensive and fruitful
research has been accomplished, such as the shaft synchronous signal averaging methods [5–7], the empirical mode decom-
position methods [8], wavelets transform methods [9]. And to improve the performance of extracting gear damage informa-
tion from vibration signals, sparsity methodology is introduced in gear vibration signals modeling. The sparse model is that
signals can be linearly represented as a few atom signals on a redundant basis. The rationality of using the sparse model to
machinery diagnosis can be explained by the following: Firstly, from the spectrum or the time-frequency distribution of
vibration signals, the presentation coefficients are sparse indeed. Moreover, it has been confirmed that mammalian vision
systems and auditory systems have similar sensing principle as the sparse model [10,11], and thus the experienced main-
tainers are able to diagnose their familiar machines just by listening to their working sounds. These facts reveal that the
sparse model is suitable for machinery fault diagnosis.

The sparse model is widely used in fault diagnosis in recent years. The greatest strength of the sparse model is to improve
the capability on describing arbitrary complex signals, and the related signal decomposition method is called sparse repre-
sentation (SR). For instance, Fourier analysis provides a poor representation of time localized signals, and wavelet analysis is
not well-adapted to represent high-frequency signals in a narrow bandwidth [12–14] These shortcomings are attributed to
the attempt to represent arbitrary signals with a limited set of basis functions in a fixed form. As a contrast, the SR decom-
posed the signals over redundant and over-completed dictionaries, thus being free from the limitation. So far, the SR meth-
ods have been widely studied for gear damage detection. Chen et al. [15] extracted gear impulsive components based on the
sparse dictionary learning and redundant representations over the learned dictionary. Fan et al. [16] proposed a transient
feature extraction technique based on the sparse representation using the wavelets basis. Cui et al. [17] employed the com-
posite dictionary and multi-atom matching decomposition and reconstruction algorithm to extract characteristics of gear
fault signals. Feng et al. [18] used the shift invariant K-means singular value decomposition dictionary learning method
to analyze planetary fault signals and diagnose the localized and distributed gear faults successfully. He et al. [19] used
the matching pursuit and correlation filtering to separate the coupling components of gearbox vibration signals under inten-
sive background noise.

In the above researches, the sparsity of coefficients was enforced by optimization equations with l1 norm penalty. The
main drawback of the l1 norm penalty is that all the coefficients are treated independently, thus a natural extension is
the structured sparsity which can be achieved by mixed norm penalty. Structured sparsity has been successfully applied
in many engineering fields, such as computer vision [20], text processing [21], audio processing [22], but there are only
few reports about the application of the structured sparsity in mechanical fault diagnosis. Most mechanical vibration signals
are highly structured in time domain and frequency domain. Local defects, i.e. pitting, tooth root crack and tooth break, are
the most common mechanical faults. When the local defect exists, periodic impulses will be produced during the rotation of
the gear. Therefore the vibration signals will consist of three main components: steady modulation, periodic impulses, and
noise. Both the steady modulation and the periodic impulses contain the fault features. Extracting these feature is the key
issue in gear fault diagnosis.

The structured sparse time-frequency analysis (SSTFA) method is a structured sparsity method proposed by Kai to process
audio signals [23]. The SSTFA uses the mixed-norm priors on time-frequency coefficients and a weighted generalized thresh-
olding operator to lead in the structured sparse representation of signals. The SSTFA method enforces sparsity in one domain,
while simultaneously, having diversity and persistence in the other domain. The SSTFA can better account for the inner
structure of the defective gear vibration signals. By aid of different structured time-frequency priors, different components
of the defective gear vibration can be separated, and a more accurate diagnosis conclusion can be given.

In this paper, the SSTFA is utilized to analyze the mechanical vibration signals and recognize the gear damage. In Section 2,
the concept of structured sparsity is briefly introduced. Then based on the vibration signal model of the locally defective gear,
the process of the SSTFA for defective gear detection is proposed. In Section 3, a numerical simulation analysis is carried out
and some comparisons with the state-of-the-art methods are conducted. In Section 4, a fault simulation experiment is car-
ried out and an engineering application of wind turbine gear fault diagnosis is illustrated. The results show that the SSTFA
method improves the accuracy of the gear damage detection. Finally, some conclusions are drawn in Section 5.

2. Structured sparsity time-frequency analysis

The main idea of the sparse representation is to represent signals with the over-completed redundant function sets which
are called dictionaries instead of orthogonal bases. It is a more flexible way to model arbitrary signals encountered in engi-
neering applications.

2.1. Sparse regularization

The vibration signals are often distorted by strong noises, which are caused by sensor imperfection, poor running envi-
ronment, communication errors, and so on [24]. The observed vibration signal with additive noise can be written as:
y ¼ f þ e ð1Þ
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where y is the observed signal, f is the target signal, and e is the error.
In engineering applications, the signals are all discrete due to sampling. The aim of our work is to approximate the recov-

ery of the signal f 2 RN . Consider the sparse model of the signal, one can represent the signal y by basis functions in the dic-
tionary as: f ¼Pc2Cccuc (C is the corresponding index set and the coefficients c 2 CK). U : RN ! CK is known as the
synthesis operator with U ¼ ðu1; . . . ;uc; . . .Þ. In above model, the coefficients are unknown. To obtain a fine approximation
for them, the discrepancy should be minimized:
DðcÞ :¼ 1
2
ky �Uck22 ð2Þ
This is a linear inverse problem, and it does not have a unique solution. Thus the regularization method has been widely
adopted to solve this problem. By adding some applicable or reasonable constraints on the coefficients in form of a penalty
measure W : CK ! Rþ

0 , one can obtain the regularized functional
LðcÞ :¼ 1
2
ky �Uck22 þ kWðcÞ ð3Þ
and seek ĉ yields
ĉ ¼ arg min
c

LðcÞ ð4Þ
The value k > 0 is named as sparsity level since it provides the weight for the penalty term. The larger k, the harsher pen-
alty will be taken into account, and vice versa [25].

The simple but powerful idea of sparse representation is to approximate the signals by a few atoms uc as the trial basis.
The most natural way is to choose l0 -penalty measureWðcÞ ¼ kck0, where k � k0, denotes the number of non-zero coefficients
in c. Minimizing such a penalty leads to an NP-hard problem, which is usually relaxed into a l1 norm convex penalty by
choosing WðcÞ ¼ kck1 [26].

2.2. Mixed norms and generalized thresholding operator

One of the main limitations of the l1 norm sparse model is that all the coefficients are treated independently. Most
mechanical vibration signals are highly structured, for example, the impulsive components of signals are existing in some
certain time and located in some frequency band in the time-frequency distribution. Therefore the structures of a signal cor-
responding to the physical prior could be used for its processing [27]. In order to take the advantage of time-frequency struc-
tures of the gear vibration signal, we consider the dictionary as the Gabor frame which is an over-completed time-frequency
dictionary and replace the l1 norm penalty by the mixed norm lp;q which acts as different roles in groups (indexed by g in the
sequel, can be either time or frequency) and their members (indexed by m) [23].

Gabor frames consist of a set of atoms uk;j ¼ MbjTkau, where Tx and Mx denote the time- and frequency-shift-operator
respectively. u is a standard window function. a and b are the time and frequency sampling constant, and
j ¼ 0; . . . ; J � 1; k ¼ 0; . . . ;K � 1, with Ka ¼ Jb ¼ L. Accordingly, the expansion coefficients of the Gabor frame dictionary
are denoted by the two-dimensional variable ck;j. The notation ðk; jÞ refers to the time-frequency indices of the Gabor
expansion.

The mixed norm lp;q with the group-member structure yields:
WðcÞ ¼ kckp;q ¼
X
g

X
m

jcg;mjp
 !q=p

0
@

1
A

1=q

ð5Þ
Specifically, the l2;1 (p ¼ 2; q ¼ 1) penalty is known as the Group-Lasso (GL), which promotes sparsity in groups and

diversity in members. In the case of p ¼ 1; q ¼ 2, the l1;2 penalty is termed Elitist-Lasso (EL) which promotes sparsity in
members and diversity in groups [28].

The iteration soft-thresholding algorithm (ISTA), which solves Eq. (4) with the l1 norm penalty [29], also yields a solution
to the generalized minimization problem induced by Eq. (5). Kai [30] replaced the standard soft thresholding by a general-
ized thresholding operator and has taken the fast ISTA(FISTA) methods into consideration as presented in [31]. Kai’s method
accelerates the convergence velocity of the iterative procedure. The generalized thresholding operator is defined as
Sk;nðzg;mÞ ¼ zg;mð1� nðzÞÞþ, where b 2 R, bþ

:¼ maxðb;0Þ, n is the thresholding function, which is defined as:
p ¼ 1; q ¼ 1 : nLðcg;mÞ ¼ k
jcg;mj ðLassoÞ ð6Þ

p ¼ 2; q ¼ 1 : nGLðcg;mÞ ¼ kP
mjcg;mj2

� �1
2

ðGLÞ ð7Þ
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p ¼ 1; q ¼ 2 : nELðcg;mÞ ¼ k
1þMgk

kcgk1
jcg;mj ðELÞ ð8Þ
where cg ¼ ðc0g;1; . . . ; c0g;Mg
Þ and fc0g;m0 gm0 denotes for each group g the sequence of scalars jcg;mj in descendant order. Mg

denotes some natural numbers related to the magnitudes of coefficients in the group ðcg;1; . . . ; cg;MÞ [32]. The solution to
Eq. (5) is then given by the FISTA as follows.

2.3. Time-frequency neighborhood

In some vibration signal processing issue, the groups of GL and EL cannot be identified explicitly. Therefore the time-
frequency neighborhood is defined as follows to cover a wider spectrum of vibration signals:

For an index c ¼ g;mð Þ in a structured index set I , a weighted neighborhood N cð Þ ¼ c0 2 I : wc c0ð Þ – 0
� �

with the

weights wc defined on I such that wc c0ð Þ P 0 for all
P

c02N cð Þwc c0ð Þ2 ¼ 1. The coefficients cg;m undergo shrinkage according
to the energy of the time-frequency neighborhood, and the neighborhoods are more flexible to the groups of GL and EL using

weighting and overlap. Then with gN cc
� � ¼ P

c02N cð Þwc c0ð Þ2 cc0
�� ��2� �1=2

, the thresholding functions of the generalized threshold-

ing operator is further extended by the following convolutions:
nWGL ¼ nL � gN windowed GL WGLð Þð Þ ð9Þ
nPEL ¼ nEL � gN persistent EL ðPELÞð Þ ð10Þ
nPGL ¼ nGL � gN persistent GL ðPGLÞð Þ ð11Þ
2.4. The process of gear fault analysis

The vibration signals are basically induced by the gear meshing and the rotation of gear shafts. The presence of a local
fault will generate the impulse force when the gear is engaged in meshing. The impulse force will cause the variation of
vibration amplitude and phase which generates steady modulation phenomenon [33]. As the consequence of the steady
modulation, vibration signals exhibit sidebands around the meshing frequency and its harmonics. The traditional gear fault
diagnosis methods mainly focus on the detection of sideband structure in spectrums. This is not the best approach for fault
diagnosis as the manufacturing and assembling for intact gears also induce modulation [34]. Furthermore, in the complex
gear transmission systems, such as planetary gear train, sidebands may not be obvious even in the seriously defective gear.
This can be interpreted by the long vibration transmission path, which involves strong noise interference related to the rota-
tion of the planet carrier. Compared with modulation phenomenon, the periodic impulse feature of vibration is more robust
for local damage detection in gear. Thus, combining sideband structures with periodic impulse features is a promising way to
detect gear damage.

For the stationary gear vibration signal, i.e. rotation speed of the machine does not change with time, the harmonic com-
ponents of the shaft rotation and steady modulation components are sparse in frequency domain but persistent in time
domain, as shown in Fig. 1(a). Since the time-frequency neighborhood consists of a fixed frequency index and some succes-
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ic and modulation components.
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sive time indexes, the WGL can be used to exploit the time-frequency priors of the steady modulation components. As illus-
trated in Fig. 1(b), the neighborhood of the index ðk0; j0Þ is fðk0 � 1; j0Þ; ðk0; j0Þ; ðk0 þ 1; j0Þ; ðk0 þ 2; j0Þg.

However, the periodic impulse signals induced by local defect are sparse in time domain but persistent in frequency
domain, as shown in Fig. 2(a). Furthermore, the inspected impulse is damped, namely it is persistent in time domain. In this
situation, the PGL is a good selection to introduce this kind of time-frequency priories. Groups are chosen as the time
indexes, and members are chosen as the frequency indexes. Some additional persistence in frequency is also added, such
as using neighborhoods which contain two successive time indexes, as illustrated in Fig. 2(b).

The length of persistent time indexes can be determined by the following heuristic method. Firstly, identify the modal
dynamic parameters of the impulsive vibration by the correlation filtering using the Laplace wavelet [35]. The Laplace wave-
let is formulated as an impulse response of a single mode system, as follows:
Fig. 2.
groups
wðf ; f; s; tÞ ¼ wcðtÞ ¼ Ae�2pf fðt�sÞe�j2pf
ffiffiffiffiffiffiffiffi
1�f2

p
ðt�sÞ; t 2 ½s; sþWs�

0 otherwise

(
ð12Þ
where c ¼ ff ; f; sg is the modal parameters, and Ws is the support length of the wavelet. Discretize the parameter and find
the maximum correlation coefficient at the every s moment, as formulated by Eq. (13).
jðsÞ ¼ max
f ;f

js
c ¼ maxf ;f

jhws
cðtÞ; xðtÞij

kwck2kxk2
ð13Þ
Find the peak of the curve ðs; jðsÞÞ, and the corresponding parameters ð�f ; �fÞ are the modal parameters of the vibration.
Thus the envelope of the impact response can be identified. Take the end of the impulsive signal where the amplitude drops
to 0.01 of the maximum amplitude, the persistent length can be estimated by:
n ¼ �f s lnð0:01Þ
2p�f�f

� lw


 ��
Dlw

 �
þ 1 ð14Þ
where f s is the sampling frequency, lw is the window length of the Gabor frame, and Dlw is the shift length of the window. The
above process is illustrated by Fig. 3.

The different components of the gear vibration signal can be extracted respectively by the different thresholding func-
tions of the generalized thresholding operators. So the SSTFA procedure for defective gear detection is described as follows:

STEP 1: Select an appropriate analysis frequency band. In application, the sampling frequency is often much higher than
twice of the analyzing frequency to guarantee that the high-frequency components are reasonably sampled. In fact, the
analysis frequency contains the first three orders of the gear meshing frequency and the main frequency range of the
impulse response is wide enough for gear fault diagnosis. The pre-processing of the signal using a low-pass filter to
choose an appropriate frequency band is highly recommended. The selected filter can reduce the data number to improve
calculation speed and get a more readable time-frequency distribution.
STEP 2: Choose a relatively long window of the Gabor frame. The time-frequency neighborhood consists of a fixed fre-
quency index and some successive time indexes. Then use the WGL thresholding function and solve the sparse regular-
ization inverse problem to extract harmonic and steady modulation components.
STEP 3: Subtract the harmonic component from the signal to get the residual signal. Choose a relatively short window of
the Gabor frame, the time indexes as groups and neighborhood of two successive time indexes. Then use the PGL to
extract the impulsive component from the residual signal.
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(a) The time-frequency distribution of the impulse signal. (b) The sketch of time-frequency neighborhood of the PGL for impulsive components:
are defined by time indexes as shown in the rectangles and persistent of two-time indexes is introduced as shown in the dashed.
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STEP 4: Plot the time-frequency distribution of the steady modulation components and the impulsive components in the
same diagram respectively. According to the time-frequency distribution or the envelope demodulation spectrum of the
impulsive components, a diagnostic conclusion is obtained.

The process of the SSTFA for defective gear detection is presented in Fig. 4.

3. Numerical simulation and comparison

Based on above analysis, there are three main components in the defective gear vibration signals including the harmonic
and steady modulation components shðtÞ (induced by gear meshing and rotation of the shaft), the periodic impulsive com-
ponents siðtÞ (generated from gear local damage), and other additive noise nðtÞ .Without loss of generality, the initial phase of
the harmonic signals is neglected. The observed vibration signal of defective gears can be described as:



Fig. 5.
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sðtÞ ¼ shðtÞ þ siðtÞ þ nðtÞ
shðtÞ ¼

X
m

Asm cosð2pmfr1tÞ þ
X
n

Bsn cosð2pnfr2tÞ þ ½1þ Ah cosð2pf r1tÞ� � cosð2pf zt þ Bh cosð2pf r1tÞÞ

siðtÞ ¼
X
k

Ai exp½�fxnðt � kTÞ� � sin½xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
ðt � kTÞ�

ð15Þ
where
P

mAsm cosð2pmfr1tÞ and
P

nBsn cosð2pnfr2tÞ are the rotational vibration components and their higher orders of the two
gear shafts. To simplify the signal, only the first order of the rotation frequency is considered. As1 is set to be 1 and Bs1 is set to
be 0.5. f r1 is 20 Hz and f r2 is 40 Hz. The meshing frequency f z is 1000 Hz. Assume that a local fault exists on shaft 1, the
amplitudes of amplitude modulation (AM) and frequency modulation (FM) Ah and Bh are both set to be 1. siðtÞ is the single
side attenuation impact simulation signal, Ai ¼ 2:5 is amplitude factor of the impact signal, f is the damping ratio equaling to
0.05, xn is the undamped natural frequency equaling to 2500=2p rad � s�1 and T is the period of impact signal equaling to
1=f r . nðtÞ is white Gaussian noise with zero mean and standard deviation r ¼ 0:5 .The sampling frequency of the signal is
set as 8 kHz, and the sampling number is 4096. The waveforms of the synthetic signals are shown in Fig. 5.

3.1. Parameter analysis

In order to evaluate the effect of different parameters on the algorithm, various parameters are employed to process the
above signal. The parameters of the comparison include: the window length l of Gabor frame and time-frequency neighbor-
hood length n in both the WGL and the PGL procedures. The result is evaluated by the mean squared errors (MSE) of the
separated components and original signals. To be as fair as possible, the sparsity level k is optimized respectively by the trial
and error approach to gain the best separation result. The MSE curves that vary with neighborhood length in different win-
dow length are presented in Fig. 6.

The MSE1 of the steady modulation components decreases with the increase of neighborhood length when window
length becomes larger. That is due to the persistence of the simulated steady modulation components. Choosing a longer
neighborhood should be suitable for this situation, but the MSE1 is not influenced by the neighborhood length when the
length is too small. That can be attributed to the fact that the small window length is not suitable for extracting steady mod-
ulation components. To separate impulsive components from the inspected signal, the optimal length of the neighborhood
length could be calculated by Eq. (14). The identified modal parameters are �f ¼ 2530 Hz and �f ¼ 0:048, which is close to the
simulated results. The optimal lengths of the neighborhood are 4, 2, 1, and 1, which are respectively corresponding to the
window lengths 20, 30, 40 and 50. For the MSE2 curves of the impulsive components, the minimum value just happens when
the length is close to the optimal neighborhood length. Furthermore, the MSE2 increases with the window length. It shows
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that choosing a smaller window length and optimal neighborhood length could gain a better separation result for impulsive
components. Thus, we choose the window length l1 ¼ 1024, the neighborhood length n1 ¼ 13 for the WGL procedure, and
the window length l2 ¼ 32, and the corresponding optimal neighborhood length n2 for the PGL procedure in this paper.

3.2. Method comparison

The simulated signal is then processed by the SSTFA. The reconstructed steady modulation components and periodic
impulsive components are displayed in Fig. 7. It can be observed from Fig. 7 that the stationary components and the impul-
sive components are completely separated except that each end of the signal is corrupted due to the boundary effect. As
shown in the partial enlarged detail in Fig. 8, it is seen that the reconstructed component has a high quality, which is very
close to the original signals.

Finally, the time-frequency distribution of the steady modulation and impulsive component are drawn in the same time-
frequency diagram as shown in Fig. 9(a). The time-frequency distribution diagram has the lower background noise and
higher resolution in both time domain and frequency domain. It is interpreted by the good denoising performance of the
method and the appreciable separation of different time-frequency structures. The low-frequency part is the rotational fre-
quency of the two shafts. The periodicity of the impulse signals is 0.05 s. One can see that the impact energy is concentrated

around the damped natural frequency xn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
¼ 2487:5 Hz. From the partial enlarged detail in Fig. 9(b), the interval of

the sideband around meshing frequency is 20 Hz, which is also the modulated rotational frequency of the shaft. To sum
up, the time-frequency structure of the simulation signal is fully revealed.

For comparison, the same synthetic signal is analyzed by an SR decomposition method, morphological component anal-
ysis (MCA) [36], and a classic signal self-adaptive decomposition method, empirical mode decomposition (EMD) [37] respec-
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tively. Firstly, the MCA is used to decompose sðtÞ. The MCA sparsely represents different signal components in the different
dictionaries. The steady modulation components are sparsely represented by the discrete cosine dictionary and the impul-
sive components are sparsely represented by the db8 (Daubechies wavelets with 8-order vanishing moments) wavelets dic-
tionary. The SR problems are solved by orthogonal matching pursuit (OMP) method respectively. The results are shown in
Fig. 10. The impulsive components are not only corrupted by endpoint effect but also interfered by harmonic components. To
further evaluate the performance of the different methods, the MSE of the separated components and original signals are
listed in Table 1, which indicates that the SSTFA has the higher decomposition accuracy than the MCA. For the vibration sig-
nals in this experiment (on a corei7-4790 @3.6 GHz computer), the running time of the SSTFA is 1.025 s, while the running
time of the MCA is 16.142 s. Therefore, the SSTFA also performs better than the MCA on efficiency, which makes the SSTFA a
suitable choice for in-situ applications (see Table 2).

Secondly, the EMD is employed in decomposition the simulation signal, and the first six intrinsic mode functions (IMFs)
are shown in Fig. 11. It can be seen that the steady modulation and impulsive components are not separated completely. The
IMF1 contains part of the impulsive components. Besides, IMF3 mainly includes the impulsive components, but it is still
interfered by the harmonic components. The comparison demonstrates that the SSTFA has the more powerful capability
of separating different components than the MCA and the EMD.

Finally, the simulation signal is analyzed by means of a traditional time-frequency analysis method, short time Fourier
transform (STFT), and a sparse time-frequency representation method. The Hamming window with the length of 128 is used
in the STFT. The sparse time-frequency representation method obtains the sparse representation on the db8 wavelets dic-
tionary utilizing the basis pursuit denoising and visualizes the coefficients in the time-frequency plane. The time-
frequency diagrams of the signal are illustrated in Fig. 12. The STFT method is corrupted by noise. Furthermore, due to
the restriction of the Heisenberg uncertainty principle, the time localization and frequency resolution cannot present their
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Fig. 10. The decomposition results of the MCA: (a) the steady modulation components and (b) the impulsive components.

Table 1
Fast iteration soft-thresholding algorithm.

Algorithm (FISTA)

S ¼ Sk;n

choosing arbitrary c0 ¼ b1

t1 ¼ 1
repeat
cn ¼ Sðbn þU�ðy �UbnÞÞ
tnþ1 ¼ 1

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4t2n

q
 �

bnþ1 ¼ cn þ tn�1
tnþ1

� �
ðcn � cn�1Þ

Until convergence

Table 2
The MSE obtained by the SSTFA and MCA.

Steady modulation components error e1ðtÞ Impulsive components error e2ðtÞ
SSTFA 0.0227 0.0125
MCA 0.0235 0.0170
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best performance simultaneously. The periodic impulses can be vaguely distinguished, but the sidebands of the steady mod-
ulation components are hardly identified. The sparse representation method gains a high frequency resolution. However, due
to the structure priori information of the time-frequency coefficients has not been considered, the sideband information can-
not be well-recognized either. In this sense, their performances are inferior to that of the SSTFA method for the investigated
problem.
4. Experimental verification and engineering application

To verify the effectiveness of the SSTFA, a fault simulation test of detecting a damaged planet gear in planetary gear train
is performed. Thereafter, the algorithm is applied in the damage detection of wind turbine driving chain gear.
4.1. Fault simulation test

The experiment was conducted on an SQI gearbox fault simulator as shown in Fig. 13. The test rig contains a two-stage
planetary gearbox and a two-stage fixed-axis gearbox. The driving train is powered by a 3-hp motor and has a magnetic
brake for loading. The kinematic diagram of the gearboxes is illustrated in Fig. 14. A simulated broken tooth fault is con-
ducted on one of the planet gears in the first planetary stage as shown in Fig. 15. The vibration signals are acquired by an
accelerometer implemented on the planetary gearbox near the first stage ring gear. The signals are recorded by the CoCo80
data acquisition instrument with the sampling frequency 10240 Hz, and the signals are finally displayed and analyzed in a
laptop.
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Fig. 11. The EMD analysis results of the vibration signal in the simulation.
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Fig. 13. The SQI gearbox fault simulator and the measurement system.
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The input speed of the motor is 1800 rpm. The load torque is 10.88 N m. Under these conditions, the input torque is
1.98 N m. The meshing frequency is 500 Hz and the local fault characteristic frequency of the first stage planet gear is
25 Hz, which can be calculated via Eqs. (16) and (17).
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Fig. 15. Broken tooth fault of the first stage planet gear.
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f m ¼ f i
ZsZr

ðZs þ ZrÞ ð16Þ
f p ¼ 2
f m
Zp

¼ 2f i
ZsZr

ZpðZs þ ZrÞ ð17Þ
where Zs, Zp, Zr are the numbers of the teeth of the sun gear, planet gear, and ring gear, respectively. f m, and f i refer to the
meshing frequency and input rotational frequency, respectively.

A segment of the signals is intercepted and the analysis frequency band is chosen as 0–5120 Hz. The waveform and spec-
trum are shown in Figs. 16 and 17, respectively. Impulsive components cannot be clearly identified in the original waveform.
In the low frequency region of the spectrum, the first four order of the input shaft rotational frequency can be seen clearly in
Fig. 17(b), which is due to the unbalance of the shaft system caused by the fault planetary gear. Moreover, from the locally
enlarged detail in Fig. 17(c), there is no obvious phenomenon of fault characteristic frequency modulating the meshing fre-
quency. In the envelope demodulation spectrum (Fig. 18), the fault characteristic frequency is completely submerged in the
interference caused by strong noise in the original signals. Hence, the further analysis using the SSTFA is necessary.

For extraction the steady modulation components, the window length of the Gabor frame l1 is chosen as 1024 and the
neighborhood length n1 is chosen as 20. For extraction the impulsive component, the window length l2 is chosen as 32
and the neighborhood length n2 is chosen as 3, which is estimated by Eq. (14). The sparse level k1 ¼ 0:15 and k2 ¼ 0:06,
which are optimized by the trial and error approach on another segment of the signals using the MSE evaluation criteria.
The length of Fig. 19 illustrated the separated different components, and Fig. 20 is the envelope demodulation spectrum
of the impulsive component. From the envelope demodulation spectrum, the fault characteristic frequency can be identified.
The structured time-frequency distribution of the signal is shown in Fig. 21, from which the period of the impulsive compo-
nent can be identified clearly. The period is 0.04 s, which corresponds to the local fault feature frequency of the first stage
planet gear. Furthermore, the frequency band of the impulse can be observed from the time-frequency distribution. It can be
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inferred that the impulse energy in the range of 500–2000 Hz are caused by resonance oscillations of the gear system when
the locally damaged tooth meshes with the others.

4.2. Wind field test

During one inspection of a wind field, an alarm occurred in a wind turbine of the condition monitoring system (CMS). The
installed capacity of the wind turbine is 2 MW. The root mean square (RMS) value of the gearbox vibration signals in the
wind turbine was over the standard. The alarm accelerator is implemented on the bearing cover of the high-speed shaft
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Table 3
The characteristic frequencies of the fixed-axis gearbox at 1795.8 rpm (units: Hz).

Meshing frequency Gear shaft frequency Pinion shaft frequency

Low speed stage 134.47 1.64 6.73
High speed stage 598.57 6.73 29.92
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Fig. 23. One segment of the inspected vibration signal.
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of the gearbox and a tachometer is implemented on the high-speed shaft. The drivetrain kinematic diagram and the sensor
layout are shown in Fig. 22. The sampling frequency is set as 25,600 Hz.

From the tachometer records, the average rotational speed of the high-speed shaft is obtained as 1795.8 rpm. According
to the kinematic relation, the characteristic frequency of the fixed-axis gearbox is listed in Table 3. Firstly, the decimation
filter is used to achieve a decimation factor 8, i.e. the analysis frequency band is chosen as 0–3200 Hz. One segment of
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Fig. 25. The locally enlarged detail of the spectrum shown in Fig. 24. (a) The frequency band around the first order of the meshing frequency. (b) The
frequency band around the second order of the meshing frequency.
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Fig. 28. The local pit corrosion on the large gear of high-speed shaft.
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the vibration signal is displayed in Fig. 23. It seems that there are some impulsive components, but the impulse period can-
not be confirmed. The related frequency spectrums are illustrated in Figs. 24and 25, the first and second order of the gear
meshing frequencies of the high-speed stage can be found clearly. However, there is no obvious sideband around the first
order meshing frequency and the amplitude of the sideband of the second order meshing frequency is relatively low.

The above analysis fails to obtain a satisfying diagnosis conclusion. Then the SSTFA is applied to process this segment of
the signal. The analysis parameter is chosen as: l1 ¼ 2048, n1 ¼ 20, l2 ¼ 64, and n2 ¼ 2. The sparse level k1 is chosen as 0.3
and k2 is chosen as 0.1 by the trial and error approach on another segment of the signals. The separated steady modulation
components and impulsive components are illustrated in Fig. 26; and time-frequency distributions of different components
are illustrated in Fig. 27. It can be found that there exist some period impulses with the interval of 0.153 s, which agrees with
the theoretical value of the local fault in the large gear of high-speed shaft. An endoscopy examination was performed on the
gearbox. A local pit corrosion and scuff were found on the large gear of high-speed shaft, as shown in Fig. 28.

5. Conclusion

Different from the classic sparse representation algorithm, the relations between the time-frequency coefficients are fully
taken into consideration in the SSTFA. Theoretically, the SSTFA inherits advantages of the classic sparse representation, espe-
cially in analyzing signals with complicated time-frequency structures and extracting different feature information. More-
over, compared with the traditional time-frequency analysis methods, it is found that the SSTFA also has a better time-
frequency resolution. The simulations and experiments show that the SSTFA is suitable for processing stationary speed vibra-
tion signals and has good performance for gear fault diagnosis.

The rough analysis of the parameters is given in this paper. The quantitative analysis of the parameters and self-adaptive
parameters selection methods need to be further studied.
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